mdreloc.c revision 1.1 1 /* $NetBSD: mdreloc.c,v 1.1 2000/07/13 23:14:18 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
71 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
72 static int reloc_target_flags[] = {
73 0, /* NONE */
74 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
75 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
76 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
86 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
88 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
89 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
91 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
92 _RF_SZ(32) | _RF_RS(0), /* COPY */
93 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
94 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
95 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
96 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
97
98 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
99 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
100 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
101 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
104 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
106 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
107 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
108 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
111 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
120 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
121 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
127 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* UA64 */
129 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* UA16 */
130 };
131
132 #ifdef RTLD_DEBUG_RELOC
133 static const char *reloc_names[] = {
134 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
135 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
136 "22", "13", "LO10", "GOT10", "GOT13",
137 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
138 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
139 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
140 "10", "11", "64", "OLO10", "HH22",
141 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
142 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
143 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
144 "L44", "REGISTER", "UA64", "UA16"
145 };
146 #endif
147
148 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
149 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
150 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
151 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
152 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
153
154 static long reloc_target_bitmask[] = {
155 #define _BM(x) (~(-(1ULL << (x))))
156 0, /* NONE */
157 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
158 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
159 _BM(30), _BM(22), /* WDISP30, WDISP22 */
160 _BM(22), _BM(22), /* HI22, _22 */
161 _BM(13), _BM(10), /* RELOC_13, _LO10 */
162 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
163 _BM(10), _BM(22), /* _PC10, _PC22 */
164 _BM(30), 0, /* _WPLT30, _COPY */
165 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
166 _BM(32), _BM(32), /* _UA32, PLT32 */
167 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
168 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
169 _BM(10), _BM(11), -1, /* _10, _11, _64 */
170 _BM(10), _BM(22), /* _OLO10, _HH22 */
171 _BM(10), _BM(22), /* _HM10, _LM22 */
172 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
173 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
174 -1, /* GLOB_JMP */
175 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
176 -1, -1, /* DISP64, PLT64 */
177 _BM(22), _BM(13), /* HIX22, LOX10 */
178 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
179 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
180 #undef _BM
181 };
182 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
183
184
185 int
186 _rtld_relocate_nonplt_object(obj, rela, dodebug)
187 Obj_Entry *obj;
188 const Elf_RelA *rela;
189 bool dodebug;
190 {
191 Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
192 Elf_Word type, value, mask;
193 const Elf_Sym *def = NULL;
194 const Obj_Entry *defobj = NULL;
195
196 type = ELF_R_TYPE(rela->r_info);
197 if (type == R_TYPE(NONE))
198 return (0);
199
200 /* We do JMP_SLOTs in relocate_plt_object() below */
201 if (type == R_TYPE(JMP_SLOT))
202 return (0);
203
204 /* COPY relocs are also handled elsewhere */
205 if (type == R_TYPE(COPY))
206 return (0);
207
208 /*
209 * We use the fact that relocation types are an `enum'
210 * Note: R_SPARC_UA16 is currently numerically largest.
211 */
212 if (type > R_TYPE(UA16))
213 return (-1);
214
215 value = rela->r_addend;
216
217 /*
218 * Handle relative relocs here, because we might not
219 * be able to access globals yet.
220 */
221 if (!dodebug && type == R_TYPE(RELATIVE)) {
222 *where += (Elf_Addr)(obj->relocbase + value);
223 return (0);
224 }
225
226 if (RELOC_RESOLVE_SYMBOL(type)) {
227
228 /* Find the symbol */
229 def = _rtld_find_symdef(_rtld_objlist, rela->r_info,
230 NULL, obj, &defobj, false);
231 if (def == NULL)
232 return (-1);
233
234 /* Add in the symbol's absolute address */
235 value += (Elf_Word)(defobj->relocbase + def->st_value);
236 }
237
238 if (RELOC_PC_RELATIVE(type)) {
239 value -= (Elf_Word)where;
240 }
241
242 if (RELOC_BASE_RELATIVE(type)) {
243 /*
244 * Note that even though sparcs use `Elf_rela' exclusively
245 * we still need the implicit memory addend in relocations
246 * referring to GOT entries. Undoubtedly, someone f*cked
247 * this up in the distant past, and now we're stuck with
248 * it in the name of compatibility for all eternity..
249 *
250 * In any case, the implicit and explicit should be mutually
251 * exclusive. We provide a check for that here.
252 */
253 #define DIAGNOSTIC
254 #ifdef DIAGNOSTIC
255 if (value != 0 && *where != 0) {
256 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
257 "addend=0x%lx, base %p\n",
258 obj->path, where, *where,
259 rela->r_addend, obj->relocbase);
260 }
261 #endif
262 value += (Elf_Word)(obj->relocbase + *where);
263 }
264
265 mask = RELOC_VALUE_BITMASK(type);
266 value >>= RELOC_VALUE_RIGHTSHIFT(type);
267 value &= mask;
268
269 /* We ignore alignment restrictions here */
270 if (RELOC_TARGET_SIZE(type) > 32) {
271 *where &= ~mask;
272 *where |= value;
273 #ifdef RTLD_DEBUG_RELOC
274 value = (Elf_Word)*where;
275 #endif
276 } else {
277 Elf32_Addr *where32 = (Elf32_Addr *)where;
278
279 *where32 &= ~mask;
280 *where32 |= value;
281 #ifdef RTLD_DEBUG_RELOC
282 value = (Elf_Word)*where32;
283 #endif
284 }
285
286 #ifdef RTLD_DEBUG_RELOC
287 if (RELOC_RESOLVE_SYMBOL(type)) {
288 rdbg(dodebug, ("%s %s in %s --> %p %s",
289 reloc_names[type],
290 defobj->strtab + def->st_name, obj->path,
291 (void *)value, defobj->path));
292 }
293 else {
294 rdbg(dodebug, ("%s --> %p", reloc_names[type],
295 (void *)value));
296 }
297 #endif
298 return (0);
299 }
300
301 /*
302 * Instruction templates:
303 */
304 #define BAA 0x10400000 /* ba,a %xcc, 0 */
305 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
306 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
307 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
308 #define OR 0x82806000 /* or %g1, 0, %g1 */
309 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
310 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
311 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
312 #define CALL 0x40000000 /* call 0 */
313 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
314 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
315 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
316
317
318 /* %hi(v) with variable shift */
319 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
320 #define LOVAL(v) ((v) & 0x000003ff)
321
322 int
323 _rtld_relocate_plt_object(obj, rela, addrp, bind_now, dodebug)
324 Obj_Entry *obj;
325 const Elf_RelA *rela;
326 caddr_t *addrp;
327 bool bind_now;
328 bool dodebug;
329 {
330 const Elf_Sym *def;
331 const Obj_Entry *defobj;
332 Elf32_Word *where = (Elf32_Word *) (obj->relocbase + rela->r_offset);
333 Elf_Addr value, offset;
334
335 if (bind_now == 0 && obj->pltgot != NULL)
336 return (0);
337
338 /* Fully resolve procedure addresses now */
339
340 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
341
342 def = _rtld_find_symdef(_rtld_objlist, rela->r_info,
343 NULL, obj, &defobj, true);
344 if (def == NULL)
345 return (-1);
346
347 value = (Elf_Addr) (defobj->relocbase + def->st_value);
348 rdbg(dodebug, ("bind now %d/fixup in %s --> old=%p new=%p",
349 (int)bind_now, defobj->strtab + def->st_name,
350 (void *)*where, (void *)value));
351
352 /*
353 * At the PLT entry pointed at by `where', we now construct
354 * a direct transfer to the now fully resolved function
355 * address.
356 *
357 * A PLT entry is supposed to start by looking like this:
358 *
359 * sethi %hi(. - .PLT0), %g1
360 * ba,a %xcc, .PLT1
361 * nop
362 * nop
363 * nop
364 * nop
365 * nop
366 * nop
367 *
368 * When we replace these entries we start from the second
369 * entry and do it in reverse order so the last thing we
370 * do is replace the branch. That allows us to change this
371 * atomically.
372 *
373 * We now need to find out how far we need to jump. We
374 * have a choice of several different relocation techniques
375 * which are increasingly expensive.
376 */
377
378 offset = ((Elf_Addr)where) - value;
379 if (rela->r_addend) {
380 Elf_Addr *ptr = (Elf_Addr *)where;
381 /*
382 * This entry is >32768. Just replace the pointer.
383 */
384 ptr[0] = value;
385
386 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
387 /*
388 * We're within 1MB -- we can use a direct branch insn.
389 *
390 * We can generate this pattern:
391 *
392 * sethi %hi(. - .PLT0), %g1
393 * ba,a %xcc, addr
394 * nop
395 * nop
396 * nop
397 * nop
398 * nop
399 * nop
400 *
401 */
402 where[1] = BAA | ((offset >> 2) &0x3fffff);
403 __asm __volatile("iflush %0+4" : : "r" (where));
404 } else if (value >= 0 && value < (1L<<32)) {
405 /*
406 * We're withing 32-bits of address zero.
407 *
408 * The resulting code in the jump slot is:
409 *
410 * sethi %hi(. - .PLT0), %g1
411 * sethi %hi(addr), %g1
412 * jmp %g1+%lo(addr)
413 * nop
414 * nop
415 * nop
416 * nop
417 * nop
418 *
419 */
420 where[2] = JMP | LOVAL(value);
421 where[1] = SETHI | HIVAL(value, 10);
422 __asm __volatile("iflush %0+8" : : "r" (where));
423 __asm __volatile("iflush %0+4" : : "r" (where));
424
425 } else if (value <= 0 && value > -(1L<<32)) {
426 /*
427 * We're withing 32-bits of address -1.
428 *
429 * The resulting code in the jump slot is:
430 *
431 * sethi %hi(. - .PLT0), %g1
432 * sethi %hix(addr), %g1
433 * xor %g1, %lox(addr), %g1
434 * jmp %g1
435 * nop
436 * nop
437 * nop
438 * nop
439 *
440 */
441 where[3] = JMP;
442 where[2] = XOR | ((~value) & 0x00001fff);
443 where[1] = SETHI | HIVAL(~value, 10);
444 __asm __volatile("iflush %0+12" : : "r" (where));
445 __asm __volatile("iflush %0+8" : : "r" (where));
446 __asm __volatile("iflush %0+4" : : "r" (where));
447
448 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
449 /*
450 * We're withing 32-bits -- we can use a direct call insn
451 *
452 * The resulting code in the jump slot is:
453 *
454 * sethi %hi(. - .PLT0), %g1
455 * mov %o7, %g1
456 * call (.+offset)
457 * mov %g1, %o7
458 * nop
459 * nop
460 * nop
461 * nop
462 *
463 */
464 where[3] = MOV17;
465 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
466 where[1] = MOV71;
467 __asm __volatile("iflush %0+12" : : "r" (where));
468 __asm __volatile("iflush %0+8" : : "r" (where));
469 __asm __volatile("iflush %0+4" : : "r" (where));
470
471 } else if (offset >= 0 && offset < (1L<<44)) {
472 /*
473 * We're withing 44 bits. We can generate this pattern:
474 *
475 * The resulting code in the jump slot is:
476 *
477 * sethi %hi(. - .PLT0), %g1
478 * sethi %h44(addr), %g1
479 * or %g1, %m44(addr), %g1
480 * sllx %g1, 12, %g1
481 * jmp %g1+%l44(addr)
482 * nop
483 * nop
484 * nop
485 *
486 */
487 where[4] = JMP | LOVAL(offset);
488 where[3] = SLLX | 12;
489 where[2] = OR | (((offset) >> 12) & 0x00001fff);
490 where[1] = SETHI | HIVAL(offset, 22);
491 __asm __volatile("iflush %0+16" : : "r" (where));
492 __asm __volatile("iflush %0+12" : : "r" (where));
493 __asm __volatile("iflush %0+8" : : "r" (where));
494 __asm __volatile("iflush %0+4" : : "r" (where));
495
496 } else if (offset < 0 && offset > -(1L<<44)) {
497 /*
498 * We're withing 44 bits. We can generate this pattern:
499 *
500 * The resulting code in the jump slot is:
501 *
502 * sethi %hi(. - .PLT0), %g1
503 * sethi %h44(-addr), %g1
504 * xor %g1, %m44(-addr), %g1
505 * sllx %g1, 12, %g1
506 * jmp %g1+%l44(addr)
507 * nop
508 * nop
509 * nop
510 *
511 */
512 where[4] = JMP | LOVAL(offset);
513 where[3] = SLLX | 12;
514 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
515 where[1] = SETHI | HIVAL(~offset, 22);
516 __asm __volatile("iflush %0+16" : : "r" (where));
517 __asm __volatile("iflush %0+12" : : "r" (where));
518 __asm __volatile("iflush %0+8" : : "r" (where));
519 __asm __volatile("iflush %0+4" : : "r" (where));
520
521 } else {
522 /*
523 * We need to load all 64-bits
524 *
525 * The resulting code in the jump slot is:
526 *
527 * sethi %hi(. - .PLT0), %g1
528 * sethi %hh(addr), %g1
529 * sethi %lm(addr), %g5
530 * or %g1, %hm(addr), %g1
531 * sllx %g1, 32, %g1
532 * or %g1, %g5, %g1
533 * jmp %g1+%lo(addr)
534 * nop
535 *
536 */
537 where[6] = JMP | LOVAL(value);
538 where[5] = ORG5;
539 where[4] = SLLX | 12;
540 where[3] = OR | LOVAL((value) >> 32);
541 where[2] = SETHIG5 | HIVAL(value, 10);
542 where[1] = SETHI | HIVAL(value, 42);
543 __asm __volatile("iflush %0+20" : : "r" (where));
544 __asm __volatile("iflush %0+16" : : "r" (where));
545 __asm __volatile("iflush %0+16" : : "r" (where));
546 __asm __volatile("iflush %0+12" : : "r" (where));
547 __asm __volatile("iflush %0+8" : : "r" (where));
548 __asm __volatile("iflush %0+4" : : "r" (where));
549
550 }
551
552 if (addrp != NULL)
553 *addrp = (caddr_t)value;
554
555 return (0);
556 }
557
558 /*
559 * Install rtld function call into this PLT slot.
560 */
561 #define SAVE 0x9de3bf50
562 #define SETHI_l0 0x21000000
563 #define SETHI_l1 0x23000000
564 #define OR_l0_l0 0xa0142000
565 #define SLLX_l0_32_l0 0xa12c3020
566 #define OR_l0_l1_l0 0xa0140011
567 #define JMPL_l0_o0 0x93c42000
568 #define MOV_g1_o0 0x90100001
569
570 void _rtld_install_plt __P((Elf32_Word *pltgot, Elf_Addr proc));
571
572 void
573 _rtld_install_plt(pltgot, proc)
574 Elf32_Word *pltgot;
575 Elf_Addr proc;
576 {
577 pltgot[0] = SAVE;
578 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
579 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
580 pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
581 pltgot[4] = SLLX_l0_32_l0;
582 pltgot[5] = OR_l0_l1_l0;
583 pltgot[6] = JMPL_l0_o0 | LOVAL(proc);
584 pltgot[7] = MOV_g1_o0;
585 }
586