mdreloc.c revision 1.20 1 /* $NetBSD: mdreloc.c,v 1.20 2002/09/12 20:24:03 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_U 0x04000000 /* Unaligned */
71 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 static const int reloc_target_flags[] = {
74 0, /* NONE */
75 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 _RF_SZ(32) | _RF_RS(0), /* COPY */
94 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98
99 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 };
132
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 "22", "13", "LO10", "GOT10", "GOT13",
138 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 "10", "11", "64", "OLO10", "HH22",
142 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 "L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148
149 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156
157 static const long reloc_target_bitmask[] = {
158 #define _BM(x) (~(-(1ULL << (x))))
159 0, /* NONE */
160 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 _BM(22), _BM(22), /* HI22, _22 */
164 _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 _BM(10), _BM(22), /* _PC10, _PC22 */
167 _BM(30), 0, /* _WPLT30, _COPY */
168 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 _BM(32), _BM(32), /* _UA32, PLT32 */
170 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 _BM(10), _BM(22), /* _OLO10, _HH22 */
174 _BM(10), _BM(22), /* _HM10, _LM22 */
175 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 -1, /* GLOB_JMP */
178 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 -1, -1, /* DISP64, PLT64 */
180 _BM(22), _BM(13), /* HIX22, LOX10 */
181 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186
187 /*
188 * Instruction templates:
189 */
190 #define BAA 0x10400000 /* ba,a %xcc, 0 */
191 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
192 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
193 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
194 #define OR 0x82806000 /* or %g1, 0, %g1 */
195 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
196 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
197 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
198 #define CALL 0x40000000 /* call 0 */
199 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
200 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
201 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
202
203
204 /* %hi(v) with variable shift */
205 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
206 #define LOVAL(v) ((v) & 0x000003ff)
207
208 void _rtld_bind_start_0(long, long);
209 void _rtld_bind_start_1(long, long);
210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
211
212 int
213 _rtld_relocate_plt_object(obj, rela, addrp, dodebug)
214 const Obj_Entry *obj;
215 const Elf_Rela *rela;
216 caddr_t *addrp;
217 bool dodebug;
218 {
219 const Elf_Sym *def;
220 const Obj_Entry *defobj;
221 Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
222 Elf_Addr value, offset;
223
224 /* Fully resolve procedure addresses now */
225
226 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
227
228 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
229 if (def == NULL)
230 return (-1);
231
232 value = (Elf_Addr) (defobj->relocbase + def->st_value);
233 rdbg(dodebug, ("bind now/fixup in %s --> old=%lx new=%lx",
234 defobj->strtab + def->st_name,
235 (u_long)*where, (u_long)value));
236
237 /*
238 * At the PLT entry pointed at by `where', we now construct
239 * a direct transfer to the now fully resolved function
240 * address.
241 *
242 * A PLT entry is supposed to start by looking like this:
243 *
244 * sethi %hi(. - .PLT0), %g1
245 * ba,a %xcc, .PLT1
246 * nop
247 * nop
248 * nop
249 * nop
250 * nop
251 * nop
252 *
253 * When we replace these entries we start from the second
254 * entry and do it in reverse order so the last thing we
255 * do is replace the branch. That allows us to change this
256 * atomically.
257 *
258 * We now need to find out how far we need to jump. We
259 * have a choice of several different relocation techniques
260 * which are increasingly expensive.
261 */
262
263 offset = ((Elf_Addr)where) - value;
264 if (rela->r_addend) {
265 Elf_Addr *ptr = (Elf_Addr *)where;
266 /*
267 * This entry is >32768. Just replace the pointer.
268 */
269 ptr[0] = value;
270
271 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
272 /*
273 * We're within 1MB -- we can use a direct branch insn.
274 *
275 * We can generate this pattern:
276 *
277 * sethi %hi(. - .PLT0), %g1
278 * ba,a %xcc, addr
279 * nop
280 * nop
281 * nop
282 * nop
283 * nop
284 * nop
285 *
286 */
287 where[1] = BAA | ((offset >> 2) &0x3fffff);
288 __asm __volatile("iflush %0+4" : : "r" (where));
289 } else if (value >= 0 && value < (1L<<32)) {
290 /*
291 * We're withing 32-bits of address zero.
292 *
293 * The resulting code in the jump slot is:
294 *
295 * sethi %hi(. - .PLT0), %g1
296 * sethi %hi(addr), %g1
297 * jmp %g1+%lo(addr)
298 * nop
299 * nop
300 * nop
301 * nop
302 * nop
303 *
304 */
305 where[2] = JMP | LOVAL(value);
306 where[1] = SETHI | HIVAL(value, 10);
307 __asm __volatile("iflush %0+8" : : "r" (where));
308 __asm __volatile("iflush %0+4" : : "r" (where));
309
310 } else if (value <= 0 && value > -(1L<<32)) {
311 /*
312 * We're withing 32-bits of address -1.
313 *
314 * The resulting code in the jump slot is:
315 *
316 * sethi %hi(. - .PLT0), %g1
317 * sethi %hix(addr), %g1
318 * xor %g1, %lox(addr), %g1
319 * jmp %g1
320 * nop
321 * nop
322 * nop
323 * nop
324 *
325 */
326 where[3] = JMP;
327 where[2] = XOR | ((~value) & 0x00001fff);
328 where[1] = SETHI | HIVAL(~value, 10);
329 __asm __volatile("iflush %0+12" : : "r" (where));
330 __asm __volatile("iflush %0+8" : : "r" (where));
331 __asm __volatile("iflush %0+4" : : "r" (where));
332
333 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
334 /*
335 * We're withing 32-bits -- we can use a direct call insn
336 *
337 * The resulting code in the jump slot is:
338 *
339 * sethi %hi(. - .PLT0), %g1
340 * mov %o7, %g1
341 * call (.+offset)
342 * mov %g1, %o7
343 * nop
344 * nop
345 * nop
346 * nop
347 *
348 */
349 where[3] = MOV17;
350 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
351 where[1] = MOV71;
352 __asm __volatile("iflush %0+12" : : "r" (where));
353 __asm __volatile("iflush %0+8" : : "r" (where));
354 __asm __volatile("iflush %0+4" : : "r" (where));
355
356 } else if (offset >= 0 && offset < (1L<<44)) {
357 /*
358 * We're withing 44 bits. We can generate this pattern:
359 *
360 * The resulting code in the jump slot is:
361 *
362 * sethi %hi(. - .PLT0), %g1
363 * sethi %h44(addr), %g1
364 * or %g1, %m44(addr), %g1
365 * sllx %g1, 12, %g1
366 * jmp %g1+%l44(addr)
367 * nop
368 * nop
369 * nop
370 *
371 */
372 where[4] = JMP | LOVAL(offset);
373 where[3] = SLLX | 12;
374 where[2] = OR | (((offset) >> 12) & 0x00001fff);
375 where[1] = SETHI | HIVAL(offset, 22);
376 __asm __volatile("iflush %0+16" : : "r" (where));
377 __asm __volatile("iflush %0+12" : : "r" (where));
378 __asm __volatile("iflush %0+8" : : "r" (where));
379 __asm __volatile("iflush %0+4" : : "r" (where));
380
381 } else if (offset < 0 && offset > -(1L<<44)) {
382 /*
383 * We're withing 44 bits. We can generate this pattern:
384 *
385 * The resulting code in the jump slot is:
386 *
387 * sethi %hi(. - .PLT0), %g1
388 * sethi %h44(-addr), %g1
389 * xor %g1, %m44(-addr), %g1
390 * sllx %g1, 12, %g1
391 * jmp %g1+%l44(addr)
392 * nop
393 * nop
394 * nop
395 *
396 */
397 where[4] = JMP | LOVAL(offset);
398 where[3] = SLLX | 12;
399 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
400 where[1] = SETHI | HIVAL(~offset, 22);
401 __asm __volatile("iflush %0+16" : : "r" (where));
402 __asm __volatile("iflush %0+12" : : "r" (where));
403 __asm __volatile("iflush %0+8" : : "r" (where));
404 __asm __volatile("iflush %0+4" : : "r" (where));
405
406 } else {
407 /*
408 * We need to load all 64-bits
409 *
410 * The resulting code in the jump slot is:
411 *
412 * sethi %hi(. - .PLT0), %g1
413 * sethi %hh(addr), %g1
414 * sethi %lm(addr), %g5
415 * or %g1, %hm(addr), %g1
416 * sllx %g1, 32, %g1
417 * or %g1, %g5, %g1
418 * jmp %g1+%lo(addr)
419 * nop
420 *
421 */
422 where[6] = JMP | LOVAL(value);
423 where[5] = ORG5;
424 where[4] = SLLX | 12;
425 where[3] = OR | LOVAL((value) >> 32);
426 where[2] = SETHIG5 | HIVAL(value, 10);
427 where[1] = SETHI | HIVAL(value, 42);
428 __asm __volatile("iflush %0+20" : : "r" (where));
429 __asm __volatile("iflush %0+16" : : "r" (where));
430 __asm __volatile("iflush %0+16" : : "r" (where));
431 __asm __volatile("iflush %0+12" : : "r" (where));
432 __asm __volatile("iflush %0+8" : : "r" (where));
433 __asm __volatile("iflush %0+4" : : "r" (where));
434
435 }
436
437 *addrp = (caddr_t)value;
438 return (0);
439 }
440
441 /*
442 * Install rtld function call into this PLT slot.
443 */
444 #define SAVE 0x9de3bf50
445 #define SETHI_l0 0x21000000
446 #define SETHI_l1 0x23000000
447 #define OR_l0_l0 0xa0142000
448 #define SLLX_l0_32_l0 0xa12c3020
449 #define OR_l0_l1_l0 0xa0140011
450 #define JMPL_l0_o1 0x93c42000
451 #define MOV_g1_o0 0x90100001
452
453 void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
454
455 void
456 _rtld_install_plt(pltgot, proc)
457 Elf_Word *pltgot;
458 Elf_Addr proc;
459 {
460 pltgot[0] = SAVE;
461 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
462 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
463 pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
464 pltgot[4] = SLLX_l0_32_l0;
465 pltgot[5] = OR_l0_l1_l0;
466 pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
467 pltgot[7] = MOV_g1_o0;
468 }
469
470 long _rtld_bind_start_0_stub __P((long x, long y));
471 long
472 _rtld_bind_start_0_stub(x, y)
473 long x, y;
474 {
475 long i;
476 long n;
477
478 i = x - y + 1048596;
479 n = 32768 + (i/5120)*160 + (i%5120)/24;
480
481 return (n);
482 }
483
484 void
485 _rtld_setup_pltgot(const Obj_Entry *obj)
486 {
487 /*
488 * On sparc64 we got troubles.
489 *
490 * Instructions are 4 bytes long.
491 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
492 * array entries.
493 * Each PLT entry jumps to PLT0 to enter the dynamic
494 * linker.
495 * Loading an arbitrary 64-bit pointer takes 6
496 * instructions and 2 registers.
497 *
498 * Somehow we need to issue a save to get a new stack
499 * frame, load the address of the dynamic linker, and
500 * jump there, in 8 instructions or less.
501 *
502 * Oh, we need to fill out both PLT0 and PLT1.
503 */
504 {
505 Elf_Word *entry = (Elf_Word *)obj->pltgot;
506
507 /* Install in entries 0 and 1 */
508 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
509 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
510
511 /*
512 * Install the object reference in first slot
513 * of entry 2.
514 */
515 obj->pltgot[8] = (Elf_Addr) obj;
516 }
517 }
518
519 void
520 _rtld_relocate_nonplt_self(dynp, relocbase)
521 Elf_Dyn *dynp;
522 Elf_Addr relocbase;
523 {
524 const Elf_Rela *rela = 0, *relalim;
525 Elf_Addr relasz = 0;
526 Elf_Addr *where;
527
528 for (; dynp->d_tag != DT_NULL; dynp++) {
529 switch (dynp->d_tag) {
530 case DT_RELA:
531 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
532 break;
533 case DT_RELASZ:
534 relasz = dynp->d_un.d_val;
535 break;
536 }
537 }
538 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
539 for (; rela < relalim; rela++) {
540 where = (Elf_Addr *)(relocbase + rela->r_offset);
541 *where = (Elf_Addr)(relocbase + rela->r_addend);
542 }
543 }
544
545 int
546 _rtld_relocate_nonplt_objects(obj, self, dodebug)
547 const Obj_Entry *obj;
548 bool self;
549 bool dodebug;
550 {
551 const Elf_Rela *rela;
552
553 if (self)
554 return (0);
555
556 for (rela = obj->rela; rela < obj->relalim; rela++) {
557 Elf_Addr *where;
558 Elf_Word type;
559 Elf_Addr value = 0, mask;
560 const Elf_Sym *def = NULL;
561 const Obj_Entry *defobj = NULL;
562 unsigned long symnum;
563
564 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
565 symnum = ELF_R_SYM(rela->r_info);
566
567 type = ELF_R_TYPE(rela->r_info);
568 if (type == R_TYPE(NONE))
569 continue;
570
571 /* We do JMP_SLOTs in relocate_plt_object() below */
572 if (type == R_TYPE(JMP_SLOT))
573 continue;
574
575 /* COPY relocs are also handled elsewhere */
576 if (type == R_TYPE(COPY))
577 continue;
578
579 /*
580 * We use the fact that relocation types are an `enum'
581 * Note: R_SPARC_UA16 is currently numerically largest.
582 */
583 if (type > R_TYPE(UA16))
584 return (-1);
585
586 value = rela->r_addend;
587
588 /*
589 * Handle relative relocs here, as an optimization.
590 */
591 if (type == R_TYPE(RELATIVE)) {
592 *where = (Elf_Addr)(obj->relocbase + value);
593 rdbg(dodebug, ("RELATIVE in %s --> %p", obj->path,
594 (void *)*where));
595 continue;
596 }
597
598 if (RELOC_RESOLVE_SYMBOL(type)) {
599
600 /* Find the symbol */
601 def = _rtld_find_symdef(symnum, obj, &defobj, false);
602 if (def == NULL)
603 return (-1);
604
605 /* Add in the symbol's absolute address */
606 value += (Elf_Addr)(defobj->relocbase + def->st_value);
607 }
608
609 if (RELOC_PC_RELATIVE(type)) {
610 value -= (Elf_Addr)where;
611 }
612
613 if (RELOC_BASE_RELATIVE(type)) {
614 /*
615 * Note that even though sparcs use `Elf_rela'
616 * exclusively we still need the implicit memory addend
617 * in relocations referring to GOT entries.
618 * Undoubtedly, someone f*cked this up in the distant
619 * past, and now we're stuck with it in the name of
620 * compatibility for all eternity..
621 *
622 * In any case, the implicit and explicit should be
623 * mutually exclusive. We provide a check for that
624 * here.
625 */
626 #ifdef DIAGNOSTIC
627 if (value != 0 && *where != 0) {
628 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
629 "addend=0x%lx, base %p\n",
630 obj->path, where, *where,
631 rela->r_addend, obj->relocbase);
632 }
633 #endif
634 /* XXXX -- apparently we ignore the preexisting value */
635 value += (Elf_Addr)(obj->relocbase);
636 }
637
638 mask = RELOC_VALUE_BITMASK(type);
639 value >>= RELOC_VALUE_RIGHTSHIFT(type);
640 value &= mask;
641
642 if (RELOC_UNALIGNED(type)) {
643 /* Handle unaligned relocations. */
644 Elf_Addr tmp = 0;
645 char *ptr = (char *)where;
646 int i, size = RELOC_TARGET_SIZE(type)/8;
647
648 /* Read it in one byte at a time. */
649 for (i=0; i<size; i++)
650 tmp = (tmp << 8) | ptr[i];
651
652 tmp &= ~mask;
653 tmp |= value;
654
655 /* Write it back out. */
656 for (i=0; i<size; i++)
657 ptr[i] = ((tmp >> (8*i)) & 0xff);
658 #ifdef RTLD_DEBUG_RELOC
659 value = (Elf_Addr)tmp;
660 #endif
661
662 } else if (RELOC_TARGET_SIZE(type) > 32) {
663 *where &= ~mask;
664 *where |= value;
665 #ifdef RTLD_DEBUG_RELOC
666 value = (Elf_Addr)*where;
667 #endif
668 } else {
669 Elf32_Addr *where32 = (Elf32_Addr *)where;
670
671 *where32 &= ~mask;
672 *where32 |= value;
673 #ifdef RTLD_DEBUG_RELOC
674 value = (Elf_Addr)*where32;
675 #endif
676 }
677
678 #ifdef RTLD_DEBUG_RELOC
679 if (RELOC_RESOLVE_SYMBOL(type)) {
680 rdbg(dodebug, ("%s %s in %s --> %p in %s",
681 reloc_names[type],
682 obj->strtab + obj->symtab[symnum].st_name,
683 obj->path, (void *)*where, defobj->path));
684 } else {
685 rdbg(dodebug, ("%s in %s --> %p",
686 reloc_names[type],
687 obj->path, (void *)*where));
688 }
689 #endif
690 }
691 return (0);
692 }
693
694 int
695 _rtld_relocate_plt_lazy(obj, dodebug)
696 const Obj_Entry *obj;
697 bool dodebug;
698 {
699 return (0);
700 }
701