mdreloc.c revision 1.21 1 /* $NetBSD: mdreloc.c,v 1.21 2002/09/12 22:56:31 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_U 0x04000000 /* Unaligned */
71 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 static const int reloc_target_flags[] = {
74 0, /* NONE */
75 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 _RF_SZ(32) | _RF_RS(0), /* COPY */
94 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98
99 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 };
132
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 "22", "13", "LO10", "GOT10", "GOT13",
138 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 "10", "11", "64", "OLO10", "HH22",
142 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 "L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148
149 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156
157 static const long reloc_target_bitmask[] = {
158 #define _BM(x) (~(-(1ULL << (x))))
159 0, /* NONE */
160 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 _BM(22), _BM(22), /* HI22, _22 */
164 _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 _BM(10), _BM(22), /* _PC10, _PC22 */
167 _BM(30), 0, /* _WPLT30, _COPY */
168 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 _BM(32), _BM(32), /* _UA32, PLT32 */
170 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 _BM(10), _BM(22), /* _OLO10, _HH22 */
174 _BM(10), _BM(22), /* _HM10, _LM22 */
175 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 -1, /* GLOB_JMP */
178 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 -1, -1, /* DISP64, PLT64 */
180 _BM(22), _BM(13), /* HIX22, LOX10 */
181 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186
187 /*
188 * Instruction templates:
189 */
190 #define BAA 0x10400000 /* ba,a %xcc, 0 */
191 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
192 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
193 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
194 #define OR 0x82806000 /* or %g1, 0, %g1 */
195 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
196 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
197 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
198 #define CALL 0x40000000 /* call 0 */
199 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
200 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
201 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
202
203
204 /* %hi(v) with variable shift */
205 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
206 #define LOVAL(v) ((v) & 0x000003ff)
207
208 void _rtld_bind_start_0(long, long);
209 void _rtld_bind_start_1(long, long);
210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
211
212 int
213 _rtld_relocate_plt_object(obj, rela, addrp)
214 const Obj_Entry *obj;
215 const Elf_Rela *rela;
216 caddr_t *addrp;
217 {
218 const Elf_Sym *def;
219 const Obj_Entry *defobj;
220 Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
221 Elf_Addr value, offset;
222
223 /* Fully resolve procedure addresses now */
224
225 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
226
227 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
228 if (def == NULL)
229 return (-1);
230
231 value = (Elf_Addr) (defobj->relocbase + def->st_value);
232 rdbg(("bind now/fixup in %s --> old=%lx new=%lx",
233 defobj->strtab + def->st_name, (u_long)*where, (u_long)value));
234
235 /*
236 * At the PLT entry pointed at by `where', we now construct
237 * a direct transfer to the now fully resolved function
238 * address.
239 *
240 * A PLT entry is supposed to start by looking like this:
241 *
242 * sethi %hi(. - .PLT0), %g1
243 * ba,a %xcc, .PLT1
244 * nop
245 * nop
246 * nop
247 * nop
248 * nop
249 * nop
250 *
251 * When we replace these entries we start from the second
252 * entry and do it in reverse order so the last thing we
253 * do is replace the branch. That allows us to change this
254 * atomically.
255 *
256 * We now need to find out how far we need to jump. We
257 * have a choice of several different relocation techniques
258 * which are increasingly expensive.
259 */
260
261 offset = ((Elf_Addr)where) - value;
262 if (rela->r_addend) {
263 Elf_Addr *ptr = (Elf_Addr *)where;
264 /*
265 * This entry is >32768. Just replace the pointer.
266 */
267 ptr[0] = value;
268
269 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
270 /*
271 * We're within 1MB -- we can use a direct branch insn.
272 *
273 * We can generate this pattern:
274 *
275 * sethi %hi(. - .PLT0), %g1
276 * ba,a %xcc, addr
277 * nop
278 * nop
279 * nop
280 * nop
281 * nop
282 * nop
283 *
284 */
285 where[1] = BAA | ((offset >> 2) &0x3fffff);
286 __asm __volatile("iflush %0+4" : : "r" (where));
287 } else if (value >= 0 && value < (1L<<32)) {
288 /*
289 * We're withing 32-bits of address zero.
290 *
291 * The resulting code in the jump slot is:
292 *
293 * sethi %hi(. - .PLT0), %g1
294 * sethi %hi(addr), %g1
295 * jmp %g1+%lo(addr)
296 * nop
297 * nop
298 * nop
299 * nop
300 * nop
301 *
302 */
303 where[2] = JMP | LOVAL(value);
304 where[1] = SETHI | HIVAL(value, 10);
305 __asm __volatile("iflush %0+8" : : "r" (where));
306 __asm __volatile("iflush %0+4" : : "r" (where));
307
308 } else if (value <= 0 && value > -(1L<<32)) {
309 /*
310 * We're withing 32-bits of address -1.
311 *
312 * The resulting code in the jump slot is:
313 *
314 * sethi %hi(. - .PLT0), %g1
315 * sethi %hix(addr), %g1
316 * xor %g1, %lox(addr), %g1
317 * jmp %g1
318 * nop
319 * nop
320 * nop
321 * nop
322 *
323 */
324 where[3] = JMP;
325 where[2] = XOR | ((~value) & 0x00001fff);
326 where[1] = SETHI | HIVAL(~value, 10);
327 __asm __volatile("iflush %0+12" : : "r" (where));
328 __asm __volatile("iflush %0+8" : : "r" (where));
329 __asm __volatile("iflush %0+4" : : "r" (where));
330
331 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
332 /*
333 * We're withing 32-bits -- we can use a direct call insn
334 *
335 * The resulting code in the jump slot is:
336 *
337 * sethi %hi(. - .PLT0), %g1
338 * mov %o7, %g1
339 * call (.+offset)
340 * mov %g1, %o7
341 * nop
342 * nop
343 * nop
344 * nop
345 *
346 */
347 where[3] = MOV17;
348 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
349 where[1] = MOV71;
350 __asm __volatile("iflush %0+12" : : "r" (where));
351 __asm __volatile("iflush %0+8" : : "r" (where));
352 __asm __volatile("iflush %0+4" : : "r" (where));
353
354 } else if (offset >= 0 && offset < (1L<<44)) {
355 /*
356 * We're withing 44 bits. We can generate this pattern:
357 *
358 * The resulting code in the jump slot is:
359 *
360 * sethi %hi(. - .PLT0), %g1
361 * sethi %h44(addr), %g1
362 * or %g1, %m44(addr), %g1
363 * sllx %g1, 12, %g1
364 * jmp %g1+%l44(addr)
365 * nop
366 * nop
367 * nop
368 *
369 */
370 where[4] = JMP | LOVAL(offset);
371 where[3] = SLLX | 12;
372 where[2] = OR | (((offset) >> 12) & 0x00001fff);
373 where[1] = SETHI | HIVAL(offset, 22);
374 __asm __volatile("iflush %0+16" : : "r" (where));
375 __asm __volatile("iflush %0+12" : : "r" (where));
376 __asm __volatile("iflush %0+8" : : "r" (where));
377 __asm __volatile("iflush %0+4" : : "r" (where));
378
379 } else if (offset < 0 && offset > -(1L<<44)) {
380 /*
381 * We're withing 44 bits. We can generate this pattern:
382 *
383 * The resulting code in the jump slot is:
384 *
385 * sethi %hi(. - .PLT0), %g1
386 * sethi %h44(-addr), %g1
387 * xor %g1, %m44(-addr), %g1
388 * sllx %g1, 12, %g1
389 * jmp %g1+%l44(addr)
390 * nop
391 * nop
392 * nop
393 *
394 */
395 where[4] = JMP | LOVAL(offset);
396 where[3] = SLLX | 12;
397 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
398 where[1] = SETHI | HIVAL(~offset, 22);
399 __asm __volatile("iflush %0+16" : : "r" (where));
400 __asm __volatile("iflush %0+12" : : "r" (where));
401 __asm __volatile("iflush %0+8" : : "r" (where));
402 __asm __volatile("iflush %0+4" : : "r" (where));
403
404 } else {
405 /*
406 * We need to load all 64-bits
407 *
408 * The resulting code in the jump slot is:
409 *
410 * sethi %hi(. - .PLT0), %g1
411 * sethi %hh(addr), %g1
412 * sethi %lm(addr), %g5
413 * or %g1, %hm(addr), %g1
414 * sllx %g1, 32, %g1
415 * or %g1, %g5, %g1
416 * jmp %g1+%lo(addr)
417 * nop
418 *
419 */
420 where[6] = JMP | LOVAL(value);
421 where[5] = ORG5;
422 where[4] = SLLX | 12;
423 where[3] = OR | LOVAL((value) >> 32);
424 where[2] = SETHIG5 | HIVAL(value, 10);
425 where[1] = SETHI | HIVAL(value, 42);
426 __asm __volatile("iflush %0+20" : : "r" (where));
427 __asm __volatile("iflush %0+16" : : "r" (where));
428 __asm __volatile("iflush %0+16" : : "r" (where));
429 __asm __volatile("iflush %0+12" : : "r" (where));
430 __asm __volatile("iflush %0+8" : : "r" (where));
431 __asm __volatile("iflush %0+4" : : "r" (where));
432
433 }
434
435 *addrp = (caddr_t)value;
436 return (0);
437 }
438
439 /*
440 * Install rtld function call into this PLT slot.
441 */
442 #define SAVE 0x9de3bf50
443 #define SETHI_l0 0x21000000
444 #define SETHI_l1 0x23000000
445 #define OR_l0_l0 0xa0142000
446 #define SLLX_l0_32_l0 0xa12c3020
447 #define OR_l0_l1_l0 0xa0140011
448 #define JMPL_l0_o1 0x93c42000
449 #define MOV_g1_o0 0x90100001
450
451 void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
452
453 void
454 _rtld_install_plt(pltgot, proc)
455 Elf_Word *pltgot;
456 Elf_Addr proc;
457 {
458 pltgot[0] = SAVE;
459 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
460 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
461 pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
462 pltgot[4] = SLLX_l0_32_l0;
463 pltgot[5] = OR_l0_l1_l0;
464 pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
465 pltgot[7] = MOV_g1_o0;
466 }
467
468 long _rtld_bind_start_0_stub __P((long x, long y));
469 long
470 _rtld_bind_start_0_stub(x, y)
471 long x, y;
472 {
473 long i;
474 long n;
475
476 i = x - y + 1048596;
477 n = 32768 + (i/5120)*160 + (i%5120)/24;
478
479 return (n);
480 }
481
482 void
483 _rtld_setup_pltgot(const Obj_Entry *obj)
484 {
485 /*
486 * On sparc64 we got troubles.
487 *
488 * Instructions are 4 bytes long.
489 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
490 * array entries.
491 * Each PLT entry jumps to PLT0 to enter the dynamic
492 * linker.
493 * Loading an arbitrary 64-bit pointer takes 6
494 * instructions and 2 registers.
495 *
496 * Somehow we need to issue a save to get a new stack
497 * frame, load the address of the dynamic linker, and
498 * jump there, in 8 instructions or less.
499 *
500 * Oh, we need to fill out both PLT0 and PLT1.
501 */
502 {
503 Elf_Word *entry = (Elf_Word *)obj->pltgot;
504
505 /* Install in entries 0 and 1 */
506 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
507 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
508
509 /*
510 * Install the object reference in first slot
511 * of entry 2.
512 */
513 obj->pltgot[8] = (Elf_Addr) obj;
514 }
515 }
516
517 void
518 _rtld_relocate_nonplt_self(dynp, relocbase)
519 Elf_Dyn *dynp;
520 Elf_Addr relocbase;
521 {
522 const Elf_Rela *rela = 0, *relalim;
523 Elf_Addr relasz = 0;
524 Elf_Addr *where;
525
526 for (; dynp->d_tag != DT_NULL; dynp++) {
527 switch (dynp->d_tag) {
528 case DT_RELA:
529 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
530 break;
531 case DT_RELASZ:
532 relasz = dynp->d_un.d_val;
533 break;
534 }
535 }
536 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
537 for (; rela < relalim; rela++) {
538 where = (Elf_Addr *)(relocbase + rela->r_offset);
539 *where = (Elf_Addr)(relocbase + rela->r_addend);
540 }
541 }
542
543 int
544 _rtld_relocate_nonplt_objects(obj, self)
545 const Obj_Entry *obj;
546 bool self;
547 {
548 const Elf_Rela *rela;
549
550 if (self)
551 return (0);
552
553 for (rela = obj->rela; rela < obj->relalim; rela++) {
554 Elf_Addr *where;
555 Elf_Word type;
556 Elf_Addr value = 0, mask;
557 const Elf_Sym *def = NULL;
558 const Obj_Entry *defobj = NULL;
559 unsigned long symnum;
560
561 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
562 symnum = ELF_R_SYM(rela->r_info);
563
564 type = ELF_R_TYPE(rela->r_info);
565 if (type == R_TYPE(NONE))
566 continue;
567
568 /* We do JMP_SLOTs in relocate_plt_object() below */
569 if (type == R_TYPE(JMP_SLOT))
570 continue;
571
572 /* COPY relocs are also handled elsewhere */
573 if (type == R_TYPE(COPY))
574 continue;
575
576 /*
577 * We use the fact that relocation types are an `enum'
578 * Note: R_SPARC_UA16 is currently numerically largest.
579 */
580 if (type > R_TYPE(UA16))
581 return (-1);
582
583 value = rela->r_addend;
584
585 /*
586 * Handle relative relocs here, as an optimization.
587 */
588 if (type == R_TYPE(RELATIVE)) {
589 *where = (Elf_Addr)(obj->relocbase + value);
590 rdbg(("RELATIVE in %s --> %p", obj->path,
591 (void *)*where));
592 continue;
593 }
594
595 if (RELOC_RESOLVE_SYMBOL(type)) {
596
597 /* Find the symbol */
598 def = _rtld_find_symdef(symnum, obj, &defobj, false);
599 if (def == NULL)
600 return (-1);
601
602 /* Add in the symbol's absolute address */
603 value += (Elf_Addr)(defobj->relocbase + def->st_value);
604 }
605
606 if (RELOC_PC_RELATIVE(type)) {
607 value -= (Elf_Addr)where;
608 }
609
610 if (RELOC_BASE_RELATIVE(type)) {
611 /*
612 * Note that even though sparcs use `Elf_rela'
613 * exclusively we still need the implicit memory addend
614 * in relocations referring to GOT entries.
615 * Undoubtedly, someone f*cked this up in the distant
616 * past, and now we're stuck with it in the name of
617 * compatibility for all eternity..
618 *
619 * In any case, the implicit and explicit should be
620 * mutually exclusive. We provide a check for that
621 * here.
622 */
623 #ifdef DIAGNOSTIC
624 if (value != 0 && *where != 0) {
625 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
626 "addend=0x%lx, base %p\n",
627 obj->path, where, *where,
628 rela->r_addend, obj->relocbase);
629 }
630 #endif
631 /* XXXX -- apparently we ignore the preexisting value */
632 value += (Elf_Addr)(obj->relocbase);
633 }
634
635 mask = RELOC_VALUE_BITMASK(type);
636 value >>= RELOC_VALUE_RIGHTSHIFT(type);
637 value &= mask;
638
639 if (RELOC_UNALIGNED(type)) {
640 /* Handle unaligned relocations. */
641 Elf_Addr tmp = 0;
642 char *ptr = (char *)where;
643 int i, size = RELOC_TARGET_SIZE(type)/8;
644
645 /* Read it in one byte at a time. */
646 for (i=0; i<size; i++)
647 tmp = (tmp << 8) | ptr[i];
648
649 tmp &= ~mask;
650 tmp |= value;
651
652 /* Write it back out. */
653 for (i=0; i<size; i++)
654 ptr[i] = ((tmp >> (8*i)) & 0xff);
655 #ifdef RTLD_DEBUG_RELOC
656 value = (Elf_Addr)tmp;
657 #endif
658
659 } else if (RELOC_TARGET_SIZE(type) > 32) {
660 *where &= ~mask;
661 *where |= value;
662 #ifdef RTLD_DEBUG_RELOC
663 value = (Elf_Addr)*where;
664 #endif
665 } else {
666 Elf32_Addr *where32 = (Elf32_Addr *)where;
667
668 *where32 &= ~mask;
669 *where32 |= value;
670 #ifdef RTLD_DEBUG_RELOC
671 value = (Elf_Addr)*where32;
672 #endif
673 }
674
675 #ifdef RTLD_DEBUG_RELOC
676 if (RELOC_RESOLVE_SYMBOL(type)) {
677 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
678 obj->strtab + obj->symtab[symnum].st_name,
679 obj->path, (void *)*where, defobj->path));
680 } else {
681 rdbg(("%s in %s --> %p", reloc_names[type],
682 obj->path, (void *)*where));
683 }
684 #endif
685 }
686 return (0);
687 }
688
689 int
690 _rtld_relocate_plt_lazy(obj)
691 const Obj_Entry *obj;
692 {
693 return (0);
694 }
695