mdreloc.c revision 1.24 1 /* $NetBSD: mdreloc.c,v 1.24 2002/09/25 14:35:39 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_U 0x04000000 /* Unaligned */
71 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 static const int reloc_target_flags[] = {
74 0, /* NONE */
75 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 _RF_SZ(32) | _RF_RS(0), /* COPY */
94 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98
99 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 };
132
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 "22", "13", "LO10", "GOT10", "GOT13",
138 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 "10", "11", "64", "OLO10", "HH22",
142 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 "L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148
149 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156
157 static const long reloc_target_bitmask[] = {
158 #define _BM(x) (~(-(1ULL << (x))))
159 0, /* NONE */
160 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 _BM(22), _BM(22), /* HI22, _22 */
164 _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 _BM(10), _BM(22), /* _PC10, _PC22 */
167 _BM(30), 0, /* _WPLT30, _COPY */
168 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 _BM(32), _BM(32), /* _UA32, PLT32 */
170 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 _BM(10), _BM(22), /* _OLO10, _HH22 */
174 _BM(10), _BM(22), /* _HM10, _LM22 */
175 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 -1, /* GLOB_JMP */
178 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 -1, -1, /* DISP64, PLT64 */
180 _BM(22), _BM(13), /* HIX22, LOX10 */
181 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186
187 /*
188 * Instruction templates:
189 */
190 #define BAA 0x10400000 /* ba,a %xcc, 0 */
191 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
192 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
193 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
194 #define OR 0x82806000 /* or %g1, 0, %g1 */
195 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
196 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
197 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
198 #define CALL 0x40000000 /* call 0 */
199 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
200 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
201 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
202
203
204 /* %hi(v) with variable shift */
205 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
206 #define LOVAL(v) ((v) & 0x000003ff)
207
208 void _rtld_bind_start_0(long, long);
209 void _rtld_bind_start_1(long, long);
210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
211 caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
212
213 /*
214 * Install rtld function call into this PLT slot.
215 */
216 #define SAVE 0x9de3bf50
217 #define SETHI_l0 0x21000000
218 #define SETHI_l1 0x23000000
219 #define OR_l0_l0 0xa0142000
220 #define SLLX_l0_32_l0 0xa12c3020
221 #define OR_l0_l1_l0 0xa0140011
222 #define JMPL_l0_o1 0x93c42000
223 #define MOV_g1_o0 0x90100001
224
225 void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
226
227 void
228 _rtld_install_plt(pltgot, proc)
229 Elf_Word *pltgot;
230 Elf_Addr proc;
231 {
232 pltgot[0] = SAVE;
233 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
234 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
235 pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
236 pltgot[4] = SLLX_l0_32_l0;
237 pltgot[5] = OR_l0_l1_l0;
238 pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
239 pltgot[7] = MOV_g1_o0;
240 }
241
242 long _rtld_bind_start_0_stub __P((long x, long y));
243 long
244 _rtld_bind_start_0_stub(x, y)
245 long x, y;
246 {
247 long i;
248 long n;
249
250 i = x - y + 1048596;
251 n = 32768 + (i/5120)*160 + (i%5120)/24;
252
253 return (n);
254 }
255
256 void
257 _rtld_setup_pltgot(const Obj_Entry *obj)
258 {
259 /*
260 * On sparc64 we got troubles.
261 *
262 * Instructions are 4 bytes long.
263 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
264 * array entries.
265 * Each PLT entry jumps to PLT0 to enter the dynamic
266 * linker.
267 * Loading an arbitrary 64-bit pointer takes 6
268 * instructions and 2 registers.
269 *
270 * Somehow we need to issue a save to get a new stack
271 * frame, load the address of the dynamic linker, and
272 * jump there, in 8 instructions or less.
273 *
274 * Oh, we need to fill out both PLT0 and PLT1.
275 */
276 {
277 Elf_Word *entry = (Elf_Word *)obj->pltgot;
278
279 /* Install in entries 0 and 1 */
280 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
281 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
282
283 /*
284 * Install the object reference in first slot
285 * of entry 2.
286 */
287 obj->pltgot[8] = (Elf_Addr) obj;
288 }
289 }
290
291 void
292 _rtld_relocate_nonplt_self(dynp, relocbase)
293 Elf_Dyn *dynp;
294 Elf_Addr relocbase;
295 {
296 const Elf_Rela *rela = 0, *relalim;
297 Elf_Addr relasz = 0;
298 Elf_Addr *where;
299
300 for (; dynp->d_tag != DT_NULL; dynp++) {
301 switch (dynp->d_tag) {
302 case DT_RELA:
303 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
304 break;
305 case DT_RELASZ:
306 relasz = dynp->d_un.d_val;
307 break;
308 }
309 }
310 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
311 for (; rela < relalim; rela++) {
312 where = (Elf_Addr *)(relocbase + rela->r_offset);
313 *where = (Elf_Addr)(relocbase + rela->r_addend);
314 }
315 }
316
317 int
318 _rtld_relocate_nonplt_objects(obj, self)
319 const Obj_Entry *obj;
320 bool self;
321 {
322 const Elf_Rela *rela;
323
324 if (self)
325 return (0);
326
327 for (rela = obj->rela; rela < obj->relalim; rela++) {
328 Elf_Addr *where;
329 Elf_Word type;
330 Elf_Addr value = 0, mask;
331 const Elf_Sym *def = NULL;
332 const Obj_Entry *defobj = NULL;
333 unsigned long symnum;
334
335 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
336 symnum = ELF_R_SYM(rela->r_info);
337
338 type = ELF_R_TYPE(rela->r_info);
339 if (type == R_TYPE(NONE))
340 continue;
341
342 /* We do JMP_SLOTs in _rtld_bind() below */
343 if (type == R_TYPE(JMP_SLOT))
344 continue;
345
346 /* COPY relocs are also handled elsewhere */
347 if (type == R_TYPE(COPY))
348 continue;
349
350 /*
351 * We use the fact that relocation types are an `enum'
352 * Note: R_SPARC_UA16 is currently numerically largest.
353 */
354 if (type > R_TYPE(UA16))
355 return (-1);
356
357 value = rela->r_addend;
358
359 /*
360 * Handle relative relocs here, as an optimization.
361 */
362 if (type == R_TYPE(RELATIVE)) {
363 *where = (Elf_Addr)(obj->relocbase + value);
364 rdbg(("RELATIVE in %s --> %p", obj->path,
365 (void *)*where));
366 continue;
367 }
368
369 if (RELOC_RESOLVE_SYMBOL(type)) {
370
371 /* Find the symbol */
372 def = _rtld_find_symdef(symnum, obj, &defobj, false);
373 if (def == NULL)
374 return (-1);
375
376 /* Add in the symbol's absolute address */
377 value += (Elf_Addr)(defobj->relocbase + def->st_value);
378 }
379
380 if (RELOC_PC_RELATIVE(type)) {
381 value -= (Elf_Addr)where;
382 }
383
384 if (RELOC_BASE_RELATIVE(type)) {
385 /*
386 * Note that even though sparcs use `Elf_rela'
387 * exclusively we still need the implicit memory addend
388 * in relocations referring to GOT entries.
389 * Undoubtedly, someone f*cked this up in the distant
390 * past, and now we're stuck with it in the name of
391 * compatibility for all eternity..
392 *
393 * In any case, the implicit and explicit should be
394 * mutually exclusive. We provide a check for that
395 * here.
396 */
397 #ifdef DIAGNOSTIC
398 if (value != 0 && *where != 0) {
399 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
400 "addend=0x%lx, base %p\n",
401 obj->path, where, *where,
402 rela->r_addend, obj->relocbase);
403 }
404 #endif
405 /* XXXX -- apparently we ignore the preexisting value */
406 value += (Elf_Addr)(obj->relocbase);
407 }
408
409 mask = RELOC_VALUE_BITMASK(type);
410 value >>= RELOC_VALUE_RIGHTSHIFT(type);
411 value &= mask;
412
413 if (RELOC_UNALIGNED(type)) {
414 /* Handle unaligned relocations. */
415 Elf_Addr tmp = 0;
416 char *ptr = (char *)where;
417 int i, size = RELOC_TARGET_SIZE(type)/8;
418
419 /* Read it in one byte at a time. */
420 for (i=0; i<size; i++)
421 tmp = (tmp << 8) | ptr[i];
422
423 tmp &= ~mask;
424 tmp |= value;
425
426 /* Write it back out. */
427 for (i=0; i<size; i++)
428 ptr[i] = ((tmp >> (8*i)) & 0xff);
429 #ifdef RTLD_DEBUG_RELOC
430 value = (Elf_Addr)tmp;
431 #endif
432
433 } else if (RELOC_TARGET_SIZE(type) > 32) {
434 *where &= ~mask;
435 *where |= value;
436 #ifdef RTLD_DEBUG_RELOC
437 value = (Elf_Addr)*where;
438 #endif
439 } else {
440 Elf32_Addr *where32 = (Elf32_Addr *)where;
441
442 *where32 &= ~mask;
443 *where32 |= value;
444 #ifdef RTLD_DEBUG_RELOC
445 value = (Elf_Addr)*where32;
446 #endif
447 }
448
449 #ifdef RTLD_DEBUG_RELOC
450 if (RELOC_RESOLVE_SYMBOL(type)) {
451 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
452 obj->strtab + obj->symtab[symnum].st_name,
453 obj->path, (void *)*where, defobj->path));
454 } else {
455 rdbg(("%s in %s --> %p", reloc_names[type],
456 obj->path, (void *)*where));
457 }
458 #endif
459 }
460 return (0);
461 }
462
463 int
464 _rtld_relocate_plt_lazy(obj)
465 const Obj_Entry *obj;
466 {
467 return (0);
468 }
469
470 caddr_t
471 _rtld_bind(obj, reloff)
472 const Obj_Entry *obj;
473 Elf_Word reloff;
474 {
475 const Elf_Rela *rela = obj->pltrela + reloff;
476 const Elf_Sym *def;
477 const Obj_Entry *defobj;
478 Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
479 Elf_Addr value, offset;
480
481 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
482 /*
483 * XXXX
484 *
485 * The first four PLT entries are reserved. There is some
486 * disagreement whether they should have associated relocation
487 * entries. Both the SPARC 32-bit and 64-bit ELF
488 * specifications say that they should have relocation entries,
489 * but the 32-bit SPARC binutils do not generate them, and now
490 * the 64-bit SPARC binutils have stopped generating them too.
491 *
492 * So, to provide binary compatibility, we will check the first
493 * entry, if it is reserved it should not be of the type
494 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
495 * were not generated and our index is 4 entries too far.
496 */
497 rela -= 4;
498 }
499
500 /* Fully resolve procedure addresses now */
501
502 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
503
504 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
505 if (def == NULL)
506 _rtld_die();
507
508 value = (Elf_Addr)(defobj->relocbase + def->st_value);
509 rdbg(("bind now/fixup in %s --> old=%p new=%p",
510 defobj->strtab + def->st_name, (void *)*where, (void *)value));
511
512 /*
513 * At the PLT entry pointed at by `where', we now construct
514 * a direct transfer to the now fully resolved function
515 * address.
516 *
517 * A PLT entry is supposed to start by looking like this:
518 *
519 * sethi %hi(. - .PLT0), %g1
520 * ba,a %xcc, .PLT1
521 * nop
522 * nop
523 * nop
524 * nop
525 * nop
526 * nop
527 *
528 * When we replace these entries we start from the second
529 * entry and do it in reverse order so the last thing we
530 * do is replace the branch. That allows us to change this
531 * atomically.
532 *
533 * We now need to find out how far we need to jump. We
534 * have a choice of several different relocation techniques
535 * which are increasingly expensive.
536 */
537
538 offset = ((Elf_Addr)where) - value;
539 if (rela->r_addend) {
540 Elf_Addr *ptr = (Elf_Addr *)where;
541 /*
542 * This entry is >32768. Just replace the pointer.
543 */
544 ptr[0] = value;
545
546 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
547 /*
548 * We're within 1MB -- we can use a direct branch insn.
549 *
550 * We can generate this pattern:
551 *
552 * sethi %hi(. - .PLT0), %g1
553 * ba,a %xcc, addr
554 * nop
555 * nop
556 * nop
557 * nop
558 * nop
559 * nop
560 *
561 */
562 where[1] = BAA | ((offset >> 2) &0x3fffff);
563 __asm __volatile("iflush %0+4" : : "r" (where));
564 } else if (value >= 0 && value < (1L<<32)) {
565 /*
566 * We're withing 32-bits of address zero.
567 *
568 * The resulting code in the jump slot is:
569 *
570 * sethi %hi(. - .PLT0), %g1
571 * sethi %hi(addr), %g1
572 * jmp %g1+%lo(addr)
573 * nop
574 * nop
575 * nop
576 * nop
577 * nop
578 *
579 */
580 where[2] = JMP | LOVAL(value);
581 where[1] = SETHI | HIVAL(value, 10);
582 __asm __volatile("iflush %0+8" : : "r" (where));
583 __asm __volatile("iflush %0+4" : : "r" (where));
584
585 } else if (value <= 0 && value > -(1L<<32)) {
586 /*
587 * We're withing 32-bits of address -1.
588 *
589 * The resulting code in the jump slot is:
590 *
591 * sethi %hi(. - .PLT0), %g1
592 * sethi %hix(addr), %g1
593 * xor %g1, %lox(addr), %g1
594 * jmp %g1
595 * nop
596 * nop
597 * nop
598 * nop
599 *
600 */
601 where[3] = JMP;
602 where[2] = XOR | ((~value) & 0x00001fff);
603 where[1] = SETHI | HIVAL(~value, 10);
604 __asm __volatile("iflush %0+12" : : "r" (where));
605 __asm __volatile("iflush %0+8" : : "r" (where));
606 __asm __volatile("iflush %0+4" : : "r" (where));
607
608 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
609 /*
610 * We're withing 32-bits -- we can use a direct call insn
611 *
612 * The resulting code in the jump slot is:
613 *
614 * sethi %hi(. - .PLT0), %g1
615 * mov %o7, %g1
616 * call (.+offset)
617 * mov %g1, %o7
618 * nop
619 * nop
620 * nop
621 * nop
622 *
623 */
624 where[3] = MOV17;
625 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
626 where[1] = MOV71;
627 __asm __volatile("iflush %0+12" : : "r" (where));
628 __asm __volatile("iflush %0+8" : : "r" (where));
629 __asm __volatile("iflush %0+4" : : "r" (where));
630
631 } else if (offset >= 0 && offset < (1L<<44)) {
632 /*
633 * We're withing 44 bits. We can generate this pattern:
634 *
635 * The resulting code in the jump slot is:
636 *
637 * sethi %hi(. - .PLT0), %g1
638 * sethi %h44(addr), %g1
639 * or %g1, %m44(addr), %g1
640 * sllx %g1, 12, %g1
641 * jmp %g1+%l44(addr)
642 * nop
643 * nop
644 * nop
645 *
646 */
647 where[4] = JMP | LOVAL(offset);
648 where[3] = SLLX | 12;
649 where[2] = OR | (((offset) >> 12) & 0x00001fff);
650 where[1] = SETHI | HIVAL(offset, 22);
651 __asm __volatile("iflush %0+16" : : "r" (where));
652 __asm __volatile("iflush %0+12" : : "r" (where));
653 __asm __volatile("iflush %0+8" : : "r" (where));
654 __asm __volatile("iflush %0+4" : : "r" (where));
655
656 } else if (offset < 0 && offset > -(1L<<44)) {
657 /*
658 * We're withing 44 bits. We can generate this pattern:
659 *
660 * The resulting code in the jump slot is:
661 *
662 * sethi %hi(. - .PLT0), %g1
663 * sethi %h44(-addr), %g1
664 * xor %g1, %m44(-addr), %g1
665 * sllx %g1, 12, %g1
666 * jmp %g1+%l44(addr)
667 * nop
668 * nop
669 * nop
670 *
671 */
672 where[4] = JMP | LOVAL(offset);
673 where[3] = SLLX | 12;
674 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
675 where[1] = SETHI | HIVAL(~offset, 22);
676 __asm __volatile("iflush %0+16" : : "r" (where));
677 __asm __volatile("iflush %0+12" : : "r" (where));
678 __asm __volatile("iflush %0+8" : : "r" (where));
679 __asm __volatile("iflush %0+4" : : "r" (where));
680
681 } else {
682 /*
683 * We need to load all 64-bits
684 *
685 * The resulting code in the jump slot is:
686 *
687 * sethi %hi(. - .PLT0), %g1
688 * sethi %hh(addr), %g1
689 * sethi %lm(addr), %g5
690 * or %g1, %hm(addr), %g1
691 * sllx %g1, 32, %g1
692 * or %g1, %g5, %g1
693 * jmp %g1+%lo(addr)
694 * nop
695 *
696 */
697 where[6] = JMP | LOVAL(value);
698 where[5] = ORG5;
699 where[4] = SLLX | 12;
700 where[3] = OR | LOVAL((value) >> 32);
701 where[2] = SETHIG5 | HIVAL(value, 10);
702 where[1] = SETHI | HIVAL(value, 42);
703 __asm __volatile("iflush %0+20" : : "r" (where));
704 __asm __volatile("iflush %0+16" : : "r" (where));
705 __asm __volatile("iflush %0+16" : : "r" (where));
706 __asm __volatile("iflush %0+12" : : "r" (where));
707 __asm __volatile("iflush %0+8" : : "r" (where));
708 __asm __volatile("iflush %0+4" : : "r" (where));
709
710 }
711
712 return (caddr_t)value;
713 }
714