Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.32
      1 /*	$NetBSD: mdreloc.c,v 1.32 2002/10/18 20:35:25 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Eduardo Horvath.
      5  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg and by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <errno.h>
     41 #include <stdio.h>
     42 #include <stdlib.h>
     43 #include <string.h>
     44 #include <unistd.h>
     45 #include <sys/stat.h>
     46 
     47 #include "rtldenv.h"
     48 #include "debug.h"
     49 #include "rtld.h"
     50 
     51 /*
     52  * The following table holds for each relocation type:
     53  *	- the width in bits of the memory location the relocation
     54  *	  applies to (not currently used)
     55  *	- the number of bits the relocation value must be shifted to the
     56  *	  right (i.e. discard least significant bits) to fit into
     57  *	  the appropriate field in the instruction word.
     58  *	- flags indicating whether
     59  *		* the relocation involves a symbol
     60  *		* the relocation is relative to the current position
     61  *		* the relocation is for a GOT entry
     62  *		* the relocation is relative to the load address
     63  *
     64  */
     65 #define _RF_S		0x80000000		/* Resolve symbol */
     66 #define _RF_A		0x40000000		/* Use addend */
     67 #define _RF_P		0x20000000		/* Location relative */
     68 #define _RF_G		0x10000000		/* GOT offset */
     69 #define _RF_B		0x08000000		/* Load address relative */
     70 #define _RF_U		0x04000000		/* Unaligned */
     71 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     72 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     73 static const int reloc_target_flags[] = {
     74 	0,							/* NONE */
     75 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     76 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     77 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     79 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     80 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     81 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     82 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     83 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     84 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     85 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     86 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     87 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     88 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     89 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     90 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     91 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     92 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     93 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     94 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     95 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     96 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     97 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     98 
     99 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
    100 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
    101 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
    102 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    103 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    104 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    105 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    106 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    107 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    108 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    109 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    110 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    111 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    112 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    113 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    114 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    115 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    116 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    117 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    118 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    119 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    120 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    121 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    122 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    123 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    124 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    125 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    126 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    127 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    128 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    129 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    130 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    131 };
    132 
    133 #ifdef RTLD_DEBUG_RELOC
    134 static const char *reloc_names[] = {
    135 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    136 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    137 	"22", "13", "LO10", "GOT10", "GOT13",
    138 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    139 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    140 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    141 	"10", "11", "64", "OLO10", "HH22",
    142 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    143 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    144 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    145 	"L44", "REGISTER", "UA64", "UA16"
    146 };
    147 #endif
    148 
    149 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    150 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    151 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    152 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    153 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    154 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    155 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    156 
    157 static const long reloc_target_bitmask[] = {
    158 #define _BM(x)	(~(-(1ULL << (x))))
    159 	0,				/* NONE */
    160 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    161 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    162 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    163 	_BM(22), _BM(22),		/* HI22, _22 */
    164 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    165 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    166 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    167 	_BM(30), 0,			/* _WPLT30, _COPY */
    168 	_BM(32), _BM(32), _BM(32),	/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    169 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    170 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    171 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    172 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    173 	_BM(10), _BM(22),		/* _OLO10, _HH22 */
    174 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    175 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    176 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    177 	-1,				/* GLOB_JMP */
    178 	_BM(7), _BM(5), _BM(6)		/* _7, _5, _6 */
    179 	-1, -1,				/* DISP64, PLT64 */
    180 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    181 	_BM(22), _BM(10), _BM(13),	/* H44, M44, L44 */
    182 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    183 #undef _BM
    184 };
    185 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    186 
    187 /*
    188  * Instruction templates:
    189  */
    190 #define	BAA	0x10400000	/*	ba,a	%xcc, 0 */
    191 #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    192 #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    193 #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    194 #define	OR	0x82806000	/*	or	%g1, 0, %g1 */
    195 #define	XOR	0x82c06000	/*	xor	%g1, 0, %g1 */
    196 #define	MOV71	0x8283a000	/*	or	%o7, 0, %g1 */
    197 #define	MOV17	0x9c806000	/*	or	%g1, 0, %o7 */
    198 #define	CALL	0x40000000	/*	call	0 */
    199 #define	SLLX	0x8b407000	/*	sllx	%g1, 0, %g1 */
    200 #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    201 #define	ORG5	0x82804005	/*	or	%g1, %g5, %g1 */
    202 
    203 
    204 /* %hi(v)/%lo(v) with variable shift */
    205 #define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
    206 #define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
    207 
    208 void _rtld_bind_start_0(long, long);
    209 void _rtld_bind_start_1(long, long);
    210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
    211 caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
    212 
    213 /*
    214  * Install rtld function call into this PLT slot.
    215  */
    216 #define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
    217 #define	SETHI_l0	0x21000000
    218 #define	SETHI_l1	0x23000000
    219 #define	OR_l0_l0	0xa0142000
    220 #define	SLLX_l0_32_l0	0xa12c3020
    221 #define	OR_l0_l1_l0	0xa0140011
    222 #define	JMPL_l0_o0	0x91c42000
    223 #define	MOV_g1_o1	0x92100001
    224 
    225 void _rtld_install_plt __P((Elf_Word *pltgot,	Elf_Addr proc));
    226 
    227 void
    228 _rtld_install_plt(pltgot, proc)
    229 	Elf_Word *pltgot;
    230 	Elf_Addr proc;
    231 {
    232 	pltgot[0] = SAVE;
    233 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    234 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    235 	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
    236 	pltgot[4] = SLLX_l0_32_l0;
    237 	pltgot[5] = OR_l0_l1_l0;
    238 	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
    239 	pltgot[7] = MOV_g1_o1;
    240 }
    241 
    242 void
    243 _rtld_setup_pltgot(const Obj_Entry *obj)
    244 {
    245 	/*
    246 	 * On sparc64 we got troubles.
    247 	 *
    248 	 * Instructions are 4 bytes long.
    249 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    250 	 * array entries.
    251 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    252 	 * linker.
    253 	 * Loading an arbitrary 64-bit pointer takes 6
    254 	 * instructions and 2 registers.
    255 	 *
    256 	 * Somehow we need to issue a save to get a new stack
    257 	 * frame, load the address of the dynamic linker, and
    258 	 * jump there, in 8 instructions or less.
    259 	 *
    260 	 * Oh, we need to fill out both PLT0 and PLT1.
    261 	 */
    262 	{
    263 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    264 
    265 		/* Install in entries 0 and 1 */
    266 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    267 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    268 
    269 		/*
    270 		 * Install the object reference in first slot
    271 		 * of entry 2.
    272 		 */
    273 		obj->pltgot[8] = (Elf_Addr) obj;
    274 	}
    275 }
    276 
    277 void
    278 _rtld_relocate_nonplt_self(dynp, relocbase)
    279 	Elf_Dyn *dynp;
    280 	Elf_Addr relocbase;
    281 {
    282 	const Elf_Rela *rela = 0, *relalim;
    283 	Elf_Addr relasz = 0;
    284 	Elf_Addr *where;
    285 
    286 	for (; dynp->d_tag != DT_NULL; dynp++) {
    287 		switch (dynp->d_tag) {
    288 		case DT_RELA:
    289 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
    290 			break;
    291 		case DT_RELASZ:
    292 			relasz = dynp->d_un.d_val;
    293 			break;
    294 		}
    295 	}
    296 	relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
    297 	for (; rela < relalim; rela++) {
    298 		where = (Elf_Addr *)(relocbase + rela->r_offset);
    299 		*where = (Elf_Addr)(relocbase + rela->r_addend);
    300 	}
    301 }
    302 
    303 int
    304 _rtld_relocate_nonplt_objects(obj)
    305 	const Obj_Entry *obj;
    306 {
    307 	const Elf_Rela *rela;
    308 
    309 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    310 		Elf_Addr *where;
    311 		Elf_Word type;
    312 		Elf_Addr value = 0, mask;
    313 		const Elf_Sym *def = NULL;
    314 		const Obj_Entry *defobj = NULL;
    315 		unsigned long	 symnum;
    316 
    317 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    318 		symnum = ELF_R_SYM(rela->r_info);
    319 
    320 		type = ELF_R_TYPE(rela->r_info);
    321 		if (type == R_TYPE(NONE))
    322 			continue;
    323 
    324 		/* We do JMP_SLOTs in _rtld_bind() below */
    325 		if (type == R_TYPE(JMP_SLOT))
    326 			continue;
    327 
    328 		/* COPY relocs are also handled elsewhere */
    329 		if (type == R_TYPE(COPY))
    330 			continue;
    331 
    332 		/*
    333 		 * We use the fact that relocation types are an `enum'
    334 		 * Note: R_SPARC_UA16 is currently numerically largest.
    335 		 */
    336 		if (type > R_TYPE(UA16))
    337 			return (-1);
    338 
    339 		value = rela->r_addend;
    340 
    341 		/*
    342 		 * Handle relative relocs here, as an optimization.
    343 		 */
    344 		if (type == R_TYPE(RELATIVE)) {
    345 			*where = (Elf_Addr)(obj->relocbase + value);
    346 			rdbg(("RELATIVE in %s --> %p", obj->path,
    347 			    (void *)*where));
    348 			continue;
    349 		}
    350 
    351 		if (RELOC_RESOLVE_SYMBOL(type)) {
    352 
    353 			/* Find the symbol */
    354 			def = _rtld_find_symdef(symnum, obj, &defobj, false);
    355 			if (def == NULL)
    356 				return (-1);
    357 
    358 			/* Add in the symbol's absolute address */
    359 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
    360 		}
    361 
    362 		if (RELOC_PC_RELATIVE(type)) {
    363 			value -= (Elf_Addr)where;
    364 		}
    365 
    366 		if (RELOC_BASE_RELATIVE(type)) {
    367 			/*
    368 			 * Note that even though sparcs use `Elf_rela'
    369 			 * exclusively we still need the implicit memory addend
    370 			 * in relocations referring to GOT entries.
    371 			 * Undoubtedly, someone f*cked this up in the distant
    372 			 * past, and now we're stuck with it in the name of
    373 			 * compatibility for all eternity..
    374 			 *
    375 			 * In any case, the implicit and explicit should be
    376 			 * mutually exclusive. We provide a check for that
    377 			 * here.
    378 			 */
    379 #ifdef DIAGNOSTIC
    380 			if (value != 0 && *where != 0) {
    381 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    382 					"addend=0x%lx, base %p\n",
    383 					obj->path, where, *where,
    384 					rela->r_addend, obj->relocbase);
    385 			}
    386 #endif
    387 			/* XXXX -- apparently we ignore the preexisting value */
    388 			value += (Elf_Addr)(obj->relocbase);
    389 		}
    390 
    391 		mask = RELOC_VALUE_BITMASK(type);
    392 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    393 		value &= mask;
    394 
    395 		if (RELOC_UNALIGNED(type)) {
    396 			/* Handle unaligned relocations. */
    397 			Elf_Addr tmp = 0;
    398 			char *ptr = (char *)where;
    399 			int i, size = RELOC_TARGET_SIZE(type)/8;
    400 
    401 			/* Read it in one byte at a time. */
    402 			for (i=0; i<size; i++)
    403 				tmp = (tmp << 8) | ptr[i];
    404 
    405 			tmp &= ~mask;
    406 			tmp |= value;
    407 
    408 			/* Write it back out. */
    409 			for (i=0; i<size; i++)
    410 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    411 #ifdef RTLD_DEBUG_RELOC
    412 			value = (Elf_Addr)tmp;
    413 #endif
    414 
    415 		} else if (RELOC_TARGET_SIZE(type) > 32) {
    416 			*where &= ~mask;
    417 			*where |= value;
    418 #ifdef RTLD_DEBUG_RELOC
    419 			value = (Elf_Addr)*where;
    420 #endif
    421 		} else {
    422 			Elf32_Addr *where32 = (Elf32_Addr *)where;
    423 
    424 			*where32 &= ~mask;
    425 			*where32 |= value;
    426 #ifdef RTLD_DEBUG_RELOC
    427 			value = (Elf_Addr)*where32;
    428 #endif
    429 		}
    430 
    431 #ifdef RTLD_DEBUG_RELOC
    432 		if (RELOC_RESOLVE_SYMBOL(type)) {
    433 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
    434 			    obj->strtab + obj->symtab[symnum].st_name,
    435 			    obj->path, (void *)*where, defobj->path));
    436 		} else {
    437 			rdbg(("%s in %s --> %p", reloc_names[type],
    438 			    obj->path, (void *)*where));
    439 		}
    440 #endif
    441 	}
    442 	return (0);
    443 }
    444 
    445 int
    446 _rtld_relocate_plt_lazy(obj)
    447 	const Obj_Entry *obj;
    448 {
    449 	return (0);
    450 }
    451 
    452 caddr_t
    453 _rtld_bind(obj, reloff)
    454 	const Obj_Entry *obj;
    455 	Elf_Word reloff;
    456 {
    457 	const Elf_Rela *rela = obj->pltrela + reloff;
    458 	const Elf_Sym *def;
    459 	const Obj_Entry *defobj;
    460 	Elf_Word *where;
    461 	Elf_Addr value, offset;
    462 
    463 	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
    464 		/*
    465 		 * XXXX
    466 		 *
    467 		 * The first four PLT entries are reserved.  There is some
    468 		 * disagreement whether they should have associated relocation
    469 		 * entries.  Both the SPARC 32-bit and 64-bit ELF
    470 		 * specifications say that they should have relocation entries,
    471 		 * but the 32-bit SPARC binutils do not generate them, and now
    472 		 * the 64-bit SPARC binutils have stopped generating them too.
    473 		 *
    474 		 * So, to provide binary compatibility, we will check the first
    475 		 * entry, if it is reserved it should not be of the type
    476 		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
    477 		 * were not generated and our index is 4 entries too far.
    478 		 */
    479 		rela -= 4;
    480 	}
    481 
    482 	where = (Elf_Word *)(obj->relocbase + rela->r_offset);
    483 
    484 	/* Fully resolve procedure addresses now */
    485 
    486 	assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
    487 
    488 	def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
    489 	if (def == NULL)
    490 		_rtld_die();
    491 
    492 	value = (Elf_Addr)(defobj->relocbase + def->st_value);
    493 	rdbg(("bind now/fixup in %s --> new=%p",
    494 	    defobj->strtab + def->st_name, (void *)value));
    495 
    496 	/*
    497 	 * At the PLT entry pointed at by `where', we now construct
    498 	 * a direct transfer to the now fully resolved function
    499 	 * address.
    500 	 *
    501 	 * A PLT entry is supposed to start by looking like this:
    502 	 *
    503 	 *	sethi	%hi(. - .PLT0), %g1
    504 	 *	ba,a	%xcc, .PLT1
    505 	 *	nop
    506 	 *	nop
    507 	 *	nop
    508 	 *	nop
    509 	 *	nop
    510 	 *	nop
    511 	 *
    512 	 * When we replace these entries we start from the second
    513 	 * entry and do it in reverse order so the last thing we
    514 	 * do is replace the branch.  That allows us to change this
    515 	 * atomically.
    516 	 *
    517 	 * We now need to find out how far we need to jump.  We
    518 	 * have a choice of several different relocation techniques
    519 	 * which are increasingly expensive.
    520 	 */
    521 
    522 	offset = ((Elf_Addr)where) - value;
    523 	if (rela->r_addend) {
    524 		Elf_Addr *ptr = (Elf_Addr *)where;
    525 		/*
    526 		 * This entry is >=32768.  The relocations points to a
    527 		 * PC-relative pointer to the bind_0 stub at the top of the
    528 		 * PLT section.  Update it to point to the target function.
    529 		 */
    530 		ptr[0] += value - (Elf_Addr)obj->pltgot;
    531 
    532 	} else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
    533 		/*
    534 		 * We're within 1MB -- we can use a direct branch insn.
    535 		 *
    536 		 * We can generate this pattern:
    537 		 *
    538 		 *	sethi	%hi(. - .PLT0), %g1
    539 		 *	ba,a	%xcc, addr
    540 		 *	nop
    541 		 *	nop
    542 		 *	nop
    543 		 *	nop
    544 		 *	nop
    545 		 *	nop
    546 		 *
    547 		 */
    548 		where[1] = BAA | ((offset >> 2) &0x3fffff);
    549 		__asm __volatile("iflush %0+4" : : "r" (where));
    550 	} else if (value >= 0 && value < (1L<<32)) {
    551 		/*
    552 		 * We're within 32-bits of address zero.
    553 		 *
    554 		 * The resulting code in the jump slot is:
    555 		 *
    556 		 *	sethi	%hi(. - .PLT0), %g1
    557 		 *	sethi	%hi(addr), %g1
    558 		 *	jmp	%g1+%lo(addr)
    559 		 *	nop
    560 		 *	nop
    561 		 *	nop
    562 		 *	nop
    563 		 *	nop
    564 		 *
    565 		 */
    566 		where[2] = JMP   | LOVAL(value, 0);
    567 		where[1] = SETHI | HIVAL(value, 10);
    568 		__asm __volatile("iflush %0+8" : : "r" (where));
    569 		__asm __volatile("iflush %0+4" : : "r" (where));
    570 
    571 	} else if (value <= 0 && value > -(1L<<32)) {
    572 		/*
    573 		 * We're within 32-bits of address -1.
    574 		 *
    575 		 * The resulting code in the jump slot is:
    576 		 *
    577 		 *	sethi	%hi(. - .PLT0), %g1
    578 		 *	sethi	%hix(addr), %g1
    579 		 *	xor	%g1, %lox(addr), %g1
    580 		 *	jmp	%g1
    581 		 *	nop
    582 		 *	nop
    583 		 *	nop
    584 		 *	nop
    585 		 *
    586 		 */
    587 		where[3] = JMP;
    588 		where[2] = XOR | ((~value) & 0x00001fff);
    589 		where[1] = SETHI | HIVAL(~value, 10);
    590 		__asm __volatile("iflush %0+12" : : "r" (where));
    591 		__asm __volatile("iflush %0+8" : : "r" (where));
    592 		__asm __volatile("iflush %0+4" : : "r" (where));
    593 
    594 	} else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
    595 		/*
    596 		 * We're within 32-bits -- we can use a direct call insn
    597 		 *
    598 		 * The resulting code in the jump slot is:
    599 		 *
    600 		 *	sethi	%hi(. - .PLT0), %g1
    601 		 *	mov	%o7, %g1
    602 		 *	call	(.+offset)
    603 		 *	 mov	%g1, %o7
    604 		 *	nop
    605 		 *	nop
    606 		 *	nop
    607 		 *	nop
    608 		 *
    609 		 */
    610 		where[3] = MOV17;
    611 		where[2] = CALL	  | ((offset >> 4) & 0x3fffffff);
    612 		where[1] = MOV71;
    613 		__asm __volatile("iflush %0+12" : : "r" (where));
    614 		__asm __volatile("iflush %0+8" : : "r" (where));
    615 		__asm __volatile("iflush %0+4" : : "r" (where));
    616 
    617 	} else if (offset >= 0 && offset < (1L<<44)) {
    618 		/*
    619 		 * We're within 44 bits.  We can generate this pattern:
    620 		 *
    621 		 * The resulting code in the jump slot is:
    622 		 *
    623 		 *	sethi	%hi(. - .PLT0), %g1
    624 		 *	sethi	%h44(addr), %g1
    625 		 *	or	%g1, %m44(addr), %g1
    626 		 *	sllx	%g1, 12, %g1
    627 		 *	jmp	%g1+%l44(addr)
    628 		 *	nop
    629 		 *	nop
    630 		 *	nop
    631 		 *
    632 		 */
    633 		where[4] = JMP   | LOVAL(offset, 0);
    634 		where[3] = SLLX  | 12;
    635 		where[2] = OR    | (((offset) >> 12) & 0x00001fff);
    636 		where[1] = SETHI | HIVAL(offset, 22);
    637 		__asm __volatile("iflush %0+16" : : "r" (where));
    638 		__asm __volatile("iflush %0+12" : : "r" (where));
    639 		__asm __volatile("iflush %0+8" : : "r" (where));
    640 		__asm __volatile("iflush %0+4" : : "r" (where));
    641 
    642 	} else if (offset < 0 && offset > -(1L<<44)) {
    643 		/*
    644 		 * We're within 44 bits.  We can generate this pattern:
    645 		 *
    646 		 * The resulting code in the jump slot is:
    647 		 *
    648 		 *	sethi	%hi(. - .PLT0), %g1
    649 		 *	sethi	%h44(-addr), %g1
    650 		 *	xor	%g1, %m44(-addr), %g1
    651 		 *	sllx	%g1, 12, %g1
    652 		 *	jmp	%g1+%l44(addr)
    653 		 *	nop
    654 		 *	nop
    655 		 *	nop
    656 		 *
    657 		 */
    658 		where[4] = JMP   | LOVAL(offset, 0);
    659 		where[3] = SLLX  | 12;
    660 		where[2] = XOR   | (((~offset) >> 12) & 0x00001fff);
    661 		where[1] = SETHI | HIVAL(~offset, 22);
    662 		__asm __volatile("iflush %0+16" : : "r" (where));
    663 		__asm __volatile("iflush %0+12" : : "r" (where));
    664 		__asm __volatile("iflush %0+8" : : "r" (where));
    665 		__asm __volatile("iflush %0+4" : : "r" (where));
    666 
    667 	} else {
    668 		/*
    669 		 * We need to load all 64-bits
    670 		 *
    671 		 * The resulting code in the jump slot is:
    672 		 *
    673 		 *	sethi	%hi(. - .PLT0), %g1
    674 		 *	sethi	%hh(addr), %g1
    675 		 *	sethi	%lm(addr), %g5
    676 		 *	or	%g1, %hm(addr), %g1
    677 		 *	sllx	%g1, 32, %g1
    678 		 *	or	%g1, %g5, %g1
    679 		 *	jmp	%g1+%lo(addr)
    680 		 *	nop
    681 		 *
    682 		 */
    683 		where[6] = JMP     | LOVAL(value, 0);
    684 		where[5] = ORG5;
    685 		where[4] = SLLX    | 32;
    686 		where[3] = OR      | LOVAL(value, 32);
    687 		where[2] = SETHIG5 | HIVAL(value, 10);
    688 		where[1] = SETHI   | HIVAL(value, 42);
    689 		__asm __volatile("iflush %0+24" : : "r" (where));
    690 		__asm __volatile("iflush %0+20" : : "r" (where));
    691 		__asm __volatile("iflush %0+16" : : "r" (where));
    692 		__asm __volatile("iflush %0+12" : : "r" (where));
    693 		__asm __volatile("iflush %0+8" : : "r" (where));
    694 		__asm __volatile("iflush %0+4" : : "r" (where));
    695 
    696 	}
    697 
    698 	return (caddr_t)value;
    699 }
    700