mdreloc.c revision 1.32 1 /* $NetBSD: mdreloc.c,v 1.32 2002/10/18 20:35:25 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_U 0x04000000 /* Unaligned */
71 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 static const int reloc_target_flags[] = {
74 0, /* NONE */
75 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 _RF_SZ(32) | _RF_RS(0), /* COPY */
94 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98
99 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 };
132
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 "22", "13", "LO10", "GOT10", "GOT13",
138 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 "10", "11", "64", "OLO10", "HH22",
142 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 "L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148
149 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156
157 static const long reloc_target_bitmask[] = {
158 #define _BM(x) (~(-(1ULL << (x))))
159 0, /* NONE */
160 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 _BM(22), _BM(22), /* HI22, _22 */
164 _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 _BM(10), _BM(22), /* _PC10, _PC22 */
167 _BM(30), 0, /* _WPLT30, _COPY */
168 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 _BM(32), _BM(32), /* _UA32, PLT32 */
170 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 _BM(10), _BM(22), /* _OLO10, _HH22 */
174 _BM(10), _BM(22), /* _HM10, _LM22 */
175 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 -1, /* GLOB_JMP */
178 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 -1, -1, /* DISP64, PLT64 */
180 _BM(22), _BM(13), /* HIX22, LOX10 */
181 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186
187 /*
188 * Instruction templates:
189 */
190 #define BAA 0x10400000 /* ba,a %xcc, 0 */
191 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
192 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
193 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
194 #define OR 0x82806000 /* or %g1, 0, %g1 */
195 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
196 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
197 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
198 #define CALL 0x40000000 /* call 0 */
199 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
200 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
201 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
202
203
204 /* %hi(v)/%lo(v) with variable shift */
205 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
206 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
207
208 void _rtld_bind_start_0(long, long);
209 void _rtld_bind_start_1(long, long);
210 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
211 caddr_t _rtld_bind __P((const Obj_Entry *, Elf_Word));
212
213 /*
214 * Install rtld function call into this PLT slot.
215 */
216 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
217 #define SETHI_l0 0x21000000
218 #define SETHI_l1 0x23000000
219 #define OR_l0_l0 0xa0142000
220 #define SLLX_l0_32_l0 0xa12c3020
221 #define OR_l0_l1_l0 0xa0140011
222 #define JMPL_l0_o0 0x91c42000
223 #define MOV_g1_o1 0x92100001
224
225 void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
226
227 void
228 _rtld_install_plt(pltgot, proc)
229 Elf_Word *pltgot;
230 Elf_Addr proc;
231 {
232 pltgot[0] = SAVE;
233 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
234 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
235 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
236 pltgot[4] = SLLX_l0_32_l0;
237 pltgot[5] = OR_l0_l1_l0;
238 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
239 pltgot[7] = MOV_g1_o1;
240 }
241
242 void
243 _rtld_setup_pltgot(const Obj_Entry *obj)
244 {
245 /*
246 * On sparc64 we got troubles.
247 *
248 * Instructions are 4 bytes long.
249 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
250 * array entries.
251 * Each PLT entry jumps to PLT0 to enter the dynamic
252 * linker.
253 * Loading an arbitrary 64-bit pointer takes 6
254 * instructions and 2 registers.
255 *
256 * Somehow we need to issue a save to get a new stack
257 * frame, load the address of the dynamic linker, and
258 * jump there, in 8 instructions or less.
259 *
260 * Oh, we need to fill out both PLT0 and PLT1.
261 */
262 {
263 Elf_Word *entry = (Elf_Word *)obj->pltgot;
264
265 /* Install in entries 0 and 1 */
266 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
267 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
268
269 /*
270 * Install the object reference in first slot
271 * of entry 2.
272 */
273 obj->pltgot[8] = (Elf_Addr) obj;
274 }
275 }
276
277 void
278 _rtld_relocate_nonplt_self(dynp, relocbase)
279 Elf_Dyn *dynp;
280 Elf_Addr relocbase;
281 {
282 const Elf_Rela *rela = 0, *relalim;
283 Elf_Addr relasz = 0;
284 Elf_Addr *where;
285
286 for (; dynp->d_tag != DT_NULL; dynp++) {
287 switch (dynp->d_tag) {
288 case DT_RELA:
289 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
290 break;
291 case DT_RELASZ:
292 relasz = dynp->d_un.d_val;
293 break;
294 }
295 }
296 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
297 for (; rela < relalim; rela++) {
298 where = (Elf_Addr *)(relocbase + rela->r_offset);
299 *where = (Elf_Addr)(relocbase + rela->r_addend);
300 }
301 }
302
303 int
304 _rtld_relocate_nonplt_objects(obj)
305 const Obj_Entry *obj;
306 {
307 const Elf_Rela *rela;
308
309 for (rela = obj->rela; rela < obj->relalim; rela++) {
310 Elf_Addr *where;
311 Elf_Word type;
312 Elf_Addr value = 0, mask;
313 const Elf_Sym *def = NULL;
314 const Obj_Entry *defobj = NULL;
315 unsigned long symnum;
316
317 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
318 symnum = ELF_R_SYM(rela->r_info);
319
320 type = ELF_R_TYPE(rela->r_info);
321 if (type == R_TYPE(NONE))
322 continue;
323
324 /* We do JMP_SLOTs in _rtld_bind() below */
325 if (type == R_TYPE(JMP_SLOT))
326 continue;
327
328 /* COPY relocs are also handled elsewhere */
329 if (type == R_TYPE(COPY))
330 continue;
331
332 /*
333 * We use the fact that relocation types are an `enum'
334 * Note: R_SPARC_UA16 is currently numerically largest.
335 */
336 if (type > R_TYPE(UA16))
337 return (-1);
338
339 value = rela->r_addend;
340
341 /*
342 * Handle relative relocs here, as an optimization.
343 */
344 if (type == R_TYPE(RELATIVE)) {
345 *where = (Elf_Addr)(obj->relocbase + value);
346 rdbg(("RELATIVE in %s --> %p", obj->path,
347 (void *)*where));
348 continue;
349 }
350
351 if (RELOC_RESOLVE_SYMBOL(type)) {
352
353 /* Find the symbol */
354 def = _rtld_find_symdef(symnum, obj, &defobj, false);
355 if (def == NULL)
356 return (-1);
357
358 /* Add in the symbol's absolute address */
359 value += (Elf_Addr)(defobj->relocbase + def->st_value);
360 }
361
362 if (RELOC_PC_RELATIVE(type)) {
363 value -= (Elf_Addr)where;
364 }
365
366 if (RELOC_BASE_RELATIVE(type)) {
367 /*
368 * Note that even though sparcs use `Elf_rela'
369 * exclusively we still need the implicit memory addend
370 * in relocations referring to GOT entries.
371 * Undoubtedly, someone f*cked this up in the distant
372 * past, and now we're stuck with it in the name of
373 * compatibility for all eternity..
374 *
375 * In any case, the implicit and explicit should be
376 * mutually exclusive. We provide a check for that
377 * here.
378 */
379 #ifdef DIAGNOSTIC
380 if (value != 0 && *where != 0) {
381 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
382 "addend=0x%lx, base %p\n",
383 obj->path, where, *where,
384 rela->r_addend, obj->relocbase);
385 }
386 #endif
387 /* XXXX -- apparently we ignore the preexisting value */
388 value += (Elf_Addr)(obj->relocbase);
389 }
390
391 mask = RELOC_VALUE_BITMASK(type);
392 value >>= RELOC_VALUE_RIGHTSHIFT(type);
393 value &= mask;
394
395 if (RELOC_UNALIGNED(type)) {
396 /* Handle unaligned relocations. */
397 Elf_Addr tmp = 0;
398 char *ptr = (char *)where;
399 int i, size = RELOC_TARGET_SIZE(type)/8;
400
401 /* Read it in one byte at a time. */
402 for (i=0; i<size; i++)
403 tmp = (tmp << 8) | ptr[i];
404
405 tmp &= ~mask;
406 tmp |= value;
407
408 /* Write it back out. */
409 for (i=0; i<size; i++)
410 ptr[i] = ((tmp >> (8*i)) & 0xff);
411 #ifdef RTLD_DEBUG_RELOC
412 value = (Elf_Addr)tmp;
413 #endif
414
415 } else if (RELOC_TARGET_SIZE(type) > 32) {
416 *where &= ~mask;
417 *where |= value;
418 #ifdef RTLD_DEBUG_RELOC
419 value = (Elf_Addr)*where;
420 #endif
421 } else {
422 Elf32_Addr *where32 = (Elf32_Addr *)where;
423
424 *where32 &= ~mask;
425 *where32 |= value;
426 #ifdef RTLD_DEBUG_RELOC
427 value = (Elf_Addr)*where32;
428 #endif
429 }
430
431 #ifdef RTLD_DEBUG_RELOC
432 if (RELOC_RESOLVE_SYMBOL(type)) {
433 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
434 obj->strtab + obj->symtab[symnum].st_name,
435 obj->path, (void *)*where, defobj->path));
436 } else {
437 rdbg(("%s in %s --> %p", reloc_names[type],
438 obj->path, (void *)*where));
439 }
440 #endif
441 }
442 return (0);
443 }
444
445 int
446 _rtld_relocate_plt_lazy(obj)
447 const Obj_Entry *obj;
448 {
449 return (0);
450 }
451
452 caddr_t
453 _rtld_bind(obj, reloff)
454 const Obj_Entry *obj;
455 Elf_Word reloff;
456 {
457 const Elf_Rela *rela = obj->pltrela + reloff;
458 const Elf_Sym *def;
459 const Obj_Entry *defobj;
460 Elf_Word *where;
461 Elf_Addr value, offset;
462
463 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
464 /*
465 * XXXX
466 *
467 * The first four PLT entries are reserved. There is some
468 * disagreement whether they should have associated relocation
469 * entries. Both the SPARC 32-bit and 64-bit ELF
470 * specifications say that they should have relocation entries,
471 * but the 32-bit SPARC binutils do not generate them, and now
472 * the 64-bit SPARC binutils have stopped generating them too.
473 *
474 * So, to provide binary compatibility, we will check the first
475 * entry, if it is reserved it should not be of the type
476 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
477 * were not generated and our index is 4 entries too far.
478 */
479 rela -= 4;
480 }
481
482 where = (Elf_Word *)(obj->relocbase + rela->r_offset);
483
484 /* Fully resolve procedure addresses now */
485
486 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
487
488 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
489 if (def == NULL)
490 _rtld_die();
491
492 value = (Elf_Addr)(defobj->relocbase + def->st_value);
493 rdbg(("bind now/fixup in %s --> new=%p",
494 defobj->strtab + def->st_name, (void *)value));
495
496 /*
497 * At the PLT entry pointed at by `where', we now construct
498 * a direct transfer to the now fully resolved function
499 * address.
500 *
501 * A PLT entry is supposed to start by looking like this:
502 *
503 * sethi %hi(. - .PLT0), %g1
504 * ba,a %xcc, .PLT1
505 * nop
506 * nop
507 * nop
508 * nop
509 * nop
510 * nop
511 *
512 * When we replace these entries we start from the second
513 * entry and do it in reverse order so the last thing we
514 * do is replace the branch. That allows us to change this
515 * atomically.
516 *
517 * We now need to find out how far we need to jump. We
518 * have a choice of several different relocation techniques
519 * which are increasingly expensive.
520 */
521
522 offset = ((Elf_Addr)where) - value;
523 if (rela->r_addend) {
524 Elf_Addr *ptr = (Elf_Addr *)where;
525 /*
526 * This entry is >=32768. The relocations points to a
527 * PC-relative pointer to the bind_0 stub at the top of the
528 * PLT section. Update it to point to the target function.
529 */
530 ptr[0] += value - (Elf_Addr)obj->pltgot;
531
532 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
533 /*
534 * We're within 1MB -- we can use a direct branch insn.
535 *
536 * We can generate this pattern:
537 *
538 * sethi %hi(. - .PLT0), %g1
539 * ba,a %xcc, addr
540 * nop
541 * nop
542 * nop
543 * nop
544 * nop
545 * nop
546 *
547 */
548 where[1] = BAA | ((offset >> 2) &0x3fffff);
549 __asm __volatile("iflush %0+4" : : "r" (where));
550 } else if (value >= 0 && value < (1L<<32)) {
551 /*
552 * We're within 32-bits of address zero.
553 *
554 * The resulting code in the jump slot is:
555 *
556 * sethi %hi(. - .PLT0), %g1
557 * sethi %hi(addr), %g1
558 * jmp %g1+%lo(addr)
559 * nop
560 * nop
561 * nop
562 * nop
563 * nop
564 *
565 */
566 where[2] = JMP | LOVAL(value, 0);
567 where[1] = SETHI | HIVAL(value, 10);
568 __asm __volatile("iflush %0+8" : : "r" (where));
569 __asm __volatile("iflush %0+4" : : "r" (where));
570
571 } else if (value <= 0 && value > -(1L<<32)) {
572 /*
573 * We're within 32-bits of address -1.
574 *
575 * The resulting code in the jump slot is:
576 *
577 * sethi %hi(. - .PLT0), %g1
578 * sethi %hix(addr), %g1
579 * xor %g1, %lox(addr), %g1
580 * jmp %g1
581 * nop
582 * nop
583 * nop
584 * nop
585 *
586 */
587 where[3] = JMP;
588 where[2] = XOR | ((~value) & 0x00001fff);
589 where[1] = SETHI | HIVAL(~value, 10);
590 __asm __volatile("iflush %0+12" : : "r" (where));
591 __asm __volatile("iflush %0+8" : : "r" (where));
592 __asm __volatile("iflush %0+4" : : "r" (where));
593
594 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
595 /*
596 * We're within 32-bits -- we can use a direct call insn
597 *
598 * The resulting code in the jump slot is:
599 *
600 * sethi %hi(. - .PLT0), %g1
601 * mov %o7, %g1
602 * call (.+offset)
603 * mov %g1, %o7
604 * nop
605 * nop
606 * nop
607 * nop
608 *
609 */
610 where[3] = MOV17;
611 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
612 where[1] = MOV71;
613 __asm __volatile("iflush %0+12" : : "r" (where));
614 __asm __volatile("iflush %0+8" : : "r" (where));
615 __asm __volatile("iflush %0+4" : : "r" (where));
616
617 } else if (offset >= 0 && offset < (1L<<44)) {
618 /*
619 * We're within 44 bits. We can generate this pattern:
620 *
621 * The resulting code in the jump slot is:
622 *
623 * sethi %hi(. - .PLT0), %g1
624 * sethi %h44(addr), %g1
625 * or %g1, %m44(addr), %g1
626 * sllx %g1, 12, %g1
627 * jmp %g1+%l44(addr)
628 * nop
629 * nop
630 * nop
631 *
632 */
633 where[4] = JMP | LOVAL(offset, 0);
634 where[3] = SLLX | 12;
635 where[2] = OR | (((offset) >> 12) & 0x00001fff);
636 where[1] = SETHI | HIVAL(offset, 22);
637 __asm __volatile("iflush %0+16" : : "r" (where));
638 __asm __volatile("iflush %0+12" : : "r" (where));
639 __asm __volatile("iflush %0+8" : : "r" (where));
640 __asm __volatile("iflush %0+4" : : "r" (where));
641
642 } else if (offset < 0 && offset > -(1L<<44)) {
643 /*
644 * We're within 44 bits. We can generate this pattern:
645 *
646 * The resulting code in the jump slot is:
647 *
648 * sethi %hi(. - .PLT0), %g1
649 * sethi %h44(-addr), %g1
650 * xor %g1, %m44(-addr), %g1
651 * sllx %g1, 12, %g1
652 * jmp %g1+%l44(addr)
653 * nop
654 * nop
655 * nop
656 *
657 */
658 where[4] = JMP | LOVAL(offset, 0);
659 where[3] = SLLX | 12;
660 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
661 where[1] = SETHI | HIVAL(~offset, 22);
662 __asm __volatile("iflush %0+16" : : "r" (where));
663 __asm __volatile("iflush %0+12" : : "r" (where));
664 __asm __volatile("iflush %0+8" : : "r" (where));
665 __asm __volatile("iflush %0+4" : : "r" (where));
666
667 } else {
668 /*
669 * We need to load all 64-bits
670 *
671 * The resulting code in the jump slot is:
672 *
673 * sethi %hi(. - .PLT0), %g1
674 * sethi %hh(addr), %g1
675 * sethi %lm(addr), %g5
676 * or %g1, %hm(addr), %g1
677 * sllx %g1, 32, %g1
678 * or %g1, %g5, %g1
679 * jmp %g1+%lo(addr)
680 * nop
681 *
682 */
683 where[6] = JMP | LOVAL(value, 0);
684 where[5] = ORG5;
685 where[4] = SLLX | 32;
686 where[3] = OR | LOVAL(value, 32);
687 where[2] = SETHIG5 | HIVAL(value, 10);
688 where[1] = SETHI | HIVAL(value, 42);
689 __asm __volatile("iflush %0+24" : : "r" (where));
690 __asm __volatile("iflush %0+20" : : "r" (where));
691 __asm __volatile("iflush %0+16" : : "r" (where));
692 __asm __volatile("iflush %0+12" : : "r" (where));
693 __asm __volatile("iflush %0+8" : : "r" (where));
694 __asm __volatile("iflush %0+4" : : "r" (where));
695
696 }
697
698 return (caddr_t)value;
699 }
700