mdreloc.c revision 1.41 1 /* $NetBSD: mdreloc.c,v 1.41 2007/02/23 01:17:11 matt Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 #ifndef lint
42 __RCSID("$NetBSD: mdreloc.c,v 1.41 2007/02/23 01:17:11 matt Exp $");
43 #endif /* not lint */
44
45 #include <errno.h>
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <unistd.h>
50 #include <sys/stat.h>
51
52 #include "rtldenv.h"
53 #include "debug.h"
54 #include "rtld.h"
55
56 /*
57 * The following table holds for each relocation type:
58 * - the width in bits of the memory location the relocation
59 * applies to (not currently used)
60 * - the number of bits the relocation value must be shifted to the
61 * right (i.e. discard least significant bits) to fit into
62 * the appropriate field in the instruction word.
63 * - flags indicating whether
64 * * the relocation involves a symbol
65 * * the relocation is relative to the current position
66 * * the relocation is for a GOT entry
67 * * the relocation is relative to the load address
68 *
69 */
70 #define _RF_S 0x80000000 /* Resolve symbol */
71 #define _RF_A 0x40000000 /* Use addend */
72 #define _RF_P 0x20000000 /* Location relative */
73 #define _RF_G 0x10000000 /* GOT offset */
74 #define _RF_B 0x08000000 /* Load address relative */
75 #define _RF_U 0x04000000 /* Unaligned */
76 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
77 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
78 static const int reloc_target_flags[] = {
79 0, /* NONE */
80 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
81 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
83 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
84 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
85 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
86 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
88 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
89 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
90 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
91 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
92 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
93 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
94 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
95 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
96 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
97 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
98 _RF_SZ(32) | _RF_RS(0), /* COPY */
99 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
100 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
101 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
102 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
103
104 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
105 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
106 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
107 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
108 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
109 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
112 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
113 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
117 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
118 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
119 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
120 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
126 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
127 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
128 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
129 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
130 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
131 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
132 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
133 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
134 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
135 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
136 };
137
138 #ifdef RTLD_DEBUG_RELOC
139 static const char *reloc_names[] = {
140 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
141 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
142 "22", "13", "LO10", "GOT10", "GOT13",
143 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
144 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
145 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
146 "10", "11", "64", "OLO10", "HH22",
147 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
148 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
149 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
150 "L44", "REGISTER", "UA64", "UA16"
151 };
152 #endif
153
154 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
155 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
156 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
157 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
158 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
159 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
160 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
161
162 static const long reloc_target_bitmask[] = {
163 #define _BM(x) (~(-(1ULL << (x))))
164 0, /* NONE */
165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 _BM(22), _BM(22), /* HI22, _22 */
169 _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 _BM(10), _BM(22), /* _PC10, _PC22 */
172 _BM(30), 0, /* _WPLT30, _COPY */
173 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 _BM(32), _BM(32), /* _UA32, PLT32 */
175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 _BM(10), _BM(22), /* _OLO10, _HH22 */
179 _BM(10), _BM(22), /* _HM10, _LM22 */
180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
182 -1, /* GLOB_JMP */
183 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
184 -1, -1, /* DISP64, PLT64 */
185 _BM(22), _BM(13), /* HIX22, LOX10 */
186 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
188 #undef _BM
189 };
190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
191
192 /*
193 * Instruction templates:
194 */
195 #define BAA 0x10400000 /* ba,a %xcc, 0 */
196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 #define OR 0x82806000 /* or %g1, 0, %g1 */
200 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
201 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
202 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
203 #define CALL 0x40000000 /* call 0 */
204 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
205 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
206 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
207
208
209 /* %hi(v)/%lo(v) with variable shift */
210 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
211 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
212
213 void _rtld_bind_start_0(long, long);
214 void _rtld_bind_start_1(long, long);
215 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
216 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
217
218 /*
219 * Install rtld function call into this PLT slot.
220 */
221 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
222 #define SETHI_l0 0x21000000
223 #define SETHI_l1 0x23000000
224 #define OR_l0_l0 0xa0142000
225 #define SLLX_l0_32_l0 0xa12c3020
226 #define OR_l0_l1_l0 0xa0140011
227 #define JMPL_l0_o0 0x91c42000
228 #define MOV_g1_o1 0x92100001
229
230 void _rtld_install_plt(Elf_Word *, Elf_Addr);
231 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
232 const Elf_Rela *, Elf_Addr *);
233
234 void
235 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
236 {
237 pltgot[0] = SAVE;
238 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
239 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
240 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
241 pltgot[4] = SLLX_l0_32_l0;
242 pltgot[5] = OR_l0_l1_l0;
243 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
244 pltgot[7] = MOV_g1_o1;
245 }
246
247 void
248 _rtld_setup_pltgot(const Obj_Entry *obj)
249 {
250 /*
251 * On sparc64 we got troubles.
252 *
253 * Instructions are 4 bytes long.
254 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
255 * array entries.
256 * Each PLT entry jumps to PLT0 to enter the dynamic
257 * linker.
258 * Loading an arbitrary 64-bit pointer takes 6
259 * instructions and 2 registers.
260 *
261 * Somehow we need to issue a save to get a new stack
262 * frame, load the address of the dynamic linker, and
263 * jump there, in 8 instructions or less.
264 *
265 * Oh, we need to fill out both PLT0 and PLT1.
266 */
267 {
268 Elf_Word *entry = (Elf_Word *)obj->pltgot;
269
270 /* Install in entries 0 and 1 */
271 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
272 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
273
274 /*
275 * Install the object reference in first slot
276 * of entry 2.
277 */
278 obj->pltgot[8] = (Elf_Addr) obj;
279 }
280 }
281
282 void
283 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
284 {
285 const Elf_Rela *rela = 0, *relalim;
286 Elf_Addr relasz = 0;
287 Elf_Addr *where;
288
289 for (; dynp->d_tag != DT_NULL; dynp++) {
290 switch (dynp->d_tag) {
291 case DT_RELA:
292 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
293 break;
294 case DT_RELASZ:
295 relasz = dynp->d_un.d_val;
296 break;
297 }
298 }
299 relalim = (const Elf_Rela *)((caddr_t)rela + relasz);
300 for (; rela < relalim; rela++) {
301 where = (Elf_Addr *)(relocbase + rela->r_offset);
302 *where = (Elf_Addr)(relocbase + rela->r_addend);
303 }
304 }
305
306 int
307 _rtld_relocate_nonplt_objects(const Obj_Entry *obj)
308 {
309 const Elf_Rela *rela;
310 const Elf_Sym *def = NULL;
311 const Obj_Entry *defobj = NULL;
312
313 for (rela = obj->rela; rela < obj->relalim; rela++) {
314 Elf_Addr *where;
315 Elf_Word type;
316 Elf_Addr value = 0, mask;
317 unsigned long symnum;
318
319 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
320 symnum = ELF_R_SYM(rela->r_info);
321
322 type = ELF_R_TYPE(rela->r_info);
323 if (type == R_TYPE(NONE))
324 continue;
325
326 /* We do JMP_SLOTs in _rtld_bind() below */
327 if (type == R_TYPE(JMP_SLOT))
328 continue;
329
330 /* COPY relocs are also handled elsewhere */
331 if (type == R_TYPE(COPY))
332 continue;
333
334 /*
335 * We use the fact that relocation types are an `enum'
336 * Note: R_SPARC_UA16 is currently numerically largest.
337 */
338 if (type > R_TYPE(UA16))
339 return (-1);
340
341 value = rela->r_addend;
342
343 /*
344 * Handle relative relocs here, as an optimization.
345 */
346 if (type == R_TYPE(RELATIVE)) {
347 *where = (Elf_Addr)(obj->relocbase + value);
348 rdbg(("RELATIVE in %s --> %p", obj->path,
349 (void *)*where));
350 continue;
351 }
352
353 if (RELOC_RESOLVE_SYMBOL(type)) {
354
355 /* Find the symbol */
356 def = _rtld_find_symdef(symnum, obj, &defobj,
357 false);
358 if (def == NULL)
359 return -1;
360
361 /* Add in the symbol's absolute address */
362 value += (Elf_Addr)(defobj->relocbase + def->st_value);
363 }
364
365 if (RELOC_PC_RELATIVE(type)) {
366 value -= (Elf_Addr)where;
367 }
368
369 if (RELOC_BASE_RELATIVE(type)) {
370 /*
371 * Note that even though sparcs use `Elf_rela'
372 * exclusively we still need the implicit memory addend
373 * in relocations referring to GOT entries.
374 * Undoubtedly, someone f*cked this up in the distant
375 * past, and now we're stuck with it in the name of
376 * compatibility for all eternity..
377 *
378 * In any case, the implicit and explicit should be
379 * mutually exclusive. We provide a check for that
380 * here.
381 */
382 #ifdef DIAGNOSTIC
383 if (value != 0 && *where != 0) {
384 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
385 "addend=0x%lx, base %p\n",
386 obj->path, where, *where,
387 rela->r_addend, obj->relocbase);
388 }
389 #endif
390 /* XXXX -- apparently we ignore the preexisting value */
391 value += (Elf_Addr)(obj->relocbase);
392 }
393
394 mask = RELOC_VALUE_BITMASK(type);
395 value >>= RELOC_VALUE_RIGHTSHIFT(type);
396 value &= mask;
397
398 if (RELOC_UNALIGNED(type)) {
399 /* Handle unaligned relocations. */
400 Elf_Addr tmp = 0;
401 char *ptr = (char *)where;
402 int i, size = RELOC_TARGET_SIZE(type)/8;
403
404 /* Read it in one byte at a time. */
405 for (i=0; i<size; i++)
406 tmp = (tmp << 8) | ptr[i];
407
408 tmp &= ~mask;
409 tmp |= value;
410
411 /* Write it back out. */
412 for (i=0; i<size; i++)
413 ptr[i] = ((tmp >> (8*i)) & 0xff);
414 #ifdef RTLD_DEBUG_RELOC
415 value = (Elf_Addr)tmp;
416 #endif
417
418 } else if (RELOC_TARGET_SIZE(type) > 32) {
419 *where &= ~mask;
420 *where |= value;
421 #ifdef RTLD_DEBUG_RELOC
422 value = (Elf_Addr)*where;
423 #endif
424 } else {
425 Elf32_Addr *where32 = (Elf32_Addr *)where;
426
427 *where32 &= ~mask;
428 *where32 |= value;
429 #ifdef RTLD_DEBUG_RELOC
430 value = (Elf_Addr)*where32;
431 #endif
432 }
433
434 #ifdef RTLD_DEBUG_RELOC
435 if (RELOC_RESOLVE_SYMBOL(type)) {
436 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
437 obj->strtab + obj->symtab[symnum].st_name,
438 obj->path, (void *)value, defobj->path));
439 } else {
440 rdbg(("%s in %s --> %p", reloc_names[type],
441 obj->path, (void *)value));
442 }
443 #endif
444 }
445 return (0);
446 }
447
448 int
449 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
450 {
451 return (0);
452 }
453
454 caddr_t
455 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
456 {
457 const Elf_Rela *rela = obj->pltrela + reloff;
458 Elf_Addr result;
459 int err;
460
461 result = 0; /* XXX gcc */
462
463 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
464 /*
465 * XXXX
466 *
467 * The first four PLT entries are reserved. There is some
468 * disagreement whether they should have associated relocation
469 * entries. Both the SPARC 32-bit and 64-bit ELF
470 * specifications say that they should have relocation entries,
471 * but the 32-bit SPARC binutils do not generate them, and now
472 * the 64-bit SPARC binutils have stopped generating them too.
473 *
474 * So, to provide binary compatibility, we will check the first
475 * entry, if it is reserved it should not be of the type
476 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
477 * were not generated and our index is 4 entries too far.
478 */
479 rela -= 4;
480 }
481
482 err = _rtld_relocate_plt_object(obj, rela, &result);
483 if (err)
484 _rtld_die();
485
486 return (caddr_t)result;
487 }
488
489 int
490 _rtld_relocate_plt_objects(const Obj_Entry *obj)
491 {
492 const Elf_Rela *rela;
493
494 rela = obj->pltrela;
495
496 /*
497 * Check for first four reserved entries - and skip them.
498 * See above for details.
499 */
500 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
501 rela += 4;
502
503 for (; rela < obj->pltrelalim; rela++)
504 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
505 return -1;
506
507 return 0;
508 }
509
510 /*
511 * New inline function that is called by _rtld_relocate_plt_object and
512 * _rtld_bind
513 */
514 static inline int
515 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
516 {
517 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
518 const Elf_Sym *def;
519 const Obj_Entry *defobj;
520 Elf_Addr value, offset;
521
522 /* Fully resolve procedure addresses now */
523
524 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
525
526 def = _rtld_find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true);
527 if (def == NULL)
528 return -1;
529
530 value = (Elf_Addr)(defobj->relocbase + def->st_value);
531 rdbg(("bind now/fixup in %s --> new=%p",
532 defobj->strtab + def->st_name, (void *)value));
533
534 /*
535 * At the PLT entry pointed at by `where', we now construct
536 * a direct transfer to the now fully resolved function
537 * address.
538 *
539 * A PLT entry is supposed to start by looking like this:
540 *
541 * sethi %hi(. - .PLT0), %g1
542 * ba,a %xcc, .PLT1
543 * nop
544 * nop
545 * nop
546 * nop
547 * nop
548 * nop
549 *
550 * When we replace these entries we start from the second
551 * entry and do it in reverse order so the last thing we
552 * do is replace the branch. That allows us to change this
553 * atomically.
554 *
555 * We now need to find out how far we need to jump. We
556 * have a choice of several different relocation techniques
557 * which are increasingly expensive.
558 */
559
560 offset = ((Elf_Addr)where) - value;
561 if (rela->r_addend) {
562 Elf_Addr *ptr = (Elf_Addr *)where;
563 /*
564 * This entry is >=32768. The relocations points to a
565 * PC-relative pointer to the bind_0 stub at the top of the
566 * PLT section. Update it to point to the target function.
567 */
568 ptr[0] += value - (Elf_Addr)obj->pltgot;
569
570 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
571 /*
572 * We're within 1MB -- we can use a direct branch insn.
573 *
574 * We can generate this pattern:
575 *
576 * sethi %hi(. - .PLT0), %g1
577 * ba,a %xcc, addr
578 * nop
579 * nop
580 * nop
581 * nop
582 * nop
583 * nop
584 *
585 */
586 where[1] = BAA | ((offset >> 2) &0x3fffff);
587 __asm volatile("iflush %0+4" : : "r" (where));
588 } else if (value >= 0 && value < (1L<<32)) {
589 /*
590 * We're within 32-bits of address zero.
591 *
592 * The resulting code in the jump slot is:
593 *
594 * sethi %hi(. - .PLT0), %g1
595 * sethi %hi(addr), %g1
596 * jmp %g1+%lo(addr)
597 * nop
598 * nop
599 * nop
600 * nop
601 * nop
602 *
603 */
604 where[2] = JMP | LOVAL(value, 0);
605 where[1] = SETHI | HIVAL(value, 10);
606 __asm volatile("iflush %0+8" : : "r" (where));
607 __asm volatile("iflush %0+4" : : "r" (where));
608
609 } else if (value <= 0 && value > -(1L<<32)) {
610 /*
611 * We're within 32-bits of address -1.
612 *
613 * The resulting code in the jump slot is:
614 *
615 * sethi %hi(. - .PLT0), %g1
616 * sethi %hix(addr), %g1
617 * xor %g1, %lox(addr), %g1
618 * jmp %g1
619 * nop
620 * nop
621 * nop
622 * nop
623 *
624 */
625 where[3] = JMP;
626 where[2] = XOR | ((~value) & 0x00001fff);
627 where[1] = SETHI | HIVAL(~value, 10);
628 __asm volatile("iflush %0+12" : : "r" (where));
629 __asm volatile("iflush %0+8" : : "r" (where));
630 __asm volatile("iflush %0+4" : : "r" (where));
631
632 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
633 /*
634 * We're within 32-bits -- we can use a direct call insn
635 *
636 * The resulting code in the jump slot is:
637 *
638 * sethi %hi(. - .PLT0), %g1
639 * mov %o7, %g1
640 * call (.+offset)
641 * mov %g1, %o7
642 * nop
643 * nop
644 * nop
645 * nop
646 *
647 */
648 where[3] = MOV17;
649 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
650 where[1] = MOV71;
651 __asm volatile("iflush %0+12" : : "r" (where));
652 __asm volatile("iflush %0+8" : : "r" (where));
653 __asm volatile("iflush %0+4" : : "r" (where));
654
655 } else if (offset >= 0 && offset < (1L<<44)) {
656 /*
657 * We're within 44 bits. We can generate this pattern:
658 *
659 * The resulting code in the jump slot is:
660 *
661 * sethi %hi(. - .PLT0), %g1
662 * sethi %h44(addr), %g1
663 * or %g1, %m44(addr), %g1
664 * sllx %g1, 12, %g1
665 * jmp %g1+%l44(addr)
666 * nop
667 * nop
668 * nop
669 *
670 */
671 where[4] = JMP | LOVAL(offset, 0);
672 where[3] = SLLX | 12;
673 where[2] = OR | (((offset) >> 12) & 0x00001fff);
674 where[1] = SETHI | HIVAL(offset, 22);
675 __asm volatile("iflush %0+16" : : "r" (where));
676 __asm volatile("iflush %0+12" : : "r" (where));
677 __asm volatile("iflush %0+8" : : "r" (where));
678 __asm volatile("iflush %0+4" : : "r" (where));
679
680 } else if (offset < 0 && offset > -(1L<<44)) {
681 /*
682 * We're within 44 bits. We can generate this pattern:
683 *
684 * The resulting code in the jump slot is:
685 *
686 * sethi %hi(. - .PLT0), %g1
687 * sethi %h44(-addr), %g1
688 * xor %g1, %m44(-addr), %g1
689 * sllx %g1, 12, %g1
690 * jmp %g1+%l44(addr)
691 * nop
692 * nop
693 * nop
694 *
695 */
696 where[4] = JMP | LOVAL(offset, 0);
697 where[3] = SLLX | 12;
698 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
699 where[1] = SETHI | HIVAL(~offset, 22);
700 __asm volatile("iflush %0+16" : : "r" (where));
701 __asm volatile("iflush %0+12" : : "r" (where));
702 __asm volatile("iflush %0+8" : : "r" (where));
703 __asm volatile("iflush %0+4" : : "r" (where));
704
705 } else {
706 /*
707 * We need to load all 64-bits
708 *
709 * The resulting code in the jump slot is:
710 *
711 * sethi %hi(. - .PLT0), %g1
712 * sethi %hh(addr), %g1
713 * sethi %lm(addr), %g5
714 * or %g1, %hm(addr), %g1
715 * sllx %g1, 32, %g1
716 * or %g1, %g5, %g1
717 * jmp %g1+%lo(addr)
718 * nop
719 *
720 */
721 where[6] = JMP | LOVAL(value, 0);
722 where[5] = ORG5;
723 where[4] = SLLX | 32;
724 where[3] = OR | LOVAL(value, 32);
725 where[2] = SETHIG5 | HIVAL(value, 10);
726 where[1] = SETHI | HIVAL(value, 42);
727 __asm volatile("iflush %0+24" : : "r" (where));
728 __asm volatile("iflush %0+20" : : "r" (where));
729 __asm volatile("iflush %0+16" : : "r" (where));
730 __asm volatile("iflush %0+12" : : "r" (where));
731 __asm volatile("iflush %0+8" : : "r" (where));
732 __asm volatile("iflush %0+4" : : "r" (where));
733
734 }
735
736 if (tp)
737 *tp = value;
738
739 return 0;
740 }
741