mdreloc.c revision 1.52 1 /* $NetBSD: mdreloc.c,v 1.52 2011/03/30 08:37:52 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 #ifndef lint
35 __RCSID("$NetBSD: mdreloc.c,v 1.52 2011/03/30 08:37:52 martin Exp $");
36 #endif /* not lint */
37
38 #include <errno.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <unistd.h>
43
44 #include "rtldenv.h"
45 #include "debug.h"
46 #include "rtld.h"
47
48 /*
49 * The following table holds for each relocation type:
50 * - the width in bits of the memory location the relocation
51 * applies to (not currently used)
52 * - the number of bits the relocation value must be shifted to the
53 * right (i.e. discard least significant bits) to fit into
54 * the appropriate field in the instruction word.
55 * - flags indicating whether
56 * * the relocation involves a symbol
57 * * the relocation is relative to the current position
58 * * the relocation is for a GOT entry
59 * * the relocation is relative to the load address
60 *
61 */
62 #define _RF_S 0x80000000 /* Resolve symbol */
63 #define _RF_A 0x40000000 /* Use addend */
64 #define _RF_P 0x20000000 /* Location relative */
65 #define _RF_G 0x10000000 /* GOT offset */
66 #define _RF_B 0x08000000 /* Load address relative */
67 #define _RF_U 0x04000000 /* Unaligned */
68 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
71 0, /* NONE */
72 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 _RF_SZ(32) | _RF_RS(0), /* COPY */
91 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
95
96 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
128 /* TLS relocs not represented here! */
129 };
130
131 #ifdef RTLD_DEBUG_RELOC
132 static const char *reloc_names[] = {
133 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135 "22", "13", "LO10", "GOT10", "GOT13",
136 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
137 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139 "10", "11", "64", "OLO10", "HH22",
140 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143 "L44", "REGISTER", "UA64", "UA16",
144 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
150 };
151 #endif
152
153 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
154 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
155 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
156 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
157 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
158 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
159 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
160 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
161
162 static const long reloc_target_bitmask[] = {
163 #define _BM(x) (~(-(1ULL << (x))))
164 0, /* NONE */
165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 _BM(22), _BM(22), /* HI22, _22 */
169 _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 _BM(10), _BM(22), /* _PC10, _PC22 */
172 _BM(30), 0, /* _WPLT30, _COPY */
173 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 _BM(32), _BM(32), /* _UA32, PLT32 */
175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 _BM(10), _BM(22), /* _OLO10, _HH22 */
179 _BM(10), _BM(22), /* _HM10, _LM22 */
180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
182 -1, /* GLOB_JMP */
183 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
184 -1, -1, /* DISP64, PLT64 */
185 _BM(22), _BM(13), /* HIX22, LOX10 */
186 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
188 #undef _BM
189 };
190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
191
192 /*
193 * Instruction templates:
194 */
195 #define BAA 0x10400000 /* ba,a %xcc, 0 */
196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 #define OR 0x82806000 /* or %g1, 0, %g1 */
200 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
201 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
202 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
203 #define CALL 0x40000000 /* call 0 */
204 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
205 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
206 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
207
208
209 /* %hi(v)/%lo(v) with variable shift */
210 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
211 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
212
213 void _rtld_bind_start_0(long, long);
214 void _rtld_bind_start_1(long, long);
215 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
216 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
217
218 /*
219 * Install rtld function call into this PLT slot.
220 */
221 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
222 #define SETHI_l0 0x21000000
223 #define SETHI_l1 0x23000000
224 #define OR_l0_l0 0xa0142000
225 #define SLLX_l0_32_l0 0xa12c3020
226 #define OR_l0_l1_l0 0xa0140011
227 #define JMPL_l0_o0 0x91c42000
228 #define MOV_g1_o1 0x92100001
229
230 void _rtld_install_plt(Elf_Word *, Elf_Addr);
231 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
232 const Elf_Rela *, Elf_Addr *);
233
234 void
235 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
236 {
237 pltgot[0] = SAVE;
238 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
239 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
240 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
241 pltgot[4] = SLLX_l0_32_l0;
242 pltgot[5] = OR_l0_l1_l0;
243 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
244 pltgot[7] = MOV_g1_o1;
245 }
246
247 void
248 _rtld_setup_pltgot(const Obj_Entry *obj)
249 {
250 /*
251 * On sparc64 we got troubles.
252 *
253 * Instructions are 4 bytes long.
254 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
255 * array entries.
256 * Each PLT entry jumps to PLT0 to enter the dynamic
257 * linker.
258 * Loading an arbitrary 64-bit pointer takes 6
259 * instructions and 2 registers.
260 *
261 * Somehow we need to issue a save to get a new stack
262 * frame, load the address of the dynamic linker, and
263 * jump there, in 8 instructions or less.
264 *
265 * Oh, we need to fill out both PLT0 and PLT1.
266 */
267 {
268 Elf_Word *entry = (Elf_Word *)obj->pltgot;
269
270 /* Install in entries 0 and 1 */
271 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
272 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
273
274 /*
275 * Install the object reference in first slot
276 * of entry 2.
277 */
278 obj->pltgot[8] = (Elf_Addr) obj;
279 }
280 }
281
282 void
283 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
284 {
285 const Elf_Rela *rela = 0, *relalim;
286 Elf_Addr relasz = 0;
287 Elf_Addr *where;
288
289 for (; dynp->d_tag != DT_NULL; dynp++) {
290 switch (dynp->d_tag) {
291 case DT_RELA:
292 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
293 break;
294 case DT_RELASZ:
295 relasz = dynp->d_un.d_val;
296 break;
297 }
298 }
299 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
300 for (; rela < relalim; rela++) {
301 where = (Elf_Addr *)(relocbase + rela->r_offset);
302 *where = (Elf_Addr)(relocbase + rela->r_addend);
303 }
304 }
305
306 int
307 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
308 {
309 const Elf_Rela *rela;
310 const Elf_Sym *def = NULL;
311 const Obj_Entry *defobj = NULL;
312
313 for (rela = obj->rela; rela < obj->relalim; rela++) {
314 Elf_Addr *where;
315 Elf_Word type;
316 Elf_Addr value = 0, mask;
317 unsigned long symnum;
318
319 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
320 symnum = ELF_R_SYM(rela->r_info);
321
322 type = ELF_R_TYPE(rela->r_info);
323 if (type == R_TYPE(NONE))
324 continue;
325
326 /* We do JMP_SLOTs in _rtld_bind() below */
327 if (type == R_TYPE(JMP_SLOT))
328 continue;
329
330 /* COPY relocs are also handled elsewhere */
331 if (type == R_TYPE(COPY))
332 continue;
333
334 /*
335 * We use the fact that relocation types are an `enum'
336 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
337 */
338 if (type > R_TYPE(TLS_TPOFF64))
339 return (-1);
340
341 value = rela->r_addend;
342
343 /*
344 * Handle TLS relocations here, they are different.
345 */
346 if (RELOC_TLS(type)) {
347 switch (type) {
348 case R_TYPE(TLS_DTPMOD64):
349 def = _rtld_find_symdef(symnum, obj,
350 &defobj, false);
351 if (def == NULL)
352 return -1;
353
354 *where = (Elf64_Addr)defobj->tlsindex;
355
356 rdbg(("TLS_DTPMOD64 %s in %s --> %p",
357 obj->strtab +
358 obj->symtab[symnum].st_name,
359 obj->path, (void *)*where));
360
361 break;
362
363 case R_TYPE(TLS_DTPOFF64):
364 def = _rtld_find_symdef(symnum, obj,
365 &defobj, false);
366 if (def == NULL)
367 return -1;
368
369 *where = (Elf64_Addr)(def->st_value
370 + rela->r_addend);
371
372 rdbg(("DTPOFF64 %s in %s --> %p",
373 obj->strtab +
374 obj->symtab[symnum].st_name,
375 obj->path, (void *)*where));
376
377 break;
378
379 case R_TYPE(TLS_TPOFF64):
380 def = _rtld_find_symdef(symnum, obj,
381 &defobj, false);
382 if (def == NULL)
383 return -1;
384
385 if (!defobj->tls_done &&
386 _rtld_tls_offset_allocate(obj))
387 return -1;
388
389 *where = (Elf64_Addr)(def->st_value -
390 defobj->tlsoffset +
391 rela->r_addend);
392
393 rdbg(("TLS_TPOFF64 %s in %s --> %p",
394 obj->strtab +
395 obj->symtab[symnum].st_name,
396 obj->path, (void *)*where));
397
398 break;
399 }
400 continue;
401 }
402
403 /*
404 * Handle relative relocs here, as an optimization.
405 */
406 if (type == R_TYPE(RELATIVE)) {
407 *where = (Elf_Addr)(obj->relocbase + value);
408 rdbg(("RELATIVE in %s --> %p", obj->path,
409 (void *)*where));
410 continue;
411 }
412
413 if (RELOC_RESOLVE_SYMBOL(type)) {
414
415 /* Find the symbol */
416 def = _rtld_find_symdef(symnum, obj, &defobj,
417 false);
418 if (def == NULL)
419 return -1;
420
421 /* Add in the symbol's absolute address */
422 value += (Elf_Addr)(defobj->relocbase + def->st_value);
423 }
424
425 if (RELOC_PC_RELATIVE(type)) {
426 value -= (Elf_Addr)where;
427 }
428
429 if (RELOC_BASE_RELATIVE(type)) {
430 /*
431 * Note that even though sparcs use `Elf_rela'
432 * exclusively we still need the implicit memory addend
433 * in relocations referring to GOT entries.
434 * Undoubtedly, someone f*cked this up in the distant
435 * past, and now we're stuck with it in the name of
436 * compatibility for all eternity..
437 *
438 * In any case, the implicit and explicit should be
439 * mutually exclusive. We provide a check for that
440 * here.
441 */
442 #ifdef DIAGNOSTIC
443 if (value != 0 && *where != 0) {
444 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
445 "addend=0x%lx, base %p\n",
446 obj->path, where, *where,
447 rela->r_addend, obj->relocbase);
448 }
449 #endif
450 /* XXXX -- apparently we ignore the preexisting value */
451 value += (Elf_Addr)(obj->relocbase);
452 }
453
454 mask = RELOC_VALUE_BITMASK(type);
455 value >>= RELOC_VALUE_RIGHTSHIFT(type);
456 value &= mask;
457
458 if (RELOC_UNALIGNED(type)) {
459 /* Handle unaligned relocations. */
460 Elf_Addr tmp = 0;
461 char *ptr = (char *)where;
462 int i, size = RELOC_TARGET_SIZE(type)/8;
463
464 /* Read it in one byte at a time. */
465 for (i=0; i<size; i++)
466 tmp = (tmp << 8) | ptr[i];
467
468 tmp &= ~mask;
469 tmp |= value;
470
471 /* Write it back out. */
472 for (i=0; i<size; i++)
473 ptr[i] = ((tmp >> (8*i)) & 0xff);
474 #ifdef RTLD_DEBUG_RELOC
475 value = (Elf_Addr)tmp;
476 #endif
477
478 } else if (RELOC_TARGET_SIZE(type) > 32) {
479 *where &= ~mask;
480 *where |= value;
481 #ifdef RTLD_DEBUG_RELOC
482 value = (Elf_Addr)*where;
483 #endif
484 } else {
485 Elf32_Addr *where32 = (Elf32_Addr *)where;
486
487 *where32 &= ~mask;
488 *where32 |= value;
489 #ifdef RTLD_DEBUG_RELOC
490 value = (Elf_Addr)*where32;
491 #endif
492 }
493
494 #ifdef RTLD_DEBUG_RELOC
495 if (RELOC_RESOLVE_SYMBOL(type)) {
496 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
497 obj->strtab + obj->symtab[symnum].st_name,
498 obj->path, (void *)value, defobj->path));
499 } else {
500 rdbg(("%s in %s --> %p", reloc_names[type],
501 obj->path, (void *)value));
502 }
503 #endif
504 }
505 return (0);
506 }
507
508 int
509 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
510 {
511 return (0);
512 }
513
514 caddr_t
515 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
516 {
517 const Elf_Rela *rela = obj->pltrela + reloff;
518 Elf_Addr result;
519 int err;
520
521 result = 0; /* XXX gcc */
522
523 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
524 /*
525 * XXXX
526 *
527 * The first four PLT entries are reserved. There is some
528 * disagreement whether they should have associated relocation
529 * entries. Both the SPARC 32-bit and 64-bit ELF
530 * specifications say that they should have relocation entries,
531 * but the 32-bit SPARC binutils do not generate them, and now
532 * the 64-bit SPARC binutils have stopped generating them too.
533 *
534 * So, to provide binary compatibility, we will check the first
535 * entry, if it is reserved it should not be of the type
536 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
537 * were not generated and our index is 4 entries too far.
538 */
539 rela -= 4;
540 }
541
542 _rtld_shared_enter();
543 err = _rtld_relocate_plt_object(obj, rela, &result);
544 if (err)
545 _rtld_die();
546 _rtld_shared_exit();
547
548 return (caddr_t)result;
549 }
550
551 int
552 _rtld_relocate_plt_objects(const Obj_Entry *obj)
553 {
554 const Elf_Rela *rela;
555
556 rela = obj->pltrela;
557
558 /*
559 * Check for first four reserved entries - and skip them.
560 * See above for details.
561 */
562 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
563 rela += 4;
564
565 for (; rela < obj->pltrelalim; rela++)
566 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
567 return -1;
568
569 return 0;
570 }
571
572 /*
573 * New inline function that is called by _rtld_relocate_plt_object and
574 * _rtld_bind
575 */
576 static inline int
577 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
578 Elf_Addr *tp)
579 {
580 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
581 const Elf_Sym *def;
582 const Obj_Entry *defobj;
583 Elf_Addr value, offset;
584 unsigned long info = rela->r_info;
585
586 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
587
588 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
589 if (__predict_false(def == NULL))
590 return -1;
591 if (__predict_false(def == &_rtld_sym_zero))
592 return 0;
593
594 value = (Elf_Addr)(defobj->relocbase + def->st_value);
595 rdbg(("bind now/fixup in %s --> new=%p",
596 defobj->strtab + def->st_name, (void *)value));
597
598 /*
599 * At the PLT entry pointed at by `where', we now construct a direct
600 * transfer to the now fully resolved function address.
601 *
602 * A PLT entry is supposed to start by looking like this:
603 *
604 * sethi %hi(. - .PLT0), %g1
605 * ba,a %xcc, .PLT1
606 * nop
607 * nop
608 * nop
609 * nop
610 * nop
611 * nop
612 *
613 * When we replace these entries we start from the last instruction
614 * and do it in reverse order so the last thing we do is replace the
615 * branch. That allows us to change this atomically.
616 *
617 * We now need to find out how far we need to jump. We have a choice
618 * of several different relocation techniques which are increasingly
619 * expensive.
620 */
621
622 offset = ((Elf_Addr)where) - value;
623 if (rela->r_addend) {
624 Elf_Addr *ptr = (Elf_Addr *)where;
625 /*
626 * This entry is >= 32768. The relocations points to a
627 * PC-relative pointer to the bind_0 stub at the top of the
628 * PLT section. Update it to point to the target function.
629 */
630 ptr[0] += value - (Elf_Addr)obj->pltgot;
631
632 } else if (offset <= (1L<<20) && (Elf_SOff)offset >= -(1L<<20)) {
633 /*
634 * We're within 1MB -- we can use a direct branch insn.
635 *
636 * We can generate this pattern:
637 *
638 * sethi %hi(. - .PLT0), %g1
639 * ba,a %xcc, addr
640 * nop
641 * nop
642 * nop
643 * nop
644 * nop
645 * nop
646 *
647 */
648 where[1] = BAA | ((offset >> 2) & 0x3fffff);
649 __asm volatile("iflush %0+4" : : "r" (where));
650 } else if (value < (1L<<32)) {
651 /*
652 * We're within 32-bits of address zero.
653 *
654 * The resulting code in the jump slot is:
655 *
656 * sethi %hi(. - .PLT0), %g1
657 * sethi %hi(addr), %g1
658 * jmp %g1+%lo(addr)
659 * nop
660 * nop
661 * nop
662 * nop
663 * nop
664 *
665 */
666 where[2] = JMP | LOVAL(value, 0);
667 where[1] = SETHI | HIVAL(value, 10);
668 __asm volatile("iflush %0+8" : : "r" (where));
669 __asm volatile("iflush %0+4" : : "r" (where));
670
671 } else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
672 /*
673 * We're within 32-bits of address -1.
674 *
675 * The resulting code in the jump slot is:
676 *
677 * sethi %hi(. - .PLT0), %g1
678 * sethi %hix(addr), %g1
679 * xor %g1, %lox(addr), %g1
680 * jmp %g1
681 * nop
682 * nop
683 * nop
684 * nop
685 *
686 */
687 where[3] = JMP;
688 where[2] = XOR | ((~value) & 0x00001fff);
689 where[1] = SETHI | HIVAL(~value, 10);
690 __asm volatile("iflush %0+12" : : "r" (where));
691 __asm volatile("iflush %0+8" : : "r" (where));
692 __asm volatile("iflush %0+4" : : "r" (where));
693
694 } else if (offset <= (1L<<32) && (Elf_SOff)offset >= -((1L<<32) - 4)) {
695 /*
696 * We're within 32-bits -- we can use a direct call insn
697 *
698 * The resulting code in the jump slot is:
699 *
700 * sethi %hi(. - .PLT0), %g1
701 * mov %o7, %g1
702 * call (.+offset)
703 * mov %g1, %o7
704 * nop
705 * nop
706 * nop
707 * nop
708 *
709 */
710 where[3] = MOV17;
711 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
712 where[1] = MOV71;
713 __asm volatile("iflush %0+12" : : "r" (where));
714 __asm volatile("iflush %0+8" : : "r" (where));
715 __asm volatile("iflush %0+4" : : "r" (where));
716
717 } else if (offset < (1L<<44)) {
718 /*
719 * We're within 44 bits. We can generate this pattern:
720 *
721 * The resulting code in the jump slot is:
722 *
723 * sethi %hi(. - .PLT0), %g1
724 * sethi %h44(addr), %g1
725 * or %g1, %m44(addr), %g1
726 * sllx %g1, 12, %g1
727 * jmp %g1+%l44(addr)
728 * nop
729 * nop
730 * nop
731 *
732 */
733 where[4] = JMP | LOVAL(offset, 0);
734 where[3] = SLLX | 12;
735 where[2] = OR | (((offset) >> 12) & 0x00001fff);
736 where[1] = SETHI | HIVAL(offset, 22);
737 __asm volatile("iflush %0+16" : : "r" (where));
738 __asm volatile("iflush %0+12" : : "r" (where));
739 __asm volatile("iflush %0+8" : : "r" (where));
740 __asm volatile("iflush %0+4" : : "r" (where));
741
742 } else if ((Elf_SOff)offset < 0 && (Elf_SOff)offset > -(1L<<44)) {
743 /*
744 * We're within 44 bits. We can generate this pattern:
745 *
746 * The resulting code in the jump slot is:
747 *
748 * sethi %hi(. - .PLT0), %g1
749 * sethi %h44(-addr), %g1
750 * xor %g1, %m44(-addr), %g1
751 * sllx %g1, 12, %g1
752 * jmp %g1+%l44(addr)
753 * nop
754 * nop
755 * nop
756 *
757 */
758 where[4] = JMP | LOVAL(offset, 0);
759 where[3] = SLLX | 12;
760 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
761 where[1] = SETHI | HIVAL(~offset, 22);
762 __asm volatile("iflush %0+16" : : "r" (where));
763 __asm volatile("iflush %0+12" : : "r" (where));
764 __asm volatile("iflush %0+8" : : "r" (where));
765 __asm volatile("iflush %0+4" : : "r" (where));
766
767 } else {
768 /*
769 * We need to load all 64-bits
770 *
771 * The resulting code in the jump slot is:
772 *
773 * sethi %hi(. - .PLT0), %g1
774 * sethi %hh(addr), %g1
775 * sethi %lm(addr), %g5
776 * or %g1, %hm(addr), %g1
777 * sllx %g1, 32, %g1
778 * or %g1, %g5, %g1
779 * jmp %g1+%lo(addr)
780 * nop
781 *
782 */
783 where[6] = JMP | LOVAL(value, 0);
784 where[5] = ORG5;
785 where[4] = SLLX | 32;
786 where[3] = OR | LOVAL(value, 32);
787 where[2] = SETHIG5 | HIVAL(value, 10);
788 where[1] = SETHI | HIVAL(value, 42);
789 __asm volatile("iflush %0+24" : : "r" (where));
790 __asm volatile("iflush %0+20" : : "r" (where));
791 __asm volatile("iflush %0+16" : : "r" (where));
792 __asm volatile("iflush %0+12" : : "r" (where));
793 __asm volatile("iflush %0+8" : : "r" (where));
794 __asm volatile("iflush %0+4" : : "r" (where));
795
796 }
797
798 if (tp)
799 *tp = value;
800
801 return 0;
802 }
803