Home | History | Annotate | Line # | Download | only in sparc64
mdreloc.c revision 1.62
      1 /*	$NetBSD: mdreloc.c,v 1.62 2017/07/23 14:37:51 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 Eduardo Horvath.
      5  * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Paul Kranenburg and by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 #ifndef lint
     35 __RCSID("$NetBSD: mdreloc.c,v 1.62 2017/07/23 14:37:51 martin Exp $");
     36 #endif /* not lint */
     37 
     38 #include <errno.h>
     39 #include <stdio.h>
     40 #include <stdlib.h>
     41 #include <string.h>
     42 #include <unistd.h>
     43 
     44 #include "rtldenv.h"
     45 #include "debug.h"
     46 #include "rtld.h"
     47 
     48 /*
     49  * The following table holds for each relocation type:
     50  *	- the width in bits of the memory location the relocation
     51  *	  applies to (not currently used)
     52  *	- the number of bits the relocation value must be shifted to the
     53  *	  right (i.e. discard least significant bits) to fit into
     54  *	  the appropriate field in the instruction word.
     55  *	- flags indicating whether
     56  *		* the relocation involves a symbol
     57  *		* the relocation is relative to the current position
     58  *		* the relocation is for a GOT entry
     59  *		* the relocation is relative to the load address
     60  *
     61  */
     62 #define _RF_S		0x80000000		/* Resolve symbol */
     63 #define _RF_A		0x40000000		/* Use addend */
     64 #define _RF_P		0x20000000		/* Location relative */
     65 #define _RF_G		0x10000000		/* GOT offset */
     66 #define _RF_B		0x08000000		/* Load address relative */
     67 #define _RF_U		0x04000000		/* Unaligned */
     68 #define _RF_SZ(s)	(((s) & 0xff) << 8)	/* memory target size */
     69 #define _RF_RS(s)	( (s) & 0xff)		/* right shift */
     70 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
     71 	0,							/* NONE */
     72 	_RF_S|_RF_A|		_RF_SZ(8)  | _RF_RS(0),		/* RELOC_8 */
     73 	_RF_S|_RF_A|		_RF_SZ(16) | _RF_RS(0),		/* RELOC_16 */
     74 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* RELOC_32 */
     75 	_RF_S|_RF_A|_RF_P|	_RF_SZ(8)  | _RF_RS(0),		/* DISP_8 */
     76 	_RF_S|_RF_A|_RF_P|	_RF_SZ(16) | _RF_RS(0),		/* DISP_16 */
     77 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* DISP_32 */
     78 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_30 */
     79 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP_22 */
     80 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HI22 */
     81 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 22 */
     82 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 13 */
     83 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LO10 */
     84 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT10 */
     85 	_RF_G|			_RF_SZ(32) | _RF_RS(0),		/* GOT13 */
     86 	_RF_G|			_RF_SZ(32) | _RF_RS(10),	/* GOT22 */
     87 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PC10 */
     88 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC22 */
     89 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WPLT30 */
     90 				_RF_SZ(32) | _RF_RS(0),		/* COPY */
     91 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* GLOB_DAT */
     92 				_RF_SZ(32) | _RF_RS(0),		/* JMP_SLOT */
     93 	      _RF_A|	_RF_B|	_RF_SZ(64) | _RF_RS(0),		/* RELATIVE */
     94 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(32) | _RF_RS(0),		/* UA_32 */
     95 
     96 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* PLT32 */
     97 	      _RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIPLT22 */
     98 	      _RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOPLT10 */
     99 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT32 */
    100 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PCPLT22 */
    101 	      _RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(0),		/* PCPLT10 */
    102 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 10 */
    103 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 11 */
    104 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* 64 */
    105 	_RF_S|_RF_A|/*extra*/	_RF_SZ(32) | _RF_RS(0),		/* OLO10 */
    106 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(42),	/* HH22 */
    107 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(32),	/* HM10 */
    108 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* LM22 */
    109 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(42),	/* PC_HH22 */
    110 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(32),	/* PC_HM10 */
    111 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(10),	/* PC_LM22 */
    112 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP16 */
    113 	_RF_S|_RF_A|_RF_P|	_RF_SZ(32) | _RF_RS(2),		/* WDISP19 */
    114 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* GLOB_JMP */
    115 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 7 */
    116 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 5 */
    117 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* 6 */
    118 	_RF_S|_RF_A|_RF_P|	_RF_SZ(64) | _RF_RS(0),		/* DISP64 */
    119 	      _RF_A|		_RF_SZ(64) | _RF_RS(0),		/* PLT64 */
    120 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(10),	/* HIX22 */
    121 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* LOX10 */
    122 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(22),	/* H44 */
    123 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(12),	/* M44 */
    124 	_RF_S|_RF_A|		_RF_SZ(32) | _RF_RS(0),		/* L44 */
    125 	_RF_S|_RF_A|		_RF_SZ(64) | _RF_RS(0),		/* REGISTER */
    126 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(64) | _RF_RS(0),		/* UA64 */
    127 	_RF_S|_RF_A|	_RF_U|	_RF_SZ(16) | _RF_RS(0),		/* UA16 */
    128 /* TLS relocs not represented here! */
    129 };
    130 
    131 #ifdef RTLD_DEBUG_RELOC
    132 static const char *reloc_names[] = {
    133 	"NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
    134 	"DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
    135 	"22", "13", "LO10", "GOT10", "GOT13",
    136 	"GOT22", "PC10", "PC22", "WPLT30", "COPY",
    137 	"GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
    138 	"HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
    139 	"10", "11", "64", "OLO10", "HH22",
    140 	"HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
    141 	"WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
    142 	"DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
    143 	"L44", "REGISTER", "UA64", "UA16",
    144 	"TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
    145 	"TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
    146 	"TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
    147 	"TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
    148 	"TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
    149 	"TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
    150 };
    151 #endif
    152 
    153 #define RELOC_RESOLVE_SYMBOL(t)		((reloc_target_flags[t] & _RF_S) != 0)
    154 #define RELOC_PC_RELATIVE(t)		((reloc_target_flags[t] & _RF_P) != 0)
    155 #define RELOC_BASE_RELATIVE(t)		((reloc_target_flags[t] & _RF_B) != 0)
    156 #define RELOC_UNALIGNED(t)		((reloc_target_flags[t] & _RF_U) != 0)
    157 #define RELOC_USE_ADDEND(t)		((reloc_target_flags[t] & _RF_A) != 0)
    158 #define RELOC_TARGET_SIZE(t)		((reloc_target_flags[t] >> 8) & 0xff)
    159 #define RELOC_VALUE_RIGHTSHIFT(t)	(reloc_target_flags[t] & 0xff)
    160 #define RELOC_TLS(t)			(t >= R_TYPE(TLS_GD_HI22))
    161 
    162 static const long reloc_target_bitmask[] = {
    163 #define _BM(x)	(~(-(1ULL << (x))))
    164 	0,				/* NONE */
    165 	_BM(8), _BM(16), _BM(32),	/* RELOC_8, _16, _32 */
    166 	_BM(8), _BM(16), _BM(32),	/* DISP8, DISP16, DISP32 */
    167 	_BM(30), _BM(22),		/* WDISP30, WDISP22 */
    168 	_BM(22), _BM(22),		/* HI22, _22 */
    169 	_BM(13), _BM(10),		/* RELOC_13, _LO10 */
    170 	_BM(10), _BM(13), _BM(22),	/* GOT10, GOT13, GOT22 */
    171 	_BM(10), _BM(22),		/* _PC10, _PC22 */
    172 	_BM(30), 0,			/* _WPLT30, _COPY */
    173 	-1, _BM(32), -1,		/* _GLOB_DAT, JMP_SLOT, _RELATIVE */
    174 	_BM(32), _BM(32),		/* _UA32, PLT32 */
    175 	_BM(22), _BM(10),		/* _HIPLT22, LOPLT10 */
    176 	_BM(32), _BM(22), _BM(10),	/* _PCPLT32, _PCPLT22, _PCPLT10 */
    177 	_BM(10), _BM(11), -1,		/* _10, _11, _64 */
    178 	_BM(13), _BM(22),		/* _OLO10, _HH22 */
    179 	_BM(10), _BM(22),		/* _HM10, _LM22 */
    180 	_BM(22), _BM(10), _BM(22),	/* _PC_HH22, _PC_HM10, _PC_LM22 */
    181 	_BM(16), _BM(19),		/* _WDISP16, _WDISP19 */
    182 	-1,				/* GLOB_JMP */
    183 	_BM(7), _BM(5), _BM(6),		/* _7, _5, _6 */
    184 	-1, -1,				/* DISP64, PLT64 */
    185 	_BM(22), _BM(13),		/* HIX22, LOX10 */
    186 	_BM(22), _BM(10), _BM(12),	/* H44, M44, L44 */
    187 	-1, -1, _BM(16),		/* REGISTER, UA64, UA16 */
    188 #undef _BM
    189 };
    190 #define RELOC_VALUE_BITMASK(t)	(reloc_target_bitmask[t])
    191 
    192 /*
    193  * Instruction templates:
    194  */
    195 #define	BAA	0x30680000	/*	ba,a	%xcc, 0 */
    196 #define	SETHI	0x03000000	/*	sethi	%hi(0), %g1 */
    197 #define	JMP	0x81c06000	/*	jmpl	%g1+%lo(0), %g0 */
    198 #define	NOP	0x01000000	/*	sethi	%hi(0), %g0 */
    199 #define	OR	0x82106000	/*	or	%g1, 0, %g1 */
    200 #define	XOR	0x82186000	/*	xor	%g1, 0, %g1 */
    201 #define	MOV71	0x8213e000	/*	or	%o7, 0, %g1 */
    202 #define	MOV17	0x9e106000	/*	or	%g1, 0, %o7 */
    203 #define	CALL	0x40000000	/*	call	0 */
    204 #define	SLLX	0x83287000	/*	sllx	%g1, 0, %g1 */
    205 #define	NEG	0x82200001	/*	neg	%g1 */
    206 #define	SETHIG5	0x0b000000	/*	sethi	%hi(0), %g5 */
    207 #define	ORG5	0x82104005	/*	or	%g1, %g5, %g1 */
    208 
    209 
    210 /* %hi(v)/%lo(v) with variable shift */
    211 #define	HIVAL(v, s)	(((v) >> (s)) & 0x003fffff)
    212 #define LOVAL(v, s)	(((v) >> (s)) & 0x000003ff)
    213 
    214 void _rtld_bind_start_0(long, long);
    215 void _rtld_bind_start_1(long, long);
    216 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
    217 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
    218 
    219 /*
    220  * Install rtld function call into this PLT slot.
    221  */
    222 #define	SAVE		0x9de3bf50	/* i.e. `save %sp,-176,%sp' */
    223 #define	SETHI_l0	0x21000000
    224 #define	SETHI_l1	0x23000000
    225 #define	OR_l0_l0	0xa0142000
    226 #define	SLLX_l0_32_l0	0xa12c3020
    227 #define	OR_l0_l1_l0	0xa0140011
    228 #define	JMPL_l0_o0	0x91c42000
    229 #define	MOV_g1_o1	0x92100001
    230 
    231 void _rtld_install_plt(Elf_Word *, Elf_Addr);
    232 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
    233     const Elf_Rela *, Elf_Addr *);
    234 
    235 void
    236 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
    237 {
    238 	pltgot[0] = SAVE;
    239 	pltgot[1] = SETHI_l0  | HIVAL(proc, 42);
    240 	pltgot[2] = SETHI_l1  | HIVAL(proc, 10);
    241 	pltgot[3] = OR_l0_l0  | LOVAL(proc, 32);
    242 	pltgot[4] = SLLX_l0_32_l0;
    243 	pltgot[5] = OR_l0_l1_l0;
    244 	pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
    245 	pltgot[7] = MOV_g1_o1;
    246 }
    247 
    248 void
    249 _rtld_setup_pltgot(const Obj_Entry *obj)
    250 {
    251 	/*
    252 	 * On sparc64 we got troubles.
    253 	 *
    254 	 * Instructions are 4 bytes long.
    255 	 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
    256 	 * array entries.
    257 	 * Each PLT entry jumps to PLT0 to enter the dynamic
    258 	 * linker.
    259 	 * Loading an arbitrary 64-bit pointer takes 6
    260 	 * instructions and 2 registers.
    261 	 *
    262 	 * Somehow we need to issue a save to get a new stack
    263 	 * frame, load the address of the dynamic linker, and
    264 	 * jump there, in 8 instructions or less.
    265 	 *
    266 	 * Oh, we need to fill out both PLT0 and PLT1.
    267 	 */
    268 	{
    269 		Elf_Word *entry = (Elf_Word *)obj->pltgot;
    270 
    271 		/* Install in entries 0 and 1 */
    272 		_rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
    273 		_rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
    274 
    275 		/*
    276 		 * Install the object reference in first slot
    277 		 * of entry 2.
    278 		 */
    279 		obj->pltgot[8] = (Elf_Addr) obj;
    280 	}
    281 }
    282 
    283 void
    284 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
    285 {
    286 	const Elf_Rela *rela = 0, *relalim;
    287 	Elf_Addr relasz = 0;
    288 	Elf_Addr *where;
    289 
    290 	for (; dynp->d_tag != DT_NULL; dynp++) {
    291 		switch (dynp->d_tag) {
    292 		case DT_RELA:
    293 			rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
    294 			break;
    295 		case DT_RELASZ:
    296 			relasz = dynp->d_un.d_val;
    297 			break;
    298 		}
    299 	}
    300 	relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
    301 	for (; rela < relalim; rela++) {
    302 		where = (Elf_Addr *)(relocbase + rela->r_offset);
    303 		*where = (Elf_Addr)(relocbase + rela->r_addend);
    304 	}
    305 }
    306 
    307 int
    308 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
    309 {
    310 	const Elf_Rela *rela;
    311 	const Elf_Sym *def = NULL;
    312 	const Obj_Entry *defobj = NULL;
    313 	unsigned long last_symnum = ULONG_MAX;
    314 
    315 	for (rela = obj->rela; rela < obj->relalim; rela++) {
    316 		Elf_Addr *where;
    317 		Elf_Word type;
    318 		Elf_Addr value = 0, mask;
    319 		unsigned long symnum;
    320 
    321 		where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
    322 
    323 		type = ELF_R_TYPE(rela->r_info);
    324 		if (type == R_TYPE(NONE))
    325 			continue;
    326 
    327 		/* OLO10 relocations have extra info */
    328 		if ((type & 0x00ff) == R_SPARC_OLO10)
    329 			type = R_SPARC_OLO10;
    330 
    331 		/* We do JMP_SLOTs in _rtld_bind() below */
    332 		if (type == R_TYPE(JMP_SLOT))
    333 			continue;
    334 
    335 		/* COPY relocs are also handled elsewhere */
    336 		if (type == R_TYPE(COPY))
    337 			continue;
    338 
    339 		/*
    340 		 * We use the fact that relocation types are an `enum'
    341 		 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
    342 		 */
    343 		if (type > R_TYPE(TLS_TPOFF64)) {
    344 			dbg(("unknown relocation type %x at %p", type, rela));
    345 			return -1;
    346 		}
    347 
    348 		value = rela->r_addend;
    349 
    350 		if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
    351 			symnum = ELF_R_SYM(rela->r_info);
    352 			if (last_symnum != symnum) {
    353 				last_symnum = symnum;
    354 				def = _rtld_find_symdef(symnum, obj, &defobj,
    355 				    false);
    356 				if (def == NULL)
    357 					return -1;
    358 			}
    359 		}
    360 
    361 		/*
    362 		 * Handle TLS relocations here, they are different.
    363 		 */
    364 		if (RELOC_TLS(type)) {
    365 			switch (type) {
    366 			case R_TYPE(TLS_DTPMOD64):
    367 				*where = (Elf64_Addr)defobj->tlsindex;
    368 
    369 				rdbg(("TLS_DTPMOD64 %s in %s --> %p",
    370 				    obj->strtab +
    371 				    obj->symtab[symnum].st_name,
    372 				    obj->path, (void *)*where));
    373 
    374 				break;
    375 
    376 			case R_TYPE(TLS_DTPOFF64):
    377 				*where = (Elf64_Addr)(def->st_value
    378 				    + rela->r_addend);
    379 
    380 				rdbg(("DTPOFF64 %s in %s --> %p",
    381 				    obj->strtab +
    382 				        obj->symtab[symnum].st_name,
    383 				    obj->path, (void *)*where));
    384 
    385 				break;
    386 
    387 			case R_TYPE(TLS_TPOFF64):
    388 				if (!defobj->tls_done &&
    389 					_rtld_tls_offset_allocate(obj))
    390 					     return -1;
    391 
    392 				*where = (Elf64_Addr)(def->st_value -
    393 				    defobj->tlsoffset + rela->r_addend);
    394 
    395 				rdbg(("TLS_TPOFF64 %s in %s --> %p",
    396 				    obj->strtab + obj->symtab[symnum].st_name,
    397 				    obj->path, (void *)*where));
    398 
    399 				break;
    400 			}
    401 			continue;
    402 		}
    403 
    404 		/*
    405 		 * Handle relative relocs here, as an optimization.
    406 		 */
    407 		if (type == R_TYPE(RELATIVE)) {
    408 			*where = (Elf_Addr)(obj->relocbase + value);
    409 			rdbg(("RELATIVE in %s --> %p", obj->path,
    410 			    (void *)*where));
    411 			continue;
    412 		}
    413 
    414 		if (RELOC_RESOLVE_SYMBOL(type)) {
    415 			/* Add in the symbol's absolute address */
    416 			value += (Elf_Addr)(defobj->relocbase + def->st_value);
    417 		}
    418 
    419 		if (type == R_SPARC_OLO10) {
    420 			value = (value & 0x3ff)
    421 			    + (((Elf64_Xword)rela->r_info<<32)>>40);
    422 		}
    423 
    424 		if (RELOC_PC_RELATIVE(type)) {
    425 			value -= (Elf_Addr)where;
    426 		}
    427 
    428 		if (RELOC_BASE_RELATIVE(type)) {
    429 			/*
    430 			 * Note that even though sparcs use `Elf_rela'
    431 			 * exclusively we still need the implicit memory addend
    432 			 * in relocations referring to GOT entries.
    433 			 * Undoubtedly, someone f*cked this up in the distant
    434 			 * past, and now we're stuck with it in the name of
    435 			 * compatibility for all eternity..
    436 			 *
    437 			 * In any case, the implicit and explicit should be
    438 			 * mutually exclusive. We provide a check for that
    439 			 * here.
    440 			 */
    441 #ifdef DIAGNOSTIC
    442 			if (value != 0 && *where != 0) {
    443 				xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
    444 					"addend=0x%lx, base %p\n",
    445 					obj->path, where, *where,
    446 					rela->r_addend, obj->relocbase);
    447 			}
    448 #endif
    449 			/* XXXX -- apparently we ignore the preexisting value */
    450 			value += (Elf_Addr)(obj->relocbase);
    451 		}
    452 
    453 		mask = RELOC_VALUE_BITMASK(type);
    454 		value >>= RELOC_VALUE_RIGHTSHIFT(type);
    455 		value &= mask;
    456 
    457 		if (RELOC_UNALIGNED(type)) {
    458 			/* Handle unaligned relocations. */
    459 			Elf_Addr tmp = 0;
    460 			char *ptr = (char *)where;
    461 			int i, size = RELOC_TARGET_SIZE(type)/8;
    462 
    463 			/* Read it in one byte at a time. */
    464 			for (i=0; i<size; i++)
    465 				tmp = (tmp << 8) | ptr[i];
    466 
    467 			tmp &= ~mask;
    468 			tmp |= value;
    469 
    470 			/* Write it back out. */
    471 			for (i=0; i<size; i++)
    472 				ptr[i] = ((tmp >> (8*i)) & 0xff);
    473 #ifdef RTLD_DEBUG_RELOC
    474 			value = (Elf_Addr)tmp;
    475 #endif
    476 
    477 		} else if (RELOC_TARGET_SIZE(type) > 32) {
    478 			*where &= ~mask;
    479 			*where |= value;
    480 #ifdef RTLD_DEBUG_RELOC
    481 			value = (Elf_Addr)*where;
    482 #endif
    483 		} else {
    484 			Elf32_Addr *where32 = (Elf32_Addr *)where;
    485 
    486 			*where32 &= ~mask;
    487 			*where32 |= value;
    488 #ifdef RTLD_DEBUG_RELOC
    489 			value = (Elf_Addr)*where32;
    490 #endif
    491 		}
    492 
    493 #ifdef RTLD_DEBUG_RELOC
    494 		if (RELOC_RESOLVE_SYMBOL(type)) {
    495 			rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
    496 			    obj->strtab + obj->symtab[symnum].st_name,
    497 			    obj->path, (void *)value, defobj->path));
    498 		} else {
    499 			rdbg(("%s in %s --> %p", reloc_names[type],
    500 			    obj->path, (void *)value));
    501 		}
    502 #endif
    503 	}
    504 	return (0);
    505 }
    506 
    507 int
    508 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
    509 {
    510 	return (0);
    511 }
    512 
    513 caddr_t
    514 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
    515 {
    516 	const Elf_Rela *rela = obj->pltrela + reloff;
    517 	Elf_Addr result;
    518 	int err;
    519 
    520 	result = 0;	/* XXX gcc */
    521 
    522 	if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
    523 		/*
    524 		 * XXXX
    525 		 *
    526 		 * The first four PLT entries are reserved.  There is some
    527 		 * disagreement whether they should have associated relocation
    528 		 * entries.  Both the SPARC 32-bit and 64-bit ELF
    529 		 * specifications say that they should have relocation entries,
    530 		 * but the 32-bit SPARC binutils do not generate them, and now
    531 		 * the 64-bit SPARC binutils have stopped generating them too.
    532 		 *
    533 		 * So, to provide binary compatibility, we will check the first
    534 		 * entry, if it is reserved it should not be of the type
    535 		 * JMP_SLOT.  If it is JMP_SLOT, then the 4 reserved entries
    536 		 * were not generated and our index is 4 entries too far.
    537 		 */
    538 		rela -= 4;
    539 	}
    540 
    541 	_rtld_shared_enter();
    542 	err = _rtld_relocate_plt_object(obj, rela, &result);
    543 	if (err)
    544 		_rtld_die();
    545 	_rtld_shared_exit();
    546 
    547 	return (caddr_t)result;
    548 }
    549 
    550 int
    551 _rtld_relocate_plt_objects(const Obj_Entry *obj)
    552 {
    553 	const Elf_Rela *rela;
    554 
    555 	rela = obj->pltrela;
    556 
    557 	/*
    558 	 * Check for first four reserved entries - and skip them.
    559 	 * See above for details.
    560 	 */
    561 	if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
    562 		rela += 4;
    563 
    564 	for (; rela < obj->pltrelalim; rela++)
    565 		if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
    566 			return -1;
    567 
    568 	return 0;
    569 }
    570 
    571 /*
    572  * New inline function that is called by _rtld_relocate_plt_object and
    573  * _rtld_bind
    574  */
    575 static inline int
    576 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
    577     Elf_Addr *tp)
    578 {
    579 	Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
    580 	const Elf_Sym *def;
    581 	const Obj_Entry *defobj;
    582 	Elf_Addr value, offset, offBAA;
    583 	unsigned long info = rela->r_info;
    584 
    585 	assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
    586 
    587 	def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
    588 	if (__predict_false(def == NULL))
    589 		return -1;
    590 	if (__predict_false(def == &_rtld_sym_zero))
    591 		return 0;
    592 
    593 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
    594 		if (tp == NULL)
    595 			return 0;
    596 		value = _rtld_resolve_ifunc(defobj, def);
    597 	} else {
    598 		value = (Elf_Addr)(defobj->relocbase + def->st_value);
    599 	}
    600 	rdbg(("bind now/fixup in %s at %p --> new=%p",
    601 	    defobj->strtab + def->st_name, (void*)where, (void *)value));
    602 
    603 	/*
    604 	 * At the PLT entry pointed at by `where', we now construct a direct
    605 	 * transfer to the now fully resolved function address.
    606 	 *
    607 	 * A PLT entry is supposed to start by looking like this:
    608 	 *
    609 	 *	sethi	%hi(. - .PLT0), %g1
    610 	 *	ba,a	%xcc, .PLT1
    611 	 *	nop
    612 	 *	nop
    613 	 *	nop
    614 	 *	nop
    615 	 *	nop
    616 	 *	nop
    617 	 *
    618 	 * When we replace these entries we start from the last instruction
    619 	 * and do it in reverse order so the last thing we do is replace the
    620 	 * branch.  That allows us to change this atomically.
    621 	 *
    622 	 * We now need to find out how far we need to jump.  We have a choice
    623 	 * of several different relocation techniques which are increasingly
    624 	 * expensive.
    625 	 */
    626 
    627 	offset = ((Elf_Addr)where) - value;
    628 	offBAA = value - (((Elf_Addr)where) +4);	/* ba,a at where[1] */
    629 	if (rela->r_addend) {
    630 		Elf_Addr *ptr = (Elf_Addr *)where;
    631 		/*
    632 		 * This entry is >= 32768.  The relocations points to a
    633 		 * PC-relative pointer to the bind_0 stub at the top of the
    634 		 * PLT section.  Update it to point to the target function.
    635 		 */
    636 		ptr[0] += value - (Elf_Addr)obj->pltgot;
    637 
    638 	} else if (offBAA <= (1L<<20) && (Elf_SOff)offBAA >= -(1L<<20)) {
    639 		/*
    640 		 * We're within 1MB -- we can use a direct branch insn.
    641 		 *
    642 		 * We can generate this pattern:
    643 		 *
    644 		 *	sethi	%hi(. - .PLT0), %g1
    645 		 *	ba,a	%xcc, addr
    646 		 *	nop
    647 		 *	nop
    648 		 *	nop
    649 		 *	nop
    650 		 *	nop
    651 		 *	nop
    652 		 *
    653 		 */
    654 		where[1] = BAA | (offBAA >> 2);
    655 		__asm volatile("iflush %0+4" : : "r" (where));
    656 	} else if (value < (1L<<32)) {
    657 		/*
    658 		 * We're within 32-bits of address zero.
    659 		 *
    660 		 * The resulting code in the jump slot is:
    661 		 *
    662 		 *	sethi	%hi(. - .PLT0), %g1
    663 		 *	sethi	%hi(addr), %g1
    664 		 *	jmp	%g1+%lo(addr)
    665 		 *	nop
    666 		 *	nop
    667 		 *	nop
    668 		 *	nop
    669 		 *	nop
    670 		 *
    671 		 */
    672 		where[2] = JMP   | LOVAL(value, 0);
    673 		where[1] = SETHI | HIVAL(value, 10);
    674 		__asm volatile("iflush %0+8" : : "r" (where));
    675 		__asm volatile("iflush %0+4" : : "r" (where));
    676 
    677 	} else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
    678 		/*
    679 		 * We're within 32-bits of address -1.
    680 		 *
    681 		 * The resulting code in the jump slot is:
    682 		 *
    683 		 *	sethi	%hi(. - .PLT0), %g1
    684 		 *	sethi	%hix(addr), %g1
    685 		 *	xor	%g1, %lox(addr), %g1
    686 		 *	jmp	%g1
    687 		 *	nop
    688 		 *	nop
    689 		 *	nop
    690 		 *	nop
    691 		 *
    692 		 */
    693 		where[3] = JMP;
    694 		where[2] = XOR | (value & 0x00003ff) | 0x1c00;
    695 		where[1] = SETHI | HIVAL(~value, 10);
    696 		__asm volatile("iflush %0+12" : : "r" (where));
    697 		__asm volatile("iflush %0+8" : : "r" (where));
    698 		__asm volatile("iflush %0+4" : : "r" (where));
    699 
    700 	} else if ((offset+8) <= (1L<<31) &&
    701 	    (Elf_SOff)(offset+8) >= -((1L<<31) - 4)) {
    702 		/*
    703 		 * We're within 32-bits -- we can use a direct call insn
    704 		 *
    705 		 * The resulting code in the jump slot is:
    706 		 *
    707 		 *	sethi	%hi(. - .PLT0), %g1
    708 		 *	mov	%o7, %g1
    709 		 *	call	(.+offset)
    710 		 *	 mov	%g1, %o7
    711 		 *	nop
    712 		 *	nop
    713 		 *	nop
    714 		 *	nop
    715 		 *
    716 		 */
    717 		offset += 8;	/* call is at where[2], 8 byte further */
    718 		where[3] = MOV17;
    719 		where[2] = CALL	  | ((-offset >> 2) & 0x3fffffff);
    720 		where[1] = MOV71;
    721 		__asm volatile("iflush %0+12" : : "r" (where));
    722 		__asm volatile("iflush %0+8" : : "r" (where));
    723 		__asm volatile("iflush %0+4" : : "r" (where));
    724 
    725 	} else if ((Elf_SOff)value > 0 && value < (1L<<44)) {
    726 		/*
    727 		 * We're within 44 bits.  We can generate this pattern:
    728 		 *
    729 		 * The resulting code in the jump slot is:
    730 		 *
    731 		 *	sethi	%hi(. - .PLT0), %g1
    732 		 *	sethi	%h44(addr), %g1
    733 		 *	or	%g1, %m44(addr), %g1
    734 		 *	sllx	%g1, 12, %g1
    735 		 *	jmp	%g1+%l44(addr)
    736 		 *	nop
    737 		 *	nop
    738 		 *	nop
    739 		 *
    740 		 */
    741 		where[4] = JMP   | LOVAL(value, 0);
    742 		where[3] = SLLX  | 12;
    743 		where[2] = OR    | (((value) >> 12) & 0x00001fff);
    744 		where[1] = SETHI | HIVAL(value, 22);
    745 		__asm volatile("iflush %0+16" : : "r" (where));
    746 		__asm volatile("iflush %0+12" : : "r" (where));
    747 		__asm volatile("iflush %0+8" : : "r" (where));
    748 		__asm volatile("iflush %0+4" : : "r" (where));
    749 
    750 	} else if ((Elf_SOff)value < 0 && (Elf_SOff)value > -(1L<<44)) {
    751 		/*
    752 		 *  We're within 44 bits.  We can generate this pattern:
    753 		 *
    754 		 * The resulting code in the jump slot is:
    755 		 *
    756 		 *	sethi	%hi(. - .PLT0), %g1
    757 		 *	sethi	%hi((-addr)>>12), %g1
    758 		 *	or	%g1, %lo((-addr)>>12), %g1
    759 		 *	neg	%g1
    760 		 *	sllx	%g1, 12, %g1
    761 		 *	jmp	%g1+(addr&0x0fff)
    762 		 *	nop
    763 		 *	nop
    764 		 *
    765 		 */
    766 		Elf_Addr neg = (~value+1)>>12;
    767 		where[5] = JMP   | (value & 0x0fff);
    768 		where[4] = SLLX  | 12;
    769 		where[3] = NEG;
    770 		where[2] = OR    | (LOVAL(neg, 0)+1);
    771 		where[1] = SETHI | HIVAL(neg, 10);
    772 		__asm volatile("iflush %0+20" : : "r" (where));
    773 		__asm volatile("iflush %0+16" : : "r" (where));
    774 		__asm volatile("iflush %0+12" : : "r" (where));
    775 		__asm volatile("iflush %0+8" : : "r" (where));
    776 		__asm volatile("iflush %0+4" : : "r" (where));
    777 
    778 	} else {
    779 		/*
    780 		 * We need to load all 64-bits
    781 		 *
    782 		 * The resulting code in the jump slot is:
    783 		 *
    784 		 *	sethi	%hi(. - .PLT0), %g1
    785 		 *	sethi	%hh(addr), %g1
    786 		 *	sethi	%lm(addr), %g5
    787 		 *	or	%g1, %hm(addr), %g1
    788 		 *	sllx	%g1, 32, %g1
    789 		 *	or	%g1, %g5, %g1
    790 		 *	jmp	%g1+%lo(addr)
    791 		 *	nop
    792 		 *
    793 		 */
    794 		where[6] = JMP     | LOVAL(value, 0);
    795 		where[5] = ORG5;
    796 		where[4] = SLLX    | 32;
    797 		where[3] = OR      | LOVAL(value, 32);
    798 		where[2] = SETHIG5 | HIVAL(value, 10);
    799 		where[1] = SETHI   | HIVAL(value, 42);
    800 		__asm volatile("iflush %0+24" : : "r" (where));
    801 		__asm volatile("iflush %0+20" : : "r" (where));
    802 		__asm volatile("iflush %0+16" : : "r" (where));
    803 		__asm volatile("iflush %0+12" : : "r" (where));
    804 		__asm volatile("iflush %0+8" : : "r" (where));
    805 		__asm volatile("iflush %0+4" : : "r" (where));
    806 
    807 	}
    808 
    809 	if (tp)
    810 		*tp = value;
    811 
    812 	return 0;
    813 }
    814