mdreloc.c revision 1.67 1 /* $NetBSD: mdreloc.c,v 1.67 2017/12/25 17:00:15 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 #ifndef lint
35 __RCSID("$NetBSD: mdreloc.c,v 1.67 2017/12/25 17:00:15 joerg Exp $");
36 #endif /* not lint */
37
38 #include <errno.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <unistd.h>
43
44 #include "rtldenv.h"
45 #include "debug.h"
46 #include "rtld.h"
47
48 /*
49 * The following table holds for each relocation type:
50 * - the width in bits of the memory location the relocation
51 * applies to (not currently used)
52 * - the number of bits the relocation value must be shifted to the
53 * right (i.e. discard least significant bits) to fit into
54 * the appropriate field in the instruction word.
55 * - flags indicating whether
56 * * the relocation involves a symbol
57 * * the relocation is relative to the current position
58 * * the relocation is for a GOT entry
59 * * the relocation is relative to the load address
60 *
61 */
62 #define _RF_S 0x80000000 /* Resolve symbol */
63 #define _RF_A 0x40000000 /* Use addend */
64 #define _RF_P 0x20000000 /* Location relative */
65 #define _RF_G 0x10000000 /* GOT offset */
66 #define _RF_B 0x08000000 /* Load address relative */
67 #define _RF_U 0x04000000 /* Unaligned */
68 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
71 0, /* NONE */
72 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 _RF_SZ(32) | _RF_RS(0), /* COPY */
91 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
95
96 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
128 /* TLS relocs not represented here! */
129 };
130
131 #ifdef RTLD_DEBUG_RELOC
132 static const char *reloc_names[] = {
133 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135 "22", "13", "LO10", "GOT10", "GOT13",
136 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
137 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139 "10", "11", "64", "OLO10", "HH22",
140 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143 "L44", "REGISTER", "UA64", "UA16",
144 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
150 };
151 #endif
152
153 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
154 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
155 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
156 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
157 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
158 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
159 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
160 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
161
162 static const long reloc_target_bitmask[] = {
163 #define _BM(x) (~(-(1ULL << (x))))
164 0, /* NONE */
165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 _BM(22), _BM(22), /* HI22, _22 */
169 _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 _BM(10), _BM(22), /* _PC10, _PC22 */
172 _BM(30), 0, /* _WPLT30, _COPY */
173 -1, _BM(32), -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 _BM(32), _BM(32), /* _UA32, PLT32 */
175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 _BM(13), _BM(22), /* _OLO10, _HH22 */
179 _BM(10), _BM(22), /* _HM10, _LM22 */
180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
182 -1, /* GLOB_JMP */
183 _BM(7), _BM(5), _BM(6), /* _7, _5, _6 */
184 -1, -1, /* DISP64, PLT64 */
185 _BM(22), _BM(13), /* HIX22, LOX10 */
186 _BM(22), _BM(10), _BM(12), /* H44, M44, L44 */
187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
188 #undef _BM
189 };
190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
191
192 /*
193 * Instruction templates:
194 */
195 #define BAA 0x30680000 /* ba,a %xcc, 0 */
196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 #define OR 0x82106000 /* or %g1, 0, %g1 */
200 #define XOR 0x82186000 /* xor %g1, 0, %g1 */
201 #define MOV71 0x8213e000 /* or %o7, 0, %g1 */
202 #define MOV17 0x9e106000 /* or %g1, 0, %o7 */
203 #define CALL 0x40000000 /* call 0 */
204 #define SLLX 0x83287000 /* sllx %g1, 0, %g1 */
205 #define NEG 0x82200001 /* neg %g1 */
206 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
207 #define ORG5 0x82104005 /* or %g1, %g5, %g1 */
208
209
210 /* %hi(v)/%lo(v) with variable shift */
211 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
212 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
213
214 void _rtld_bind_start_0(long, long);
215 void _rtld_bind_start_1(long, long);
216 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
217 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
218
219 /*
220 * Install rtld function call into this PLT slot.
221 */
222 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
223 #define SETHI_l0 0x21000000
224 #define SETHI_l1 0x23000000
225 #define OR_l0_l0 0xa0142000
226 #define SLLX_l0_32_l0 0xa12c3020
227 #define OR_l0_l1_l0 0xa0140011
228 #define JMPL_l0_o0 0x91c42000
229 #define MOV_g1_o1 0x92100001
230
231 void _rtld_install_plt(Elf_Word *, Elf_Addr);
232 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
233 const Elf_Rela *, Elf_Addr *);
234
235 void
236 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
237 {
238 pltgot[0] = SAVE;
239 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
240 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
241 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
242 pltgot[4] = SLLX_l0_32_l0;
243 pltgot[5] = OR_l0_l1_l0;
244 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
245 pltgot[7] = MOV_g1_o1;
246 }
247
248 void
249 _rtld_setup_pltgot(const Obj_Entry *obj)
250 {
251 /*
252 * On sparc64 we got troubles.
253 *
254 * Instructions are 4 bytes long.
255 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
256 * array entries.
257 * Each PLT entry jumps to PLT0 to enter the dynamic
258 * linker.
259 * Loading an arbitrary 64-bit pointer takes 6
260 * instructions and 2 registers.
261 *
262 * Somehow we need to issue a save to get a new stack
263 * frame, load the address of the dynamic linker, and
264 * jump there, in 8 instructions or less.
265 *
266 * Oh, we need to fill out both PLT0 and PLT1.
267 */
268 {
269 Elf_Word *entry = (Elf_Word *)obj->pltgot;
270
271 /* Install in entries 0 and 1 */
272 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
273 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
274
275 /*
276 * Install the object reference in first slot
277 * of entry 2.
278 */
279 obj->pltgot[8] = (Elf_Addr) obj;
280 }
281 }
282
283 void
284 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
285 {
286 const Elf_Rela *rela = 0, *relalim;
287 Elf_Addr relasz = 0;
288 Elf_Addr *where;
289
290 for (; dynp->d_tag != DT_NULL; dynp++) {
291 switch (dynp->d_tag) {
292 case DT_RELA:
293 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
294 break;
295 case DT_RELASZ:
296 relasz = dynp->d_un.d_val;
297 break;
298 }
299 }
300 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
301 for (; rela < relalim; rela++) {
302 where = (Elf_Addr *)(relocbase + rela->r_offset);
303 *where = (Elf_Addr)(relocbase + rela->r_addend);
304 }
305 }
306
307 int
308 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
309 {
310 const Elf_Rela *rela;
311 const Elf_Sym *def = NULL;
312 const Obj_Entry *defobj = NULL;
313 unsigned long last_symnum = ULONG_MAX;
314
315 for (rela = obj->rela; rela < obj->relalim; rela++) {
316 Elf_Addr *where;
317 Elf_Word type;
318 Elf_Addr value = 0, mask;
319 unsigned long symnum;
320
321 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
322
323 type = ELF_R_TYPE(rela->r_info);
324 if (type == R_TYPE(NONE))
325 continue;
326
327 /* OLO10 relocations have extra info */
328 if ((type & 0x00ff) == R_SPARC_OLO10)
329 type = R_SPARC_OLO10;
330
331 /* We do JMP_SLOTs in _rtld_bind() below */
332 if (type == R_TYPE(JMP_SLOT))
333 continue;
334
335 /* IFUNC relocations are handled in _rtld_call_ifunc */
336 if (type == R_TYPE(IRELATIVE)) {
337 if (obj->ifunc_remaining_nonplt == 0)
338 obj->ifunc_remaining_nonplt = rela - obj->rela + 1;
339 continue;
340 }
341
342 /* COPY relocs are also handled elsewhere */
343 if (type == R_TYPE(COPY))
344 continue;
345
346 /*
347 * We use the fact that relocation types are an `enum'
348 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
349 */
350 if (type > R_TYPE(TLS_TPOFF64)) {
351 dbg(("unknown relocation type %x at %p", type, rela));
352 return -1;
353 }
354
355 value = rela->r_addend;
356
357 if (RELOC_RESOLVE_SYMBOL(type) || RELOC_TLS(type)) {
358 symnum = ELF_R_SYM(rela->r_info);
359 if (last_symnum != symnum) {
360 last_symnum = symnum;
361 def = _rtld_find_symdef(symnum, obj, &defobj,
362 false);
363 if (def == NULL)
364 return -1;
365 }
366 }
367
368 /*
369 * Handle TLS relocations here, they are different.
370 */
371 if (RELOC_TLS(type)) {
372 switch (type) {
373 case R_TYPE(TLS_DTPMOD64):
374 *where = (Elf64_Addr)defobj->tlsindex;
375
376 rdbg(("TLS_DTPMOD64 %s in %s --> %p",
377 obj->strtab +
378 obj->symtab[symnum].st_name,
379 obj->path, (void *)*where));
380
381 break;
382
383 case R_TYPE(TLS_DTPOFF64):
384 *where = (Elf64_Addr)(def->st_value
385 + rela->r_addend);
386
387 rdbg(("DTPOFF64 %s in %s --> %p",
388 obj->strtab +
389 obj->symtab[symnum].st_name,
390 obj->path, (void *)*where));
391
392 break;
393
394 case R_TYPE(TLS_TPOFF64):
395 if (!defobj->tls_done &&
396 _rtld_tls_offset_allocate(obj))
397 return -1;
398
399 *where = (Elf64_Addr)(def->st_value -
400 defobj->tlsoffset + rela->r_addend);
401
402 rdbg(("TLS_TPOFF64 %s in %s --> %p",
403 obj->strtab + obj->symtab[symnum].st_name,
404 obj->path, (void *)*where));
405
406 break;
407 }
408 continue;
409 }
410
411 /*
412 * Handle relative relocs here, as an optimization.
413 */
414 if (type == R_TYPE(RELATIVE)) {
415 *where = (Elf_Addr)(obj->relocbase + value);
416 rdbg(("RELATIVE in %s --> %p", obj->path,
417 (void *)*where));
418 continue;
419 }
420
421 if (RELOC_RESOLVE_SYMBOL(type)) {
422 /* Add in the symbol's absolute address */
423 value += (Elf_Addr)(defobj->relocbase + def->st_value);
424 }
425
426 if (type == R_SPARC_OLO10) {
427 value = (value & 0x3ff)
428 + (((Elf64_Xword)rela->r_info<<32)>>40);
429 }
430
431 if (RELOC_PC_RELATIVE(type)) {
432 value -= (Elf_Addr)where;
433 }
434
435 if (RELOC_BASE_RELATIVE(type)) {
436 /*
437 * Note that even though sparcs use `Elf_rela'
438 * exclusively we still need the implicit memory addend
439 * in relocations referring to GOT entries.
440 * Undoubtedly, someone f*cked this up in the distant
441 * past, and now we're stuck with it in the name of
442 * compatibility for all eternity..
443 *
444 * In any case, the implicit and explicit should be
445 * mutually exclusive. We provide a check for that
446 * here.
447 */
448 #ifdef DIAGNOSTIC
449 if (value != 0 && *where != 0) {
450 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
451 "addend=0x%lx, base %p\n",
452 obj->path, where, *where,
453 rela->r_addend, obj->relocbase);
454 }
455 #endif
456 /* XXXX -- apparently we ignore the preexisting value */
457 value += (Elf_Addr)(obj->relocbase);
458 }
459
460 mask = RELOC_VALUE_BITMASK(type);
461 value >>= RELOC_VALUE_RIGHTSHIFT(type);
462 value &= mask;
463
464 if (RELOC_UNALIGNED(type)) {
465 /* Handle unaligned relocations. */
466 Elf_Addr tmp = 0;
467 char *ptr = (char *)where;
468 int i, size = RELOC_TARGET_SIZE(type)/8;
469
470 /* Read it in one byte at a time. */
471 for (i=0; i<size; i++)
472 tmp = (tmp << 8) | ptr[i];
473
474 tmp &= ~mask;
475 tmp |= value;
476
477 /* Write it back out. */
478 for (i=0; i<size; i++)
479 ptr[i] = ((tmp >> (8*i)) & 0xff);
480 #ifdef RTLD_DEBUG_RELOC
481 value = (Elf_Addr)tmp;
482 #endif
483
484 } else if (RELOC_TARGET_SIZE(type) > 32) {
485 *where &= ~mask;
486 *where |= value;
487 #ifdef RTLD_DEBUG_RELOC
488 value = (Elf_Addr)*where;
489 #endif
490 } else {
491 Elf32_Addr *where32 = (Elf32_Addr *)where;
492
493 *where32 &= ~mask;
494 *where32 |= value;
495 #ifdef RTLD_DEBUG_RELOC
496 value = (Elf_Addr)*where32;
497 #endif
498 }
499
500 #ifdef RTLD_DEBUG_RELOC
501 if (RELOC_RESOLVE_SYMBOL(type)) {
502 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
503 obj->strtab + obj->symtab[symnum].st_name,
504 obj->path, (void *)value, defobj->path));
505 } else {
506 rdbg(("%s in %s --> %p", reloc_names[type],
507 obj->path, (void *)value));
508 }
509 #endif
510 }
511 return (0);
512 }
513
514 int
515 _rtld_relocate_plt_lazy(Obj_Entry *obj)
516 {
517 const Elf_Rela *rela;
518
519 for (rela = obj->pltrelalim; rela-- > obj->pltrela; ) {
520 if (ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_IREL))
521 obj->ifunc_remaining = obj->pltrelalim - rela + 1;
522 }
523
524 return 0;
525 }
526
527 caddr_t
528 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
529 {
530 const Elf_Rela *rela = obj->pltrela + reloff;
531 Elf_Addr result;
532 int err;
533
534 result = 0; /* XXX gcc */
535
536 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT) ||
537 ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_IREL)) {
538 /*
539 * XXXX
540 *
541 * The first four PLT entries are reserved. There is some
542 * disagreement whether they should have associated relocation
543 * entries. Both the SPARC 32-bit and 64-bit ELF
544 * specifications say that they should have relocation entries,
545 * but the 32-bit SPARC binutils do not generate them, and now
546 * the 64-bit SPARC binutils have stopped generating them too.
547 *
548 * So, to provide binary compatibility, we will check the first
549 * entry, if it is reserved it should not be of the type
550 * JMP_SLOT or JMP_REL. If it is either of those, then
551 * the 4 reserved entries were not generated and our index
552 * is 4 entries too far.
553 */
554 rela -= 4;
555 }
556
557 _rtld_shared_enter();
558 err = _rtld_relocate_plt_object(obj, rela, &result);
559 if (err)
560 _rtld_die();
561 _rtld_shared_exit();
562
563 return (caddr_t)result;
564 }
565
566 int
567 _rtld_relocate_plt_objects(const Obj_Entry *obj)
568 {
569 const Elf_Rela *rela;
570
571 rela = obj->pltrela;
572
573 /*
574 * Check for first four reserved entries - and skip them.
575 * See above for details.
576 */
577 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT) &&
578 ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_IREL))
579 rela += 4;
580
581 for (; rela < obj->pltrelalim; rela++)
582 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
583 return -1;
584
585 return 0;
586 }
587
588 static inline void
589 _rtld_write_plt(Elf_Word *where, Elf_Addr value, const Elf_Rela *rela,
590 const Obj_Entry *obj)
591 {
592 Elf_Addr offset, offBAA;
593
594 /*
595 * At the PLT entry pointed at by `where', we now construct a direct
596 * transfer to the now fully resolved function address.
597 *
598 * A PLT entry is supposed to start by looking like this:
599 *
600 * sethi %hi(. - .PLT0), %g1
601 * ba,a %xcc, .PLT1
602 * nop
603 * nop
604 * nop
605 * nop
606 * nop
607 * nop
608 *
609 * When we replace these entries we start from the last instruction
610 * and do it in reverse order so the last thing we do is replace the
611 * branch. That allows us to change this atomically.
612 *
613 * We now need to find out how far we need to jump. We have a choice
614 * of several different relocation techniques which are increasingly
615 * expensive.
616 */
617
618 offset = ((Elf_Addr)where) - value;
619 offBAA = value - (((Elf_Addr)where) + 4); /* ba,a at where[1] */
620 if (rela && rela->r_addend) {
621 Elf_Addr *ptr = (Elf_Addr *)where;
622 /*
623 * This entry is >= 32768. The relocations points to a
624 * PC-relative pointer to the bind_0 stub at the top of the
625 * PLT section. Update it to point to the target function.
626 */
627 ptr[0] += value - (Elf_Addr)obj->pltgot;
628 } else if (offBAA <= (1L<<20) && (Elf_SOff)offBAA >= -(1L<<20)) {
629 /*
630 * We're within 1MB -- we can use a direct branch insn.
631 *
632 * We can generate this pattern:
633 *
634 * sethi %hi(. - .PLT0), %g1
635 * ba,a %xcc, addr
636 * nop
637 * nop
638 * nop
639 * nop
640 * nop
641 * nop
642 *
643 */
644 where[1] = BAA | ((offBAA >> 2) & 0x7ffff);
645 __asm volatile("iflush %0+4" : : "r" (where));
646 } else if (value < (1L<<32)) {
647 /*
648 * We're within 32-bits of address zero.
649 *
650 * The resulting code in the jump slot is:
651 *
652 * sethi %hi(. - .PLT0), %g1
653 * sethi %hi(addr), %g1
654 * jmp %g1+%lo(addr)
655 * nop
656 * nop
657 * nop
658 * nop
659 * nop
660 *
661 */
662 where[2] = JMP | LOVAL(value, 0);
663 where[1] = SETHI | HIVAL(value, 10);
664 __asm volatile("iflush %0+8" : : "r" (where));
665 __asm volatile("iflush %0+4" : : "r" (where));
666 } else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
667 /*
668 * We're within 32-bits of address -1.
669 *
670 * The resulting code in the jump slot is:
671 *
672 * sethi %hi(. - .PLT0), %g1
673 * sethi %hix(addr), %g1
674 * xor %g1, %lox(addr), %g1
675 * jmp %g1
676 * nop
677 * nop
678 * nop
679 * nop
680 *
681 */
682 where[3] = JMP;
683 where[2] = XOR | (value & 0x00003ff) | 0x1c00;
684 where[1] = SETHI | HIVAL(~value, 10);
685 __asm volatile("iflush %0+12" : : "r" (where));
686 __asm volatile("iflush %0+8" : : "r" (where));
687 __asm volatile("iflush %0+4" : : "r" (where));
688 } else if ((offset+8) <= (1L<<31) &&
689 (Elf_SOff)(offset+8) >= -((1L<<31) - 4)) {
690 /*
691 * We're within 32-bits -- we can use a direct call insn
692 *
693 * The resulting code in the jump slot is:
694 *
695 * sethi %hi(. - .PLT0), %g1
696 * mov %o7, %g1
697 * call (.+offset)
698 * mov %g1, %o7
699 * nop
700 * nop
701 * nop
702 * nop
703 *
704 */
705 offset += 8; /* call is at where[2], 8 byte further */
706 where[3] = MOV17;
707 where[2] = CALL | ((-offset >> 2) & 0x3fffffff);
708 where[1] = MOV71;
709 __asm volatile("iflush %0+12" : : "r" (where));
710 __asm volatile("iflush %0+8" : : "r" (where));
711 __asm volatile("iflush %0+4" : : "r" (where));
712 } else if ((Elf_SOff)value > 0 && value < (1L<<44)) {
713 /*
714 * We're within 44 bits. We can generate this pattern:
715 *
716 * The resulting code in the jump slot is:
717 *
718 * sethi %hi(. - .PLT0), %g1
719 * sethi %h44(addr), %g1
720 * or %g1, %m44(addr), %g1
721 * sllx %g1, 12, %g1
722 * jmp %g1+%l44(addr)
723 * nop
724 * nop
725 * nop
726 *
727 */
728 where[4] = JMP | LOVAL(value, 0);
729 where[3] = SLLX | 12;
730 where[2] = OR | (((value) >> 12) & 0x00001fff);
731 where[1] = SETHI | HIVAL(value, 22);
732 __asm volatile("iflush %0+16" : : "r" (where));
733 __asm volatile("iflush %0+12" : : "r" (where));
734 __asm volatile("iflush %0+8" : : "r" (where));
735 __asm volatile("iflush %0+4" : : "r" (where));
736 } else if ((Elf_SOff)value < 0 && (Elf_SOff)value > -(1L<<44)) {
737 /*
738 * We're within 44 bits. We can generate this pattern:
739 *
740 * The resulting code in the jump slot is:
741 *
742 * sethi %hi(. - .PLT0), %g1
743 * sethi %hi((-addr)>>12), %g1
744 * or %g1, %lo((-addr)>>12), %g1
745 * neg %g1
746 * sllx %g1, 12, %g1
747 * jmp %g1+(addr&0x0fff)
748 * nop
749 * nop
750 *
751 */
752 Elf_Addr neg = (~value+1)>>12;
753 where[5] = JMP | (value & 0x0fff);
754 where[4] = SLLX | 12;
755 where[3] = NEG;
756 where[2] = OR | (LOVAL(neg, 0)+1);
757 where[1] = SETHI | HIVAL(neg, 10);
758 __asm volatile("iflush %0+20" : : "r" (where));
759 __asm volatile("iflush %0+16" : : "r" (where));
760 __asm volatile("iflush %0+12" : : "r" (where));
761 __asm volatile("iflush %0+8" : : "r" (where));
762 __asm volatile("iflush %0+4" : : "r" (where));
763 } else {
764 /*
765 * We need to load all 64-bits
766 *
767 * The resulting code in the jump slot is:
768 *
769 * sethi %hi(. - .PLT0), %g1
770 * sethi %hh(addr), %g1
771 * sethi %lm(addr), %g5
772 * or %g1, %hm(addr), %g1
773 * sllx %g1, 32, %g1
774 * or %g1, %g5, %g1
775 * jmp %g1+%lo(addr)
776 * nop
777 *
778 */
779 where[6] = JMP | LOVAL(value, 0);
780 where[5] = ORG5;
781 where[4] = SLLX | 32;
782 where[3] = OR | LOVAL(value, 32);
783 where[2] = SETHIG5 | HIVAL(value, 10);
784 where[1] = SETHI | HIVAL(value, 42);
785 __asm volatile("iflush %0+24" : : "r" (where));
786 __asm volatile("iflush %0+20" : : "r" (where));
787 __asm volatile("iflush %0+16" : : "r" (where));
788 __asm volatile("iflush %0+12" : : "r" (where));
789 __asm volatile("iflush %0+8" : : "r" (where));
790 __asm volatile("iflush %0+4" : : "r" (where));
791 }
792 }
793
794 /*
795 * New inline function that is called by _rtld_relocate_plt_object and
796 * _rtld_bind
797 */
798 static inline int
799 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
800 Elf_Addr *tp)
801 {
802 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
803 const Elf_Sym *def;
804 const Obj_Entry *defobj;
805 Elf_Addr value;
806 unsigned long info = rela->r_info;
807
808 if (ELF_R_TYPE(info) == R_TYPE(JMP_IREL))
809 return 0;
810
811 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
812
813 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
814 if (__predict_false(def == NULL))
815 return -1;
816 if (__predict_false(def == &_rtld_sym_zero))
817 return 0;
818
819 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
820 if (tp == NULL)
821 return 0;
822 value = _rtld_resolve_ifunc(defobj, def);
823 } else {
824 value = (Elf_Addr)(defobj->relocbase + def->st_value);
825 }
826 rdbg(("bind now/fixup in %s at %p --> new=%p",
827 defobj->strtab + def->st_name, (void*)where, (void *)value));
828
829 _rtld_write_plt(where, value, rela, obj);
830
831 if (tp)
832 *tp = value;
833
834 return 0;
835 }
836
837 void
838 _rtld_call_ifunc(Obj_Entry *obj, sigset_t *mask, u_int cur_objgen)
839 {
840 const Elf_Rela *rela;
841 Elf_Addr *where;
842 Elf_Word *where2;
843 Elf_Addr target;
844
845 while (obj->ifunc_remaining > 0 && _rtld_objgen == cur_objgen) {
846 rela = obj->pltrelalim - --obj->ifunc_remaining;
847 if (ELF_R_TYPE(rela->r_info) != R_TYPE(JMP_IREL))
848 continue;
849 where2 = (Elf_Word *)(obj->relocbase + rela->r_offset);
850 target = (Elf_Addr)(obj->relocbase + rela->r_addend);
851 _rtld_exclusive_exit(mask);
852 target = _rtld_resolve_ifunc2(obj, target);
853 _rtld_exclusive_enter(mask);
854 _rtld_write_plt(where2, target, NULL, obj);
855 }
856
857 while (obj->ifunc_remaining_nonplt > 0 && _rtld_objgen == cur_objgen) {
858 rela = obj->relalim - --obj->ifunc_remaining_nonplt;
859 if (ELF_R_TYPE(rela->r_info) != R_TYPE(IRELATIVE))
860 continue;
861 where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
862 target = (Elf_Addr)(obj->relocbase + rela->r_addend);
863 _rtld_exclusive_exit(mask);
864 target = _rtld_resolve_ifunc2(obj, target);
865 _rtld_exclusive_enter(mask);
866 if (*where != target)
867 *where = target;
868 }
869 }
870