mdreloc.c revision 1.7 1 /* $NetBSD: mdreloc.c,v 1.7 2002/09/05 16:33:58 junyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <errno.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <sys/stat.h>
46
47 #include "rtldenv.h"
48 #include "debug.h"
49 #include "rtld.h"
50
51 /*
52 * The following table holds for each relocation type:
53 * - the width in bits of the memory location the relocation
54 * applies to (not currently used)
55 * - the number of bits the relocation value must be shifted to the
56 * right (i.e. discard least significant bits) to fit into
57 * the appropriate field in the instruction word.
58 * - flags indicating whether
59 * * the relocation involves a symbol
60 * * the relocation is relative to the current position
61 * * the relocation is for a GOT entry
62 * * the relocation is relative to the load address
63 *
64 */
65 #define _RF_S 0x80000000 /* Resolve symbol */
66 #define _RF_A 0x40000000 /* Use addend */
67 #define _RF_P 0x20000000 /* Location relative */
68 #define _RF_G 0x10000000 /* GOT offset */
69 #define _RF_B 0x08000000 /* Load address relative */
70 #define _RF_U 0x04000000 /* Unaligned */
71 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
72 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
73 static int reloc_target_flags[] = {
74 0, /* NONE */
75 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
76 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
77 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
80 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
81 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
82 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
84 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
85 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
86 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
87 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
88 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
89 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
90 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
91 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
92 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
93 _RF_SZ(32) | _RF_RS(0), /* COPY */
94 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
95 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
96 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
97 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
98
99 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
100 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
101 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
102 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
103 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
104 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
105 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
107 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
108 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
109 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
110 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
111 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
114 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
115 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
116 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
118 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
119 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
121 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
122 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
125 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
126 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
127 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
128 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
129 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
130 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
131 };
132
133 #ifdef RTLD_DEBUG_RELOC
134 static const char *reloc_names[] = {
135 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
136 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
137 "22", "13", "LO10", "GOT10", "GOT13",
138 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
139 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
140 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
141 "10", "11", "64", "OLO10", "HH22",
142 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
143 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
144 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
145 "L44", "REGISTER", "UA64", "UA16"
146 };
147 #endif
148
149 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
150 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
151 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
152 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
153 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
154 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
155 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
156
157 static long reloc_target_bitmask[] = {
158 #define _BM(x) (~(-(1ULL << (x))))
159 0, /* NONE */
160 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
161 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
162 _BM(30), _BM(22), /* WDISP30, WDISP22 */
163 _BM(22), _BM(22), /* HI22, _22 */
164 _BM(13), _BM(10), /* RELOC_13, _LO10 */
165 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
166 _BM(10), _BM(22), /* _PC10, _PC22 */
167 _BM(30), 0, /* _WPLT30, _COPY */
168 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
169 _BM(32), _BM(32), /* _UA32, PLT32 */
170 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
171 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
172 _BM(10), _BM(11), -1, /* _10, _11, _64 */
173 _BM(10), _BM(22), /* _OLO10, _HH22 */
174 _BM(10), _BM(22), /* _HM10, _LM22 */
175 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
176 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
177 -1, /* GLOB_JMP */
178 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
179 -1, -1, /* DISP64, PLT64 */
180 _BM(22), _BM(13), /* HIX22, LOX10 */
181 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
182 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
183 #undef _BM
184 };
185 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
186
187
188 int
189 _rtld_relocate_nonplt_object(obj, rela, dodebug)
190 Obj_Entry *obj;
191 const Elf_Rela *rela;
192 bool dodebug;
193 {
194 Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
195 Elf_Word type;
196 Elf_Addr value = 0, mask;
197 const Elf_Sym *def = NULL;
198 const Obj_Entry *defobj = NULL;
199
200 type = ELF_R_TYPE(rela->r_info);
201 if (type == R_TYPE(NONE))
202 return (0);
203
204 /* We do JMP_SLOTs in relocate_plt_object() below */
205 if (type == R_TYPE(JMP_SLOT))
206 return (0);
207
208 /* COPY relocs are also handled elsewhere */
209 if (type == R_TYPE(COPY))
210 return (0);
211
212 /*
213 * We use the fact that relocation types are an `enum'
214 * Note: R_SPARC_UA16 is currently numerically largest.
215 */
216 if (type > R_TYPE(UA16))
217 return (-1);
218
219 value = rela->r_addend;
220
221 /*
222 * Handle relative relocs here, because we might not
223 * be able to access globals yet.
224 */
225 if (!dodebug && type == R_TYPE(RELATIVE)) {
226 /* XXXX -- apparently we ignore the preexisting value */
227 *where = (Elf_Addr)(obj->relocbase + value);
228 return (0);
229 }
230
231 if (RELOC_RESOLVE_SYMBOL(type)) {
232
233 /* Find the symbol */
234 def = _rtld_find_symdef(rela->r_info, obj, &defobj, false);
235 if (def == NULL)
236 return (-1);
237
238 /* Add in the symbol's absolute address */
239 value += (Elf_Addr)(defobj->relocbase + def->st_value);
240 }
241
242 if (RELOC_PC_RELATIVE(type)) {
243 value -= (Elf_Addr)where;
244 }
245
246 if (RELOC_BASE_RELATIVE(type)) {
247 /*
248 * Note that even though sparcs use `Elf_rela' exclusively
249 * we still need the implicit memory addend in relocations
250 * referring to GOT entries. Undoubtedly, someone f*cked
251 * this up in the distant past, and now we're stuck with
252 * it in the name of compatibility for all eternity..
253 *
254 * In any case, the implicit and explicit should be mutually
255 * exclusive. We provide a check for that here.
256 */
257 #ifdef DIAGNOSTIC
258 if (value != 0 && *where != 0) {
259 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
260 "addend=0x%lx, base %p\n",
261 obj->path, where, *where,
262 rela->r_addend, obj->relocbase);
263 }
264 #endif
265 /* XXXX -- apparently we ignore the preexisting value */
266 value += (Elf_Addr)(obj->relocbase);
267 }
268
269 mask = RELOC_VALUE_BITMASK(type);
270 value >>= RELOC_VALUE_RIGHTSHIFT(type);
271 value &= mask;
272
273 if (RELOC_UNALIGNED(type)) {
274 /* Handle unaligned relocations. */
275 Elf_Addr tmp = 0;
276 char *ptr = (char *)where;
277 int i, size = RELOC_TARGET_SIZE(type)/8;
278
279 /* Read it in one byte at a time. */
280 for (i=0; i<size; i++)
281 tmp = (tmp << 8) | ptr[i];
282
283 tmp &= ~mask;
284 tmp |= value;
285
286 /* Write it back out. */
287 for (i=0; i<size; i++)
288 ptr[i] = ((tmp >> (8*i)) & 0xff);
289 #ifdef RTLD_DEBUG_RELOC
290 value = (Elf_Addr)tmp;
291 #endif
292
293 } else if (RELOC_TARGET_SIZE(type) > 32) {
294 *where &= ~mask;
295 *where |= value;
296 #ifdef RTLD_DEBUG_RELOC
297 value = (Elf_Addr)*where;
298 #endif
299 } else {
300 Elf32_Addr *where32 = (Elf32_Addr *)where;
301
302 *where32 &= ~mask;
303 *where32 |= value;
304 #ifdef RTLD_DEBUG_RELOC
305 value = (Elf_Addr)*where32;
306 #endif
307 }
308
309 #ifdef RTLD_DEBUG_RELOC
310 if (RELOC_RESOLVE_SYMBOL(type)) {
311 rdbg(dodebug, ("%s %s in %s --> %p %s",
312 reloc_names[type],
313 defobj->strtab + def->st_name, obj->path,
314 (void *)value, defobj->path));
315 }
316 else {
317 rdbg(dodebug, ("%s --> %p", reloc_names[type],
318 (void *)value));
319 }
320 #endif
321 return (0);
322 }
323
324 /*
325 * Instruction templates:
326 */
327 #define BAA 0x10400000 /* ba,a %xcc, 0 */
328 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
329 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
330 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
331 #define OR 0x82806000 /* or %g1, 0, %g1 */
332 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
333 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
334 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
335 #define CALL 0x40000000 /* call 0 */
336 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
337 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
338 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
339
340
341 /* %hi(v) with variable shift */
342 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
343 #define LOVAL(v) ((v) & 0x000003ff)
344
345 int
346 _rtld_relocate_plt_object(obj, rela, addrp, bind_now, dodebug)
347 Obj_Entry *obj;
348 const Elf_Rela *rela;
349 caddr_t *addrp;
350 bool bind_now;
351 bool dodebug;
352 {
353 const Elf_Sym *def;
354 const Obj_Entry *defobj;
355 Elf_Word *where = (Elf_Word *)((Elf_Addr)obj->relocbase + rela->r_offset);
356 Elf_Addr value, offset;
357
358 if (bind_now == 0 && obj->pltgot != NULL)
359 return (0);
360
361 /* Fully resolve procedure addresses now */
362
363 assert(ELF_R_TYPE(rela->r_info) == R_TYPE(JMP_SLOT));
364
365 def = _rtld_find_symdef(rela->r_info, obj, &defobj, true);
366 if (def == NULL)
367 return (-1);
368
369 value = (Elf_Addr) (defobj->relocbase + def->st_value);
370 rdbg(dodebug, ("bind now %d/fixup in %s --> old=%lx new=%lx",
371 (int)bind_now, defobj->strtab + def->st_name,
372 (u_long)*where, (u_long)value));
373
374 /*
375 * At the PLT entry pointed at by `where', we now construct
376 * a direct transfer to the now fully resolved function
377 * address.
378 *
379 * A PLT entry is supposed to start by looking like this:
380 *
381 * sethi %hi(. - .PLT0), %g1
382 * ba,a %xcc, .PLT1
383 * nop
384 * nop
385 * nop
386 * nop
387 * nop
388 * nop
389 *
390 * When we replace these entries we start from the second
391 * entry and do it in reverse order so the last thing we
392 * do is replace the branch. That allows us to change this
393 * atomically.
394 *
395 * We now need to find out how far we need to jump. We
396 * have a choice of several different relocation techniques
397 * which are increasingly expensive.
398 */
399
400 offset = ((Elf_Addr)where) - value;
401 if (rela->r_addend) {
402 Elf_Addr *ptr = (Elf_Addr *)where;
403 /*
404 * This entry is >32768. Just replace the pointer.
405 */
406 ptr[0] = value;
407
408 } else if (offset <= (1L<<20) && offset >= -(1L<<20)) {
409 /*
410 * We're within 1MB -- we can use a direct branch insn.
411 *
412 * We can generate this pattern:
413 *
414 * sethi %hi(. - .PLT0), %g1
415 * ba,a %xcc, addr
416 * nop
417 * nop
418 * nop
419 * nop
420 * nop
421 * nop
422 *
423 */
424 where[1] = BAA | ((offset >> 2) &0x3fffff);
425 __asm __volatile("iflush %0+4" : : "r" (where));
426 } else if (value >= 0 && value < (1L<<32)) {
427 /*
428 * We're withing 32-bits of address zero.
429 *
430 * The resulting code in the jump slot is:
431 *
432 * sethi %hi(. - .PLT0), %g1
433 * sethi %hi(addr), %g1
434 * jmp %g1+%lo(addr)
435 * nop
436 * nop
437 * nop
438 * nop
439 * nop
440 *
441 */
442 where[2] = JMP | LOVAL(value);
443 where[1] = SETHI | HIVAL(value, 10);
444 __asm __volatile("iflush %0+8" : : "r" (where));
445 __asm __volatile("iflush %0+4" : : "r" (where));
446
447 } else if (value <= 0 && value > -(1L<<32)) {
448 /*
449 * We're withing 32-bits of address -1.
450 *
451 * The resulting code in the jump slot is:
452 *
453 * sethi %hi(. - .PLT0), %g1
454 * sethi %hix(addr), %g1
455 * xor %g1, %lox(addr), %g1
456 * jmp %g1
457 * nop
458 * nop
459 * nop
460 * nop
461 *
462 */
463 where[3] = JMP;
464 where[2] = XOR | ((~value) & 0x00001fff);
465 where[1] = SETHI | HIVAL(~value, 10);
466 __asm __volatile("iflush %0+12" : : "r" (where));
467 __asm __volatile("iflush %0+8" : : "r" (where));
468 __asm __volatile("iflush %0+4" : : "r" (where));
469
470 } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) {
471 /*
472 * We're withing 32-bits -- we can use a direct call insn
473 *
474 * The resulting code in the jump slot is:
475 *
476 * sethi %hi(. - .PLT0), %g1
477 * mov %o7, %g1
478 * call (.+offset)
479 * mov %g1, %o7
480 * nop
481 * nop
482 * nop
483 * nop
484 *
485 */
486 where[3] = MOV17;
487 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
488 where[1] = MOV71;
489 __asm __volatile("iflush %0+12" : : "r" (where));
490 __asm __volatile("iflush %0+8" : : "r" (where));
491 __asm __volatile("iflush %0+4" : : "r" (where));
492
493 } else if (offset >= 0 && offset < (1L<<44)) {
494 /*
495 * We're withing 44 bits. We can generate this pattern:
496 *
497 * The resulting code in the jump slot is:
498 *
499 * sethi %hi(. - .PLT0), %g1
500 * sethi %h44(addr), %g1
501 * or %g1, %m44(addr), %g1
502 * sllx %g1, 12, %g1
503 * jmp %g1+%l44(addr)
504 * nop
505 * nop
506 * nop
507 *
508 */
509 where[4] = JMP | LOVAL(offset);
510 where[3] = SLLX | 12;
511 where[2] = OR | (((offset) >> 12) & 0x00001fff);
512 where[1] = SETHI | HIVAL(offset, 22);
513 __asm __volatile("iflush %0+16" : : "r" (where));
514 __asm __volatile("iflush %0+12" : : "r" (where));
515 __asm __volatile("iflush %0+8" : : "r" (where));
516 __asm __volatile("iflush %0+4" : : "r" (where));
517
518 } else if (offset < 0 && offset > -(1L<<44)) {
519 /*
520 * We're withing 44 bits. We can generate this pattern:
521 *
522 * The resulting code in the jump slot is:
523 *
524 * sethi %hi(. - .PLT0), %g1
525 * sethi %h44(-addr), %g1
526 * xor %g1, %m44(-addr), %g1
527 * sllx %g1, 12, %g1
528 * jmp %g1+%l44(addr)
529 * nop
530 * nop
531 * nop
532 *
533 */
534 where[4] = JMP | LOVAL(offset);
535 where[3] = SLLX | 12;
536 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
537 where[1] = SETHI | HIVAL(~offset, 22);
538 __asm __volatile("iflush %0+16" : : "r" (where));
539 __asm __volatile("iflush %0+12" : : "r" (where));
540 __asm __volatile("iflush %0+8" : : "r" (where));
541 __asm __volatile("iflush %0+4" : : "r" (where));
542
543 } else {
544 /*
545 * We need to load all 64-bits
546 *
547 * The resulting code in the jump slot is:
548 *
549 * sethi %hi(. - .PLT0), %g1
550 * sethi %hh(addr), %g1
551 * sethi %lm(addr), %g5
552 * or %g1, %hm(addr), %g1
553 * sllx %g1, 32, %g1
554 * or %g1, %g5, %g1
555 * jmp %g1+%lo(addr)
556 * nop
557 *
558 */
559 where[6] = JMP | LOVAL(value);
560 where[5] = ORG5;
561 where[4] = SLLX | 12;
562 where[3] = OR | LOVAL((value) >> 32);
563 where[2] = SETHIG5 | HIVAL(value, 10);
564 where[1] = SETHI | HIVAL(value, 42);
565 __asm __volatile("iflush %0+20" : : "r" (where));
566 __asm __volatile("iflush %0+16" : : "r" (where));
567 __asm __volatile("iflush %0+16" : : "r" (where));
568 __asm __volatile("iflush %0+12" : : "r" (where));
569 __asm __volatile("iflush %0+8" : : "r" (where));
570 __asm __volatile("iflush %0+4" : : "r" (where));
571
572 }
573
574 if (addrp != NULL)
575 *addrp = (caddr_t)value;
576
577 return (0);
578 }
579
580 /*
581 * Install rtld function call into this PLT slot.
582 */
583 #define SAVE 0x9de3bf50
584 #define SETHI_l0 0x21000000
585 #define SETHI_l1 0x23000000
586 #define OR_l0_l0 0xa0142000
587 #define SLLX_l0_32_l0 0xa12c3020
588 #define OR_l0_l1_l0 0xa0140011
589 #define JMPL_l0_o1 0x93c42000
590 #define MOV_g1_o0 0x90100001
591
592 void _rtld_install_plt __P((Elf_Word *pltgot, Elf_Addr proc));
593
594 void
595 _rtld_install_plt(pltgot, proc)
596 Elf_Word *pltgot;
597 Elf_Addr proc;
598 {
599 pltgot[0] = SAVE;
600 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
601 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
602 pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32);
603 pltgot[4] = SLLX_l0_32_l0;
604 pltgot[5] = OR_l0_l1_l0;
605 pltgot[6] = JMPL_l0_o1 | LOVAL(proc);
606 pltgot[7] = MOV_g1_o0;
607 }
608
609 long _rtld_bind_start_0_stub __P((long x, long y));
610 long
611 _rtld_bind_start_0_stub(x, y)
612 long x, y;
613 {
614 long i;
615 long n;
616
617 i = x - y + 1048596;
618 n = 32768 + (i/5120)*160 + (i%5120)/24;
619
620 return (n);
621 }
622
623 void
624 _rtld_setup_pltgot(const Obj_Entry *obj)
625 {
626 /*
627 * On sparc64 we got troubles.
628 *
629 * Instructions are 4 bytes long.
630 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
631 * array entries.
632 * Each PLT entry jumps to PLT0 to enter the dynamic
633 * linker.
634 * Loading an arbitrary 64-bit pointer takes 6
635 * instructions and 2 registers.
636 *
637 * Somehow we need to issue a save to get a new stack
638 * frame, load the address of the dynamic linker, and
639 * jump there, in 8 instructions or less.
640 *
641 * Oh, we need to fill out both PLT0 and PLT1.
642 */
643 {
644 Elf_Word *entry = (Elf_Word *)obj->pltgot;
645 extern void _rtld_bind_start_0 __P((long, long));
646 extern void _rtld_bind_start_1 __P((long, long));
647
648 /* Install in entries 0 and 1 */
649 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
650 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
651
652 /*
653 * Install the object reference in first slot
654 * of entry 2.
655 */
656 obj->pltgot[8] = (Elf_Addr) obj;
657 }
658 }
659