rcache.c revision 1.23.8.1 1 1.23.8.1 snj /* $NetBSD: rcache.c,v 1.23.8.1 2016/03/08 10:03:57 snj Exp $ */
2 1.1 bouyer
3 1.1 bouyer /*-
4 1.1 bouyer * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 1.1 bouyer * All rights reserved.
6 1.1 bouyer *
7 1.1 bouyer * This code is derived from software contributed to The NetBSD Foundation
8 1.10 lukem * by Martin J. Laubach <mjl (at) emsi.priv.at> and
9 1.1 bouyer * Manuel Bouyer <Manuel.Bouyer (at) lip6.fr>.
10 1.1 bouyer *
11 1.1 bouyer * Redistribution and use in source and binary forms, with or without
12 1.1 bouyer * modification, are permitted provided that the following conditions
13 1.1 bouyer * are met:
14 1.1 bouyer * 1. Redistributions of source code must retain the above copyright
15 1.1 bouyer * notice, this list of conditions and the following disclaimer.
16 1.1 bouyer * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 bouyer * notice, this list of conditions and the following disclaimer in the
18 1.1 bouyer * documentation and/or other materials provided with the distribution.
19 1.1 bouyer *
20 1.1 bouyer * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 bouyer * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 bouyer * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.10 lukem * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 bouyer * POSSIBILITY OF SUCH DAMAGE.
31 1.1 bouyer */
32 1.11 lukem
33 1.11 lukem #include <sys/cdefs.h>
34 1.11 lukem #ifndef lint
35 1.23.8.1 snj __RCSID("$NetBSD: rcache.c,v 1.23.8.1 2016/03/08 10:03:57 snj Exp $");
36 1.11 lukem #endif /* not lint */
37 1.11 lukem
38 1.1 bouyer #include <sys/types.h>
39 1.1 bouyer #include <sys/uio.h>
40 1.1 bouyer #include <sys/mman.h>
41 1.1 bouyer #include <sys/param.h>
42 1.1 bouyer #include <sys/sysctl.h>
43 1.1 bouyer #include <ufs/ufs/dinode.h>
44 1.1 bouyer
45 1.1 bouyer #include <stdio.h>
46 1.1 bouyer #include <stdlib.h>
47 1.1 bouyer #include <unistd.h>
48 1.1 bouyer #include <fcntl.h>
49 1.1 bouyer #include <errno.h>
50 1.1 bouyer #include <string.h>
51 1.1 bouyer
52 1.1 bouyer #include "dump.h"
53 1.1 bouyer
54 1.1 bouyer /*-----------------------------------------------------------------------*/
55 1.1 bouyer #define MAXCACHEBUFS 512 /* max 512 buffers */
56 1.1 bouyer #define MAXMEMPART 6 /* max 15% of the user mem */
57 1.1 bouyer
58 1.1 bouyer /*-----------------------------------------------------------------------*/
59 1.13 hannken union cdesc {
60 1.13 hannken volatile size_t cd_count;
61 1.13 hannken struct {
62 1.13 hannken volatile daddr_t blkstart;
63 1.14 enami volatile daddr_t blkend; /* start + nblksread */
64 1.13 hannken volatile daddr_t blocksRead;
65 1.13 hannken volatile size_t time;
66 1.1 bouyer #ifdef DIAGNOSTICS
67 1.13 hannken volatile pid_t owner;
68 1.1 bouyer #endif
69 1.13 hannken } desc;
70 1.13 hannken #define cd_blkstart desc.blkstart
71 1.13 hannken #define cd_blkend desc.blkend
72 1.13 hannken #define cd_blocksRead desc.blocksRead
73 1.13 hannken #define cd_time desc.time
74 1.13 hannken #define cd_owner desc.owner
75 1.1 bouyer };
76 1.1 bouyer
77 1.6 lukem static int findlru(void);
78 1.1 bouyer
79 1.1 bouyer static void *shareBuffer = NULL;
80 1.13 hannken static union cdesc *cheader;
81 1.13 hannken static union cdesc *cdesc;
82 1.1 bouyer static char *cdata;
83 1.1 bouyer static int cachebufs;
84 1.1 bouyer static int nblksread;
85 1.1 bouyer
86 1.1 bouyer #ifdef STATS
87 1.1 bouyer static int nreads;
88 1.1 bouyer static int nphysread;
89 1.1 bouyer static int64_t readsize;
90 1.1 bouyer static int64_t physreadsize;
91 1.1 bouyer #endif
92 1.1 bouyer
93 1.16 enami #define CSIZE (nblksread << dev_bshift) /* cache buf size */
94 1.16 enami #define CDATA(desc) (cdata + ((desc) - cdesc) * CSIZE)
95 1.1 bouyer
96 1.10 lukem void
97 1.6 lukem initcache(int cachesize, int readblksize)
98 1.1 bouyer {
99 1.1 bouyer size_t len;
100 1.14 enami size_t sharedSize;
101 1.1 bouyer
102 1.23.8.1 snj if (readblksize == -1) { /* use kern.maxphys */
103 1.23.8.1 snj int kern_maxphys;
104 1.23.8.1 snj int mib[2] = { CTL_KERN, KERN_MAXPHYS };
105 1.23.8.1 snj
106 1.23.8.1 snj len = sizeof(kern_maxphys);
107 1.23.8.1 snj if (sysctl(mib, 2, &kern_maxphys, &len, NULL, 0) < 0) {
108 1.23.8.1 snj msg("sysctl(kern.maxphys) failed: %s\n",
109 1.23.8.1 snj strerror(errno));
110 1.23.8.1 snj return;
111 1.23.8.1 snj }
112 1.23.8.1 snj readblksize = kern_maxphys;
113 1.23.8.1 snj }
114 1.23.8.1 snj
115 1.15 enami /* Convert read block size in terms of filesystem block size */
116 1.14 enami nblksread = howmany(readblksize, ufsib->ufs_bsize);
117 1.15 enami
118 1.15 enami /* Then, convert it in terms of device block size */
119 1.15 enami nblksread <<= ufsib->ufs_bshift - dev_bshift;
120 1.15 enami
121 1.14 enami if (cachesize == -1) { /* Compute from memory available */
122 1.23 spz uint64_t usermem, cachetmp;
123 1.21 simonb int mib[2] = { CTL_HW, HW_USERMEM64 };
124 1.10 lukem
125 1.1 bouyer len = sizeof(usermem);
126 1.1 bouyer if (sysctl(mib, 2, &usermem, &len, NULL, 0) < 0) {
127 1.14 enami msg("sysctl(hw.usermem) failed: %s\n",
128 1.14 enami strerror(errno));
129 1.1 bouyer return;
130 1.1 bouyer }
131 1.23 spz cachetmp = (usermem / MAXMEMPART) / CSIZE;
132 1.23 spz /* for those with TB of RAM */
133 1.23 spz cachebufs = (cachetmp > INT_MAX) ? INT_MAX : cachetmp;
134 1.1 bouyer } else { /* User specified */
135 1.1 bouyer cachebufs = cachesize;
136 1.1 bouyer }
137 1.10 lukem
138 1.14 enami if (cachebufs) { /* Don't allocate if zero --> no caching */
139 1.1 bouyer if (cachebufs > MAXCACHEBUFS)
140 1.1 bouyer cachebufs = MAXCACHEBUFS;
141 1.1 bouyer
142 1.13 hannken sharedSize = sizeof(union cdesc) +
143 1.13 hannken sizeof(union cdesc) * cachebufs +
144 1.16 enami cachebufs * CSIZE;
145 1.10 lukem #ifdef STATS
146 1.1 bouyer fprintf(stderr, "Using %d buffers (%d bytes)\n", cachebufs,
147 1.1 bouyer sharedSize);
148 1.1 bouyer #endif
149 1.1 bouyer shareBuffer = mmap(NULL, sharedSize, PROT_READ | PROT_WRITE,
150 1.1 bouyer MAP_ANON | MAP_SHARED, -1, 0);
151 1.14 enami if (shareBuffer == MAP_FAILED) {
152 1.1 bouyer msg("can't mmap shared memory for buffer: %s\n",
153 1.1 bouyer strerror(errno));
154 1.1 bouyer return;
155 1.1 bouyer }
156 1.1 bouyer cheader = shareBuffer;
157 1.13 hannken cdesc = (union cdesc *) (((char *) shareBuffer) +
158 1.13 hannken sizeof(union cdesc));
159 1.13 hannken cdata = ((char *) shareBuffer) + sizeof(union cdesc) +
160 1.13 hannken sizeof(union cdesc) * cachebufs;
161 1.1 bouyer
162 1.1 bouyer memset(shareBuffer, '\0', sharedSize);
163 1.1 bouyer }
164 1.1 bouyer }
165 1.1 bouyer
166 1.6 lukem /*
167 1.6 lukem * Find the cache buffer descriptor that shows the minimal access time
168 1.6 lukem */
169 1.10 lukem static int
170 1.6 lukem findlru(void)
171 1.1 bouyer {
172 1.8 lukem int i;
173 1.13 hannken size_t minTime = cdesc[0].cd_time;
174 1.8 lukem int minIdx = 0;
175 1.1 bouyer
176 1.1 bouyer for (i = 0; i < cachebufs; i++) {
177 1.13 hannken if (cdesc[i].cd_time < minTime) {
178 1.1 bouyer minIdx = i;
179 1.13 hannken minTime = cdesc[i].cd_time;
180 1.1 bouyer }
181 1.1 bouyer }
182 1.1 bouyer
183 1.1 bouyer return minIdx;
184 1.1 bouyer }
185 1.6 lukem
186 1.1 bouyer /*
187 1.1 bouyer * Read data directly from disk, with smart error handling.
188 1.1 bouyer * Try to recover from hard errors by reading in sector sized pieces.
189 1.1 bouyer * Error recovery is attempted at most BREADEMAX times before seeking
190 1.1 bouyer * consent from the operator to continue.
191 1.1 bouyer */
192 1.1 bouyer
193 1.1 bouyer static int breaderrors = 0;
194 1.1 bouyer #define BREADEMAX 32
195 1.1 bouyer
196 1.10 lukem void
197 1.6 lukem rawread(daddr_t blkno, char *buf, int size)
198 1.1 bouyer {
199 1.1 bouyer int cnt, i;
200 1.14 enami
201 1.1 bouyer #ifdef STATS
202 1.1 bouyer nphysread++;
203 1.1 bouyer physreadsize += size;
204 1.1 bouyer #endif
205 1.1 bouyer
206 1.14 enami loop:
207 1.18 enami if (lseek(diskfd, ((off_t) blkno << dev_bshift), SEEK_SET) == -1) {
208 1.1 bouyer msg("rawread: lseek fails\n");
209 1.1 bouyer goto err;
210 1.1 bouyer }
211 1.14 enami if ((cnt = read(diskfd, buf, size)) == size)
212 1.1 bouyer return;
213 1.16 enami if (blkno + (size >> dev_bshift) > ufsib->ufs_dsize) {
214 1.7 lukem /*
215 1.7 lukem * Trying to read the final fragment.
216 1.7 lukem *
217 1.7 lukem * NB - dump only works in TP_BSIZE blocks, hence
218 1.7 lukem * rounds `dev_bsize' fragments up to TP_BSIZE pieces.
219 1.7 lukem * It should be smarter about not actually trying to
220 1.7 lukem * read more than it can get, but for the time being
221 1.7 lukem * we punt and scale back the read only when it gets
222 1.7 lukem * us into trouble. (mkm 9/25/83)
223 1.7 lukem */
224 1.7 lukem size -= dev_bsize;
225 1.7 lukem goto loop;
226 1.7 lukem }
227 1.1 bouyer if (cnt == -1)
228 1.12 fvdl msg("read error from %s: %s: [block %lld]: count=%d\n",
229 1.14 enami disk, strerror(errno), (long long)blkno, size);
230 1.1 bouyer else
231 1.14 enami msg("short read error from %s: [block %lld]: "
232 1.14 enami "count=%d, got=%d\n",
233 1.14 enami disk, (long long)blkno, size, cnt);
234 1.1 bouyer err:
235 1.1 bouyer if (++breaderrors > BREADEMAX) {
236 1.5 briggs msg("More than %d block read errors from %s\n",
237 1.14 enami BREADEMAX, disk);
238 1.1 bouyer broadcast("DUMP IS AILING!\n");
239 1.1 bouyer msg("This is an unrecoverable error.\n");
240 1.14 enami if (!query("Do you want to attempt to continue?")) {
241 1.1 bouyer dumpabort(0);
242 1.1 bouyer /*NOTREACHED*/
243 1.1 bouyer } else
244 1.1 bouyer breaderrors = 0;
245 1.1 bouyer }
246 1.1 bouyer /*
247 1.1 bouyer * Zero buffer, then try to read each sector of buffer separately.
248 1.1 bouyer */
249 1.1 bouyer memset(buf, 0, size);
250 1.1 bouyer for (i = 0; i < size; i += dev_bsize, buf += dev_bsize, blkno++) {
251 1.14 enami if (lseek(diskfd, ((off_t)blkno << dev_bshift),
252 1.18 enami SEEK_SET) == -1) {
253 1.1 bouyer msg("rawread: lseek2 fails: %s!\n",
254 1.1 bouyer strerror(errno));
255 1.1 bouyer continue;
256 1.1 bouyer }
257 1.1 bouyer if ((cnt = read(diskfd, buf, (int)dev_bsize)) == dev_bsize)
258 1.1 bouyer continue;
259 1.1 bouyer if (cnt == -1) {
260 1.14 enami msg("read error from %s: %s: [sector %lld]: "
261 1.19 enami "count=%ld\n", disk, strerror(errno),
262 1.19 enami (long long)blkno, dev_bsize);
263 1.1 bouyer continue;
264 1.1 bouyer }
265 1.14 enami msg("short read error from %s: [sector %lld]: "
266 1.14 enami "count=%ld, got=%d\n",
267 1.12 fvdl disk, (long long)blkno, dev_bsize, cnt);
268 1.1 bouyer }
269 1.1 bouyer }
270 1.1 bouyer
271 1.10 lukem void
272 1.6 lukem bread(daddr_t blkno, char *buf, int size)
273 1.1 bouyer {
274 1.16 enami int osize = size, idx;
275 1.1 bouyer daddr_t oblkno = blkno;
276 1.1 bouyer char *obuf = buf;
277 1.14 enami daddr_t numBlocks = howmany(size, dev_bsize);
278 1.1 bouyer
279 1.1 bouyer #ifdef STATS
280 1.1 bouyer nreads++;
281 1.1 bouyer readsize += size;
282 1.1 bouyer #endif
283 1.1 bouyer
284 1.1 bouyer if (!shareBuffer) {
285 1.1 bouyer rawread(blkno, buf, size);
286 1.1 bouyer return;
287 1.1 bouyer }
288 1.1 bouyer
289 1.1 bouyer if (flock(diskfd, LOCK_EX)) {
290 1.1 bouyer msg("flock(LOCK_EX) failed: %s\n",
291 1.1 bouyer strerror(errno));
292 1.1 bouyer rawread(blkno, buf, size);
293 1.1 bouyer return;
294 1.1 bouyer }
295 1.1 bouyer
296 1.1 bouyer retry:
297 1.16 enami idx = 0;
298 1.16 enami while (size > 0) {
299 1.8 lukem int i;
300 1.10 lukem
301 1.1 bouyer for (i = 0; i < cachebufs; i++) {
302 1.16 enami union cdesc *curr = &cdesc[(i + idx) % cachebufs];
303 1.1 bouyer
304 1.1 bouyer #ifdef DIAGNOSTICS
305 1.13 hannken if (curr->cd_owner) {
306 1.1 bouyer fprintf(stderr, "Owner is set (%d, me=%d), can"
307 1.13 hannken "not happen.\n", curr->cd_owner, getpid());
308 1.1 bouyer }
309 1.1 bouyer #endif
310 1.1 bouyer
311 1.13 hannken if (curr->cd_blkend == 0)
312 1.1 bouyer continue;
313 1.1 bouyer /*
314 1.1 bouyer * If we find a bit of the read in the buffers,
315 1.1 bouyer * now compute how many blocks we can copy,
316 1.1 bouyer * copy them out, adjust blkno, buf and size,
317 1.1 bouyer * and restart
318 1.1 bouyer */
319 1.13 hannken if (curr->cd_blkstart <= blkno &&
320 1.13 hannken blkno < curr->cd_blkend) {
321 1.1 bouyer /* Number of data blocks to be copied */
322 1.6 lukem int toCopy = MIN(size,
323 1.16 enami (curr->cd_blkend - blkno) << dev_bshift);
324 1.1 bouyer #ifdef DIAGNOSTICS
325 1.16 enami if (toCopy <= 0 || toCopy > CSIZE) {
326 1.1 bouyer fprintf(stderr, "toCopy %d !\n",
327 1.1 bouyer toCopy);
328 1.1 bouyer dumpabort(0);
329 1.1 bouyer }
330 1.16 enami if (CDATA(curr) +
331 1.16 enami ((blkno - curr->cd_blkstart) <<
332 1.17 enami dev_bshift) < CDATA(curr) ||
333 1.16 enami CDATA(curr) +
334 1.16 enami ((blkno - curr->cd_blkstart) <<
335 1.17 enami dev_bshift) > CDATA(curr) + CSIZE) {
336 1.1 bouyer fprintf(stderr, "%p < %p !!!\n",
337 1.16 enami CDATA(curr) + ((blkno -
338 1.16 enami curr->cd_blkstart) << dev_bshift),
339 1.16 enami CDATA(curr));
340 1.16 enami fprintf(stderr,
341 1.16 enami "cdesc[i].cd_blkstart %lld "
342 1.16 enami "blkno %lld dev_bsize %ld\n",
343 1.16 enami (long long)curr->cd_blkstart,
344 1.16 enami (long long)blkno,
345 1.16 enami dev_bsize);
346 1.1 bouyer dumpabort(0);
347 1.1 bouyer }
348 1.1 bouyer #endif
349 1.16 enami memcpy(buf, CDATA(curr) +
350 1.17 enami ((blkno - curr->cd_blkstart) <<
351 1.17 enami dev_bshift),
352 1.1 bouyer toCopy);
353 1.1 bouyer
354 1.1 bouyer buf += toCopy;
355 1.1 bouyer size -= toCopy;
356 1.14 enami blkno += howmany(toCopy, dev_bsize);
357 1.14 enami numBlocks -= howmany(toCopy, dev_bsize);
358 1.1 bouyer
359 1.13 hannken curr->cd_time = cheader->cd_count++;
360 1.1 bouyer
361 1.1 bouyer /*
362 1.1 bouyer * If all data of a cache block have been
363 1.1 bouyer * read, chances are good no more reads
364 1.1 bouyer * will occur, so expire the cache immediately
365 1.1 bouyer */
366 1.1 bouyer
367 1.13 hannken curr->cd_blocksRead +=
368 1.14 enami howmany(toCopy, dev_bsize);
369 1.13 hannken if (curr->cd_blocksRead >= nblksread)
370 1.13 hannken curr->cd_time = 0;
371 1.1 bouyer
372 1.1 bouyer goto retry;
373 1.1 bouyer }
374 1.1 bouyer }
375 1.1 bouyer
376 1.1 bouyer /* No more to do? */
377 1.1 bouyer if (size == 0)
378 1.1 bouyer break;
379 1.9 lukem
380 1.1 bouyer /*
381 1.1 bouyer * This does actually not happen if fs blocks are not greater
382 1.1 bouyer * than nblksread.
383 1.1 bouyer */
384 1.9 lukem if (numBlocks > nblksread || blkno >= ufsib->ufs_dsize) {
385 1.1 bouyer rawread(oblkno, obuf, osize);
386 1.1 bouyer break;
387 1.1 bouyer } else {
388 1.8 lukem ssize_t rsize;
389 1.8 lukem daddr_t blockBlkNo;
390 1.1 bouyer
391 1.1 bouyer blockBlkNo = (blkno / nblksread) * nblksread;
392 1.1 bouyer idx = findlru();
393 1.6 lukem rsize = MIN(nblksread,
394 1.16 enami ufsib->ufs_dsize - blockBlkNo) << dev_bshift;
395 1.3 perseant
396 1.1 bouyer #ifdef DIAGNOSTICS
397 1.13 hannken if (cdesc[idx].cd_owner)
398 1.1 bouyer fprintf(stderr, "Owner is set (%d, me=%d), can"
399 1.13 hannken "not happen(2).\n", cdesc[idx].cd_owner,
400 1.1 bouyer getpid());
401 1.13 hannken cdesc[idx].cd_owner = getpid();
402 1.1 bouyer #endif
403 1.13 hannken cdesc[idx].cd_time = cheader->cd_count++;
404 1.13 hannken cdesc[idx].cd_blkstart = blockBlkNo;
405 1.16 enami cdesc[idx].cd_blkend = 0;
406 1.13 hannken cdesc[idx].cd_blocksRead = 0;
407 1.1 bouyer
408 1.14 enami if (lseek(diskfd, ((off_t) blockBlkNo << dev_bshift),
409 1.18 enami SEEK_SET) == -1) {
410 1.1 bouyer msg("readBlocks: lseek fails: %s\n",
411 1.1 bouyer strerror(errno));
412 1.1 bouyer rsize = -1;
413 1.1 bouyer } else {
414 1.16 enami rsize = read(diskfd,
415 1.16 enami CDATA(&cdesc[idx]), rsize);
416 1.1 bouyer if (rsize < 0) {
417 1.1 bouyer msg("readBlocks: read fails: %s\n",
418 1.1 bouyer strerror(errno));
419 1.1 bouyer }
420 1.1 bouyer }
421 1.1 bouyer
422 1.1 bouyer /* On errors, panic, punt, try to read without
423 1.1 bouyer * cache and let raw read routine do the rest.
424 1.1 bouyer */
425 1.1 bouyer
426 1.1 bouyer if (rsize <= 0) {
427 1.1 bouyer rawread(oblkno, obuf, osize);
428 1.1 bouyer #ifdef DIAGNOSTICS
429 1.13 hannken if (cdesc[idx].cd_owner != getpid())
430 1.1 bouyer fprintf(stderr, "Owner changed from "
431 1.1 bouyer "%d to %d, can't happen\n",
432 1.13 hannken getpid(), cdesc[idx].cd_owner);
433 1.13 hannken cdesc[idx].cd_owner = 0;
434 1.1 bouyer #endif
435 1.1 bouyer break;
436 1.1 bouyer }
437 1.1 bouyer
438 1.1 bouyer /* On short read, just note the fact and go on */
439 1.13 hannken cdesc[idx].cd_blkend = blockBlkNo + rsize / dev_bsize;
440 1.1 bouyer
441 1.1 bouyer #ifdef STATS
442 1.1 bouyer nphysread++;
443 1.1 bouyer physreadsize += rsize;
444 1.1 bouyer #endif
445 1.1 bouyer #ifdef DIAGNOSTICS
446 1.13 hannken if (cdesc[idx].cd_owner != getpid())
447 1.1 bouyer fprintf(stderr, "Owner changed from "
448 1.1 bouyer "%d to %d, can't happen\n",
449 1.13 hannken getpid(), cdesc[idx].cd_owner);
450 1.13 hannken cdesc[idx].cd_owner = 0;
451 1.1 bouyer #endif
452 1.1 bouyer /*
453 1.1 bouyer * We swapped some of data in, let the loop fetch
454 1.1 bouyer * them from cache
455 1.1 bouyer */
456 1.1 bouyer }
457 1.1 bouyer }
458 1.10 lukem
459 1.1 bouyer if (flock(diskfd, LOCK_UN))
460 1.1 bouyer msg("flock(LOCK_UN) failed: %s\n",
461 1.1 bouyer strerror(errno));
462 1.1 bouyer }
463 1.1 bouyer
464 1.1 bouyer void
465 1.6 lukem printcachestats(void)
466 1.1 bouyer {
467 1.14 enami
468 1.1 bouyer #ifdef STATS
469 1.1 bouyer fprintf(stderr, "Pid %d: %d reads (%u bytes) "
470 1.1 bouyer "%d physical reads (%u bytes) %d%% hits, %d%% overhead\n",
471 1.1 bouyer getpid(), nreads, (u_int) readsize, nphysread,
472 1.1 bouyer (u_int) physreadsize, (nreads - nphysread) * 100 / nreads,
473 1.1 bouyer (int) (((physreadsize - readsize) * 100) / readsize));
474 1.1 bouyer #endif
475 1.1 bouyer }
476