lfs.c revision 1.27 1 1.27 ad /* $NetBSD: lfs.c,v 1.27 2007/10/08 21:39:49 ad Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant * 3. All advertising materials mentioning features or use of this software
18 1.1 perseant * must display the following acknowledgement:
19 1.1 perseant * This product includes software developed by the NetBSD
20 1.1 perseant * Foundation, Inc. and its contributors.
21 1.1 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 perseant * contributors may be used to endorse or promote products derived
23 1.1 perseant * from this software without specific prior written permission.
24 1.1 perseant *
25 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
36 1.1 perseant */
37 1.1 perseant /*
38 1.1 perseant * Copyright (c) 1989, 1991, 1993
39 1.1 perseant * The Regents of the University of California. All rights reserved.
40 1.1 perseant * (c) UNIX System Laboratories, Inc.
41 1.1 perseant * All or some portions of this file are derived from material licensed
42 1.1 perseant * to the University of California by American Telephone and Telegraph
43 1.1 perseant * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 1.1 perseant * the permission of UNIX System Laboratories, Inc.
45 1.1 perseant *
46 1.1 perseant * Redistribution and use in source and binary forms, with or without
47 1.1 perseant * modification, are permitted provided that the following conditions
48 1.1 perseant * are met:
49 1.1 perseant * 1. Redistributions of source code must retain the above copyright
50 1.1 perseant * notice, this list of conditions and the following disclaimer.
51 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
52 1.1 perseant * notice, this list of conditions and the following disclaimer in the
53 1.1 perseant * documentation and/or other materials provided with the distribution.
54 1.7 agc * 3. Neither the name of the University nor the names of its contributors
55 1.1 perseant * may be used to endorse or promote products derived from this software
56 1.1 perseant * without specific prior written permission.
57 1.1 perseant *
58 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 1.1 perseant * SUCH DAMAGE.
69 1.1 perseant *
70 1.1 perseant * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 1.1 perseant */
72 1.1 perseant
73 1.1 perseant
74 1.1 perseant #include <sys/types.h>
75 1.1 perseant #include <sys/param.h>
76 1.1 perseant #include <sys/time.h>
77 1.1 perseant #include <sys/buf.h>
78 1.1 perseant #include <sys/mount.h>
79 1.1 perseant
80 1.1 perseant #include <ufs/ufs/inode.h>
81 1.1 perseant #include <ufs/ufs/ufsmount.h>
82 1.1 perseant #define vnode uvnode
83 1.1 perseant #include <ufs/lfs/lfs.h>
84 1.1 perseant #undef vnode
85 1.1 perseant
86 1.1 perseant #include <assert.h>
87 1.1 perseant #include <err.h>
88 1.1 perseant #include <errno.h>
89 1.1 perseant #include <stdarg.h>
90 1.1 perseant #include <stdio.h>
91 1.1 perseant #include <stdlib.h>
92 1.1 perseant #include <string.h>
93 1.1 perseant #include <unistd.h>
94 1.26 christos #include <util.h>
95 1.1 perseant
96 1.1 perseant #include "bufcache.h"
97 1.1 perseant #include "vnode.h"
98 1.17 christos #include "lfs_user.h"
99 1.1 perseant #include "segwrite.h"
100 1.1 perseant
101 1.1 perseant #define panic call_panic
102 1.1 perseant
103 1.1 perseant extern u_int32_t cksum(void *, size_t);
104 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
105 1.8 perseant extern void pwarn(const char *, ...);
106 1.1 perseant
107 1.1 perseant extern struct uvnodelst vnodelist;
108 1.10 perseant extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
109 1.1 perseant extern int nvnodes;
110 1.1 perseant
111 1.24 perseant static int
112 1.24 perseant lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
113 1.24 perseant
114 1.1 perseant int fsdirty = 0;
115 1.1 perseant void (*panic_func)(int, const char *, va_list) = my_vpanic;
116 1.1 perseant
117 1.1 perseant /*
118 1.1 perseant * LFS buffer and uvnode operations
119 1.1 perseant */
120 1.1 perseant
121 1.1 perseant int
122 1.1 perseant lfs_vop_strategy(struct ubuf * bp)
123 1.1 perseant {
124 1.1 perseant int count;
125 1.1 perseant
126 1.1 perseant if (bp->b_flags & B_READ) {
127 1.1 perseant count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
128 1.1 perseant dbtob(bp->b_blkno));
129 1.1 perseant if (count == bp->b_bcount)
130 1.1 perseant bp->b_flags |= B_DONE;
131 1.1 perseant } else {
132 1.1 perseant count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
133 1.1 perseant dbtob(bp->b_blkno));
134 1.1 perseant if (count == 0) {
135 1.23 christos perror("pwrite");
136 1.1 perseant return -1;
137 1.1 perseant }
138 1.1 perseant bp->b_flags &= ~B_DELWRI;
139 1.1 perseant reassignbuf(bp, bp->b_vp);
140 1.1 perseant }
141 1.1 perseant return 0;
142 1.1 perseant }
143 1.1 perseant
144 1.1 perseant int
145 1.1 perseant lfs_vop_bwrite(struct ubuf * bp)
146 1.1 perseant {
147 1.1 perseant struct lfs *fs;
148 1.1 perseant
149 1.1 perseant fs = bp->b_vp->v_fs;
150 1.1 perseant if (!(bp->b_flags & B_DELWRI)) {
151 1.1 perseant fs->lfs_avail -= btofsb(fs, bp->b_bcount);
152 1.1 perseant }
153 1.1 perseant bp->b_flags |= B_DELWRI | B_LOCKED;
154 1.1 perseant reassignbuf(bp, bp->b_vp);
155 1.27 ad brelse(bp, 0);
156 1.1 perseant return 0;
157 1.1 perseant }
158 1.1 perseant
159 1.1 perseant /*
160 1.1 perseant * ufs_bmaparray does the bmap conversion, and if requested returns the
161 1.1 perseant * array of logical blocks which must be traversed to get to a block.
162 1.1 perseant * Each entry contains the offset into that block that gets you to the
163 1.1 perseant * next block and the disk address of the block (if it is assigned).
164 1.1 perseant */
165 1.1 perseant int
166 1.1 perseant ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
167 1.1 perseant {
168 1.1 perseant struct inode *ip;
169 1.1 perseant struct ubuf *bp;
170 1.1 perseant struct indir a[NIADDR + 1], *xap;
171 1.1 perseant daddr_t daddr;
172 1.1 perseant daddr_t metalbn;
173 1.1 perseant int error, num;
174 1.1 perseant
175 1.1 perseant ip = VTOI(vp);
176 1.1 perseant
177 1.1 perseant if (bn >= 0 && bn < NDADDR) {
178 1.1 perseant if (nump != NULL)
179 1.1 perseant *nump = 0;
180 1.2 fvdl *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
181 1.1 perseant if (*bnp == 0)
182 1.1 perseant *bnp = -1;
183 1.1 perseant return (0);
184 1.1 perseant }
185 1.1 perseant xap = ap == NULL ? a : ap;
186 1.1 perseant if (!nump)
187 1.1 perseant nump = #
188 1.1 perseant if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
189 1.1 perseant return (error);
190 1.1 perseant
191 1.1 perseant num = *nump;
192 1.1 perseant
193 1.1 perseant /* Get disk address out of indirect block array */
194 1.2 fvdl daddr = ip->i_ffs1_ib[xap->in_off];
195 1.1 perseant
196 1.1 perseant for (bp = NULL, ++xap; --num; ++xap) {
197 1.1 perseant /* Exit the loop if there is no disk address assigned yet and
198 1.1 perseant * the indirect block isn't in the cache, or if we were
199 1.1 perseant * looking for an indirect block and we've found it. */
200 1.1 perseant
201 1.1 perseant metalbn = xap->in_lbn;
202 1.1 perseant if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
203 1.1 perseant break;
204 1.1 perseant /*
205 1.1 perseant * If we get here, we've either got the block in the cache
206 1.1 perseant * or we have a disk address for it, go fetch it.
207 1.1 perseant */
208 1.1 perseant if (bp)
209 1.27 ad brelse(bp, 0);
210 1.1 perseant
211 1.1 perseant xap->in_exists = 1;
212 1.1 perseant bp = getblk(vp, metalbn, fs->lfs_bsize);
213 1.1 perseant
214 1.1 perseant if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
215 1.1 perseant bp->b_blkno = fsbtodb(fs, daddr);
216 1.1 perseant bp->b_flags |= B_READ;
217 1.1 perseant VOP_STRATEGY(bp);
218 1.1 perseant }
219 1.1 perseant daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
220 1.1 perseant }
221 1.1 perseant if (bp)
222 1.27 ad brelse(bp, 0);
223 1.1 perseant
224 1.1 perseant daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
225 1.1 perseant *bnp = daddr == 0 ? -1 : daddr;
226 1.1 perseant return (0);
227 1.1 perseant }
228 1.1 perseant
229 1.1 perseant /*
230 1.1 perseant * Create an array of logical block number/offset pairs which represent the
231 1.1 perseant * path of indirect blocks required to access a data block. The first "pair"
232 1.1 perseant * contains the logical block number of the appropriate single, double or
233 1.1 perseant * triple indirect block and the offset into the inode indirect block array.
234 1.1 perseant * Note, the logical block number of the inode single/double/triple indirect
235 1.2 fvdl * block appears twice in the array, once with the offset into the i_ffs1_ib and
236 1.1 perseant * once with the offset into the page itself.
237 1.1 perseant */
238 1.1 perseant int
239 1.1 perseant ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
240 1.1 perseant {
241 1.1 perseant daddr_t metalbn, realbn;
242 1.1 perseant int64_t blockcnt;
243 1.1 perseant int lbc;
244 1.1 perseant int i, numlevels, off;
245 1.1 perseant int lognindir, indir;
246 1.1 perseant
247 1.19 jmc metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
248 1.19 jmc
249 1.1 perseant if (nump)
250 1.1 perseant *nump = 0;
251 1.1 perseant numlevels = 0;
252 1.1 perseant realbn = bn;
253 1.1 perseant if (bn < 0)
254 1.1 perseant bn = -bn;
255 1.1 perseant
256 1.1 perseant lognindir = -1;
257 1.1 perseant for (indir = fs->lfs_nindir; indir; indir >>= 1)
258 1.1 perseant ++lognindir;
259 1.1 perseant
260 1.1 perseant /* Determine the number of levels of indirection. After this loop is
261 1.1 perseant * done, blockcnt indicates the number of data blocks possible at the
262 1.1 perseant * given level of indirection, and NIADDR - i is the number of levels
263 1.1 perseant * of indirection needed to locate the requested block. */
264 1.1 perseant
265 1.1 perseant bn -= NDADDR;
266 1.1 perseant for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
267 1.1 perseant if (i == 0)
268 1.1 perseant return (EFBIG);
269 1.1 perseant
270 1.1 perseant lbc += lognindir;
271 1.1 perseant blockcnt = (int64_t) 1 << lbc;
272 1.1 perseant
273 1.1 perseant if (bn < blockcnt)
274 1.1 perseant break;
275 1.1 perseant }
276 1.1 perseant
277 1.1 perseant /* Calculate the address of the first meta-block. */
278 1.18 chs metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
279 1.1 perseant
280 1.1 perseant /* At each iteration, off is the offset into the bap array which is an
281 1.1 perseant * array of disk addresses at the current level of indirection. The
282 1.1 perseant * logical block number and the offset in that block are stored into
283 1.1 perseant * the argument array. */
284 1.1 perseant ap->in_lbn = metalbn;
285 1.1 perseant ap->in_off = off = NIADDR - i;
286 1.1 perseant ap->in_exists = 0;
287 1.1 perseant ap++;
288 1.1 perseant for (++numlevels; i <= NIADDR; i++) {
289 1.1 perseant /* If searching for a meta-data block, quit when found. */
290 1.1 perseant if (metalbn == realbn)
291 1.1 perseant break;
292 1.1 perseant
293 1.1 perseant lbc -= lognindir;
294 1.1 perseant blockcnt = (int64_t) 1 << lbc;
295 1.1 perseant off = (bn >> lbc) & (fs->lfs_nindir - 1);
296 1.1 perseant
297 1.1 perseant ++numlevels;
298 1.1 perseant ap->in_lbn = metalbn;
299 1.1 perseant ap->in_off = off;
300 1.1 perseant ap->in_exists = 0;
301 1.1 perseant ++ap;
302 1.1 perseant
303 1.1 perseant metalbn -= -1 + (off << lbc);
304 1.1 perseant }
305 1.1 perseant if (nump)
306 1.1 perseant *nump = numlevels;
307 1.1 perseant return (0);
308 1.1 perseant }
309 1.1 perseant
310 1.1 perseant int
311 1.1 perseant lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
312 1.1 perseant {
313 1.1 perseant return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
314 1.1 perseant }
315 1.1 perseant
316 1.1 perseant /* Search a block for a specific dinode. */
317 1.2 fvdl struct ufs1_dinode *
318 1.1 perseant lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
319 1.1 perseant {
320 1.2 fvdl struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
321 1.2 fvdl struct ufs1_dinode *ldip, *fin;
322 1.1 perseant
323 1.1 perseant fin = dip + INOPB(fs);
324 1.1 perseant
325 1.1 perseant /*
326 1.1 perseant * Read the inode block backwards, since later versions of the
327 1.1 perseant * inode will supercede earlier ones. Though it is unlikely, it is
328 1.1 perseant * possible that the same inode will appear in the same inode block.
329 1.1 perseant */
330 1.1 perseant for (ldip = fin - 1; ldip >= dip; --ldip)
331 1.1 perseant if (ldip->di_inumber == ino)
332 1.1 perseant return (ldip);
333 1.1 perseant return NULL;
334 1.1 perseant }
335 1.1 perseant
336 1.1 perseant /*
337 1.1 perseant * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
338 1.1 perseant * XXX it currently loses atime information.
339 1.1 perseant */
340 1.1 perseant struct uvnode *
341 1.1 perseant lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
342 1.1 perseant {
343 1.1 perseant struct uvnode *vp;
344 1.1 perseant struct inode *ip;
345 1.2 fvdl struct ufs1_dinode *dip;
346 1.1 perseant struct ubuf *bp;
347 1.10 perseant int i, hash;
348 1.1 perseant
349 1.26 christos vp = ecalloc(1, sizeof(*vp));
350 1.1 perseant vp->v_fd = fd;
351 1.1 perseant vp->v_fs = fs;
352 1.1 perseant vp->v_usecount = 0;
353 1.1 perseant vp->v_strategy_op = lfs_vop_strategy;
354 1.1 perseant vp->v_bwrite_op = lfs_vop_bwrite;
355 1.1 perseant vp->v_bmap_op = lfs_vop_bmap;
356 1.5 yamt LIST_INIT(&vp->v_cleanblkhd);
357 1.5 yamt LIST_INIT(&vp->v_dirtyblkhd);
358 1.1 perseant
359 1.26 christos ip = ecalloc(1, sizeof(*ip));
360 1.26 christos
361 1.26 christos ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
362 1.2 fvdl
363 1.1 perseant /* Initialize the inode -- from lfs_vcreate. */
364 1.26 christos ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
365 1.1 perseant vp->v_data = ip;
366 1.1 perseant /* ip->i_vnode = vp; */
367 1.1 perseant ip->i_number = ino;
368 1.1 perseant ip->i_lockf = 0;
369 1.1 perseant ip->i_diroff = 0;
370 1.1 perseant ip->i_lfs_effnblks = 0;
371 1.1 perseant ip->i_flag = 0;
372 1.1 perseant
373 1.1 perseant /* Load inode block and find inode */
374 1.8 perseant if (daddr > 0) {
375 1.9 perseant bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
376 1.8 perseant bp->b_flags |= B_AGE;
377 1.8 perseant dip = lfs_ifind(fs, ino, bp);
378 1.8 perseant if (dip == NULL) {
379 1.27 ad brelse(bp, 0);
380 1.8 perseant free(ip);
381 1.8 perseant free(vp);
382 1.8 perseant return NULL;
383 1.8 perseant }
384 1.8 perseant memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
385 1.27 ad brelse(bp, 0);
386 1.1 perseant }
387 1.1 perseant ip->i_number = ino;
388 1.9 perseant /* ip->i_devvp = fs->lfs_devvp; */
389 1.1 perseant ip->i_lfs = fs;
390 1.1 perseant
391 1.2 fvdl ip->i_ffs_effnlink = ip->i_ffs1_nlink;
392 1.2 fvdl ip->i_lfs_effnblks = ip->i_ffs1_blocks;
393 1.2 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
394 1.1 perseant #if 0
395 1.1 perseant if (fs->lfs_version > 1) {
396 1.2 fvdl ip->i_ffs1_atime = ts.tv_sec;
397 1.2 fvdl ip->i_ffs1_atimensec = ts.tv_nsec;
398 1.1 perseant }
399 1.1 perseant #endif
400 1.1 perseant
401 1.1 perseant memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
402 1.1 perseant for (i = 0; i < NDADDR; i++)
403 1.2 fvdl if (ip->i_ffs1_db[i] != 0)
404 1.1 perseant ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
405 1.6 yamt
406 1.6 yamt ++nvnodes;
407 1.11 martin hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
408 1.10 perseant LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
409 1.6 yamt LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
410 1.1 perseant
411 1.1 perseant return vp;
412 1.1 perseant }
413 1.1 perseant
414 1.1 perseant static struct uvnode *
415 1.1 perseant lfs_vget(void *vfs, ino_t ino)
416 1.1 perseant {
417 1.1 perseant struct lfs *fs = (struct lfs *)vfs;
418 1.1 perseant ufs_daddr_t daddr;
419 1.1 perseant struct ubuf *bp;
420 1.1 perseant IFILE *ifp;
421 1.1 perseant
422 1.1 perseant LFS_IENTRY(ifp, fs, ino, bp);
423 1.1 perseant daddr = ifp->if_daddr;
424 1.27 ad brelse(bp, 0);
425 1.13 perseant if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
426 1.1 perseant return NULL;
427 1.1 perseant return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
428 1.1 perseant }
429 1.1 perseant
430 1.1 perseant /* Check superblock magic number and checksum */
431 1.1 perseant static int
432 1.1 perseant check_sb(struct lfs *fs)
433 1.1 perseant {
434 1.1 perseant u_int32_t checksum;
435 1.1 perseant
436 1.1 perseant if (fs->lfs_magic != LFS_MAGIC) {
437 1.1 perseant printf("Superblock magic number (0x%lx) does not match "
438 1.1 perseant "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
439 1.1 perseant (unsigned long) LFS_MAGIC);
440 1.1 perseant return 1;
441 1.1 perseant }
442 1.1 perseant /* checksum */
443 1.1 perseant checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
444 1.1 perseant if (fs->lfs_cksum != checksum) {
445 1.1 perseant printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
446 1.1 perseant (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
447 1.1 perseant return 1;
448 1.1 perseant }
449 1.1 perseant return 0;
450 1.1 perseant }
451 1.1 perseant
452 1.1 perseant /* Initialize LFS library; load superblocks and choose which to use. */
453 1.1 perseant struct lfs *
454 1.8 perseant lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
455 1.1 perseant {
456 1.1 perseant struct uvnode *devvp;
457 1.1 perseant struct ubuf *bp;
458 1.1 perseant int tryalt;
459 1.1 perseant struct lfs *fs, *altfs;
460 1.1 perseant int error;
461 1.1 perseant
462 1.1 perseant vfs_init();
463 1.1 perseant
464 1.26 christos devvp = ecalloc(1, sizeof(*devvp));
465 1.1 perseant devvp->v_fs = NULL;
466 1.1 perseant devvp->v_fd = devfd;
467 1.1 perseant devvp->v_strategy_op = raw_vop_strategy;
468 1.1 perseant devvp->v_bwrite_op = raw_vop_bwrite;
469 1.1 perseant devvp->v_bmap_op = raw_vop_bmap;
470 1.5 yamt LIST_INIT(&devvp->v_cleanblkhd);
471 1.5 yamt LIST_INIT(&devvp->v_dirtyblkhd);
472 1.1 perseant
473 1.1 perseant tryalt = 0;
474 1.8 perseant if (dummy_read) {
475 1.8 perseant if (sblkno == 0)
476 1.8 perseant sblkno = btodb(LFS_LABELPAD);
477 1.26 christos fs = ecalloc(1, sizeof(*fs));
478 1.9 perseant fs->lfs_devvp = devvp;
479 1.8 perseant } else {
480 1.8 perseant if (sblkno == 0) {
481 1.8 perseant sblkno = btodb(LFS_LABELPAD);
482 1.8 perseant tryalt = 1;
483 1.8 perseant } else if (debug) {
484 1.8 perseant printf("No -b flag given, not attempting to verify checkpoint\n");
485 1.8 perseant }
486 1.8 perseant error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
487 1.26 christos fs = ecalloc(1, sizeof(*fs));
488 1.8 perseant fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
489 1.9 perseant fs->lfs_devvp = devvp;
490 1.1 perseant bp->b_flags |= B_INVAL;
491 1.27 ad brelse(bp, 0);
492 1.8 perseant
493 1.8 perseant if (tryalt) {
494 1.8 perseant error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
495 1.8 perseant LFS_SBPAD, NOCRED, &bp);
496 1.26 christos altfs = ecalloc(1, sizeof(*altfs));
497 1.8 perseant altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
498 1.9 perseant altfs->lfs_devvp = devvp;
499 1.8 perseant bp->b_flags |= B_INVAL;
500 1.27 ad brelse(bp, 0);
501 1.8 perseant
502 1.8 perseant if (check_sb(fs) || fs->lfs_idaddr <= 0) {
503 1.1 perseant if (debug)
504 1.8 perseant printf("Primary superblock is no good, using first alternate\n");
505 1.8 perseant free(fs);
506 1.8 perseant fs = altfs;
507 1.1 perseant } else {
508 1.8 perseant /* If both superblocks check out, try verification */
509 1.8 perseant if (check_sb(altfs)) {
510 1.8 perseant if (debug)
511 1.8 perseant printf("First alternate superblock is no good, using primary\n");
512 1.1 perseant free(altfs);
513 1.1 perseant } else {
514 1.8 perseant if (lfs_verify(fs, altfs, devvp, debug) == fs) {
515 1.8 perseant free(altfs);
516 1.8 perseant } else {
517 1.8 perseant free(fs);
518 1.8 perseant fs = altfs;
519 1.8 perseant }
520 1.1 perseant }
521 1.1 perseant }
522 1.1 perseant }
523 1.8 perseant if (check_sb(fs)) {
524 1.8 perseant free(fs);
525 1.8 perseant return NULL;
526 1.8 perseant }
527 1.1 perseant }
528 1.8 perseant
529 1.1 perseant /* Compatibility */
530 1.1 perseant if (fs->lfs_version < 2) {
531 1.1 perseant fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
532 1.1 perseant fs->lfs_ibsize = fs->lfs_bsize;
533 1.1 perseant fs->lfs_start = fs->lfs_sboffs[0];
534 1.1 perseant fs->lfs_tstamp = fs->lfs_otstamp;
535 1.1 perseant fs->lfs_fsbtodb = 0;
536 1.1 perseant }
537 1.8 perseant
538 1.8 perseant if (!dummy_read) {
539 1.26 christos fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
540 1.26 christos fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
541 1.26 christos fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542 1.8 perseant }
543 1.1 perseant
544 1.1 perseant if (idaddr == 0)
545 1.1 perseant idaddr = fs->lfs_idaddr;
546 1.10 perseant else
547 1.10 perseant fs->lfs_idaddr = idaddr;
548 1.8 perseant /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
549 1.8 perseant fs->lfs_ivnode = lfs_raw_vget(fs,
550 1.8 perseant (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
551 1.8 perseant idaddr);
552 1.21 perseant if (fs->lfs_ivnode == NULL)
553 1.21 perseant return NULL;
554 1.1 perseant
555 1.1 perseant register_vget((void *)fs, lfs_vget);
556 1.1 perseant
557 1.1 perseant return fs;
558 1.1 perseant }
559 1.1 perseant
560 1.1 perseant /*
561 1.1 perseant * Check partial segment validity between fs->lfs_offset and the given goal.
562 1.12 perseant *
563 1.12 perseant * If goal == 0, just keep on going until the segments stop making sense,
564 1.12 perseant * and return the address of the last valid partial segment.
565 1.12 perseant *
566 1.12 perseant * If goal != 0, return the address of the first partial segment that failed,
567 1.12 perseant * or "goal" if we reached it without failure (the partial segment *at* goal
568 1.12 perseant * need not be valid).
569 1.1 perseant */
570 1.1 perseant ufs_daddr_t
571 1.1 perseant try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
572 1.1 perseant {
573 1.1 perseant ufs_daddr_t daddr, odaddr;
574 1.1 perseant SEGSUM *sp;
575 1.25 perseant int i, bc, hitclean;
576 1.1 perseant struct ubuf *bp;
577 1.1 perseant ufs_daddr_t nodirop_daddr;
578 1.1 perseant u_int64_t serial;
579 1.1 perseant
580 1.25 perseant bc = 0;
581 1.25 perseant hitclean = 0;
582 1.12 perseant odaddr = -1;
583 1.1 perseant daddr = osb->lfs_offset;
584 1.1 perseant nodirop_daddr = daddr;
585 1.1 perseant serial = osb->lfs_serial;
586 1.1 perseant while (daddr != goal) {
587 1.24 perseant /*
588 1.24 perseant * Don't mistakenly read a superblock, if there is one here.
589 1.24 perseant */
590 1.24 perseant if (sntod(osb, dtosn(osb, daddr)) == daddr) {
591 1.25 perseant if (daddr == osb->lfs_start)
592 1.25 perseant daddr += btofsb(osb, LFS_LABELPAD);
593 1.24 perseant for (i = 0; i < LFS_MAXNUMSB; i++) {
594 1.24 perseant if (osb->lfs_sboffs[i] < daddr)
595 1.24 perseant break;
596 1.24 perseant if (osb->lfs_sboffs[i] == daddr)
597 1.24 perseant daddr += btofsb(osb, LFS_SBPAD);
598 1.24 perseant }
599 1.24 perseant }
600 1.24 perseant
601 1.1 perseant /* Read in summary block */
602 1.1 perseant bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
603 1.1 perseant sp = (SEGSUM *)bp->b_data;
604 1.1 perseant
605 1.1 perseant /*
606 1.24 perseant * Check for a valid segment summary belonging to our fs.
607 1.1 perseant */
608 1.1 perseant if (sp->ss_magic != SS_MAGIC ||
609 1.1 perseant sp->ss_ident != osb->lfs_ident ||
610 1.24 perseant sp->ss_serial < serial || /* XXX strengthen this */
611 1.1 perseant sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
612 1.1 perseant sizeof(sp->ss_sumsum))) {
613 1.27 ad brelse(bp, 0);
614 1.24 perseant if (debug) {
615 1.24 perseant if (sp->ss_magic != SS_MAGIC)
616 1.24 perseant pwarn("pseg at 0x%x: "
617 1.24 perseant "wrong magic number\n",
618 1.24 perseant (int)daddr);
619 1.24 perseant else if (sp->ss_ident != osb->lfs_ident)
620 1.24 perseant pwarn("pseg at 0x%x: "
621 1.24 perseant "expected ident %llx, got %llx\n",
622 1.24 perseant (int)daddr,
623 1.24 perseant (long long)sp->ss_ident,
624 1.24 perseant (long long)osb->lfs_ident);
625 1.24 perseant else if (sp->ss_serial >= serial)
626 1.24 perseant pwarn("pseg at 0x%x: "
627 1.24 perseant "serial %d < %d\n", (int)daddr,
628 1.24 perseant (int)sp->ss_serial, (int)serial);
629 1.24 perseant else
630 1.24 perseant pwarn("pseg at 0x%x: "
631 1.24 perseant "summary checksum wrong\n",
632 1.24 perseant (int)daddr);
633 1.1 perseant }
634 1.1 perseant break;
635 1.1 perseant }
636 1.24 perseant if (debug && sp->ss_serial != serial)
637 1.25 perseant pwarn("warning, serial=%d ss_serial=%d\n",
638 1.24 perseant (int)serial, (int)sp->ss_serial);
639 1.1 perseant ++serial;
640 1.1 perseant bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
641 1.1 perseant if (bc == 0) {
642 1.27 ad brelse(bp, 0);
643 1.1 perseant break;
644 1.1 perseant }
645 1.24 perseant if (debug)
646 1.24 perseant pwarn("summary good: 0x%x/%d\n", (int)daddr,
647 1.24 perseant (int)sp->ss_serial);
648 1.1 perseant assert (bc > 0);
649 1.1 perseant odaddr = daddr;
650 1.1 perseant daddr += btofsb(osb, osb->lfs_sumsize + bc);
651 1.1 perseant if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
652 1.1 perseant dtosn(osb, daddr) != dtosn(osb, daddr +
653 1.25 perseant btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
654 1.1 perseant daddr = sp->ss_next;
655 1.1 perseant }
656 1.24 perseant
657 1.24 perseant /*
658 1.24 perseant * Check for the beginning and ending of a sequence of
659 1.25 perseant * dirops. Writes from the cleaner never involve new
660 1.25 perseant * information, and are always checkpoints; so don't try
661 1.25 perseant * to roll forward through them. Likewise, psegs written
662 1.25 perseant * by a previous roll-forward attempt are not interesting.
663 1.24 perseant */
664 1.25 perseant if (sp->ss_flags & (SS_CLEAN | SS_RFW))
665 1.25 perseant hitclean = 1;
666 1.25 perseant if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
667 1.1 perseant nodirop_daddr = daddr;
668 1.24 perseant
669 1.27 ad brelse(bp, 0);
670 1.1 perseant }
671 1.1 perseant
672 1.1 perseant if (goal == 0)
673 1.1 perseant return nodirop_daddr;
674 1.1 perseant else
675 1.1 perseant return daddr;
676 1.1 perseant }
677 1.1 perseant
678 1.1 perseant /* Use try_verify to check whether the newer superblock is valid. */
679 1.1 perseant struct lfs *
680 1.1 perseant lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
681 1.1 perseant {
682 1.1 perseant ufs_daddr_t daddr;
683 1.1 perseant struct lfs *osb, *nsb;
684 1.1 perseant
685 1.1 perseant /*
686 1.1 perseant * Verify the checkpoint of the newer superblock,
687 1.1 perseant * if the timestamp/serial number of the two superblocks is
688 1.1 perseant * different.
689 1.1 perseant */
690 1.1 perseant
691 1.14 lukem osb = NULL;
692 1.1 perseant if (debug)
693 1.24 perseant pwarn("sb0 %lld, sb1 %lld",
694 1.24 perseant (long long) sb0->lfs_serial,
695 1.24 perseant (long long) sb1->lfs_serial);
696 1.1 perseant
697 1.1 perseant if ((sb0->lfs_version == 1 &&
698 1.1 perseant sb0->lfs_otstamp != sb1->lfs_otstamp) ||
699 1.1 perseant (sb0->lfs_version > 1 &&
700 1.1 perseant sb0->lfs_serial != sb1->lfs_serial)) {
701 1.1 perseant if (sb0->lfs_version == 1) {
702 1.1 perseant if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
703 1.1 perseant osb = sb1;
704 1.1 perseant nsb = sb0;
705 1.1 perseant } else {
706 1.1 perseant osb = sb0;
707 1.1 perseant nsb = sb1;
708 1.1 perseant }
709 1.1 perseant } else {
710 1.1 perseant if (sb0->lfs_serial > sb1->lfs_serial) {
711 1.1 perseant osb = sb1;
712 1.1 perseant nsb = sb0;
713 1.1 perseant } else {
714 1.1 perseant osb = sb0;
715 1.1 perseant nsb = sb1;
716 1.1 perseant }
717 1.1 perseant }
718 1.1 perseant if (debug) {
719 1.1 perseant printf("Attempting to verify newer checkpoint...");
720 1.1 perseant fflush(stdout);
721 1.1 perseant }
722 1.1 perseant daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
723 1.1 perseant
724 1.1 perseant if (debug)
725 1.1 perseant printf("done.\n");
726 1.1 perseant if (daddr == nsb->lfs_offset) {
727 1.8 perseant pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
728 1.1 perseant (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
729 1.1 perseant sbdirty();
730 1.1 perseant } else {
731 1.8 perseant pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
732 1.1 perseant }
733 1.1 perseant return (daddr == nsb->lfs_offset ? nsb : osb);
734 1.1 perseant }
735 1.1 perseant /* Nothing to check */
736 1.1 perseant return osb;
737 1.1 perseant }
738 1.1 perseant
739 1.1 perseant /* Verify a partial-segment summary; return the number of bytes on disk. */
740 1.1 perseant int
741 1.1 perseant check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
742 1.1 perseant struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
743 1.1 perseant {
744 1.1 perseant FINFO *fp;
745 1.1 perseant int bc; /* Bytes in partial segment */
746 1.1 perseant int nblocks;
747 1.1 perseant ufs_daddr_t seg_addr, daddr;
748 1.1 perseant ufs_daddr_t *dp, *idp;
749 1.1 perseant struct ubuf *bp;
750 1.1 perseant int i, j, k, datac, len;
751 1.1 perseant long sn;
752 1.1 perseant u_int32_t *datap;
753 1.1 perseant u_int32_t ccksum;
754 1.1 perseant
755 1.1 perseant sn = dtosn(fs, pseg_addr);
756 1.1 perseant seg_addr = sntod(fs, sn);
757 1.1 perseant
758 1.1 perseant /* We've already checked the sumsum, just do the data bounds and sum */
759 1.1 perseant
760 1.1 perseant /* Count the blocks. */
761 1.1 perseant nblocks = howmany(sp->ss_ninos, INOPB(fs));
762 1.1 perseant bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
763 1.1 perseant assert(bc >= 0);
764 1.1 perseant
765 1.1 perseant fp = (FINFO *) (sp + 1);
766 1.1 perseant for (i = 0; i < sp->ss_nfinfo; i++) {
767 1.1 perseant nblocks += fp->fi_nblocks;
768 1.1 perseant bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
769 1.1 perseant << fs->lfs_bshift);
770 1.1 perseant assert(bc >= 0);
771 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
772 1.24 perseant if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
773 1.24 perseant return 0;
774 1.1 perseant }
775 1.26 christos datap = emalloc(nblocks * sizeof(*datap));
776 1.1 perseant datac = 0;
777 1.1 perseant
778 1.1 perseant dp = (ufs_daddr_t *) sp;
779 1.1 perseant dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
780 1.1 perseant dp--;
781 1.1 perseant
782 1.1 perseant idp = dp;
783 1.1 perseant daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
784 1.1 perseant fp = (FINFO *) (sp + 1);
785 1.1 perseant for (i = 0, j = 0;
786 1.1 perseant i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
787 1.1 perseant if (i >= sp->ss_nfinfo && *idp != daddr) {
788 1.8 perseant pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
789 1.1 perseant ": found %d, wanted %d\n",
790 1.1 perseant pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
791 1.1 perseant if (debug)
792 1.8 perseant pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
793 1.1 perseant daddr);
794 1.1 perseant break;
795 1.1 perseant }
796 1.1 perseant while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
797 1.1 perseant bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
798 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
799 1.27 ad brelse(bp, 0);
800 1.1 perseant
801 1.1 perseant ++j;
802 1.1 perseant daddr += btofsb(fs, fs->lfs_ibsize);
803 1.1 perseant --idp;
804 1.1 perseant }
805 1.1 perseant if (i < sp->ss_nfinfo) {
806 1.1 perseant if (func)
807 1.1 perseant func(daddr, fp);
808 1.1 perseant for (k = 0; k < fp->fi_nblocks; k++) {
809 1.1 perseant len = (k == fp->fi_nblocks - 1 ?
810 1.1 perseant fp->fi_lastlength
811 1.1 perseant : fs->lfs_bsize);
812 1.1 perseant bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
813 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
814 1.27 ad brelse(bp, 0);
815 1.1 perseant daddr += btofsb(fs, len);
816 1.1 perseant }
817 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
818 1.1 perseant }
819 1.1 perseant }
820 1.1 perseant
821 1.1 perseant if (datac != nblocks) {
822 1.8 perseant pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
823 1.1 perseant (long long) pseg_addr, nblocks, datac);
824 1.1 perseant }
825 1.1 perseant ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
826 1.1 perseant /* Check the data checksum */
827 1.1 perseant if (ccksum != sp->ss_datasum) {
828 1.8 perseant pwarn("Partial segment at 0x%" PRIx32 " data checksum"
829 1.1 perseant " mismatch: given 0x%x, computed 0x%x\n",
830 1.1 perseant pseg_addr, sp->ss_datasum, ccksum);
831 1.1 perseant free(datap);
832 1.1 perseant return 0;
833 1.1 perseant }
834 1.1 perseant free(datap);
835 1.1 perseant assert(bc >= 0);
836 1.1 perseant return bc;
837 1.1 perseant }
838 1.1 perseant
839 1.1 perseant /* print message and exit */
840 1.1 perseant void
841 1.1 perseant my_vpanic(int fatal, const char *fmt, va_list ap)
842 1.1 perseant {
843 1.1 perseant (void) vprintf(fmt, ap);
844 1.1 perseant exit(8);
845 1.1 perseant }
846 1.1 perseant
847 1.1 perseant void
848 1.1 perseant call_panic(const char *fmt, ...)
849 1.1 perseant {
850 1.1 perseant va_list ap;
851 1.1 perseant
852 1.1 perseant va_start(ap, fmt);
853 1.1 perseant panic_func(1, fmt, ap);
854 1.1 perseant va_end(ap);
855 1.1 perseant }
856 1.16 perseant
857 1.16 perseant /* Allocate a new inode. */
858 1.16 perseant struct uvnode *
859 1.16 perseant lfs_valloc(struct lfs *fs, ino_t ino)
860 1.16 perseant {
861 1.16 perseant struct ubuf *bp, *cbp;
862 1.16 perseant struct ifile *ifp;
863 1.16 perseant ino_t new_ino;
864 1.16 perseant int error;
865 1.16 perseant int new_gen;
866 1.16 perseant CLEANERINFO *cip;
867 1.16 perseant
868 1.16 perseant /* Get the head of the freelist. */
869 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
870 1.16 perseant
871 1.16 perseant /*
872 1.16 perseant * Remove the inode from the free list and write the new start
873 1.16 perseant * of the free list into the superblock.
874 1.16 perseant */
875 1.16 perseant LFS_IENTRY(ifp, fs, new_ino, bp);
876 1.16 perseant if (ifp->if_daddr != LFS_UNUSED_DADDR)
877 1.16 perseant panic("lfs_valloc: inuse inode %d on the free list", new_ino);
878 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
879 1.16 perseant
880 1.16 perseant new_gen = ifp->if_version; /* version was updated by vfree */
881 1.27 ad brelse(bp, 0);
882 1.16 perseant
883 1.16 perseant /* Extend IFILE so that the next lfs_valloc will succeed. */
884 1.16 perseant if (fs->lfs_freehd == LFS_UNUSED_INUM) {
885 1.16 perseant if ((error = extend_ifile(fs)) != 0) {
886 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
887 1.16 perseant return NULL;
888 1.16 perseant }
889 1.16 perseant }
890 1.16 perseant
891 1.16 perseant /* Set superblock modified bit and increment file count. */
892 1.16 perseant sbdirty();
893 1.16 perseant ++fs->lfs_nfiles;
894 1.16 perseant
895 1.16 perseant return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
896 1.16 perseant }
897 1.16 perseant
898 1.24 perseant #ifdef IN_FSCK_LFS
899 1.24 perseant void reset_maxino(ino_t);
900 1.24 perseant #endif
901 1.24 perseant
902 1.16 perseant /*
903 1.16 perseant * Add a new block to the Ifile, to accommodate future file creations.
904 1.16 perseant */
905 1.16 perseant int
906 1.16 perseant extend_ifile(struct lfs *fs)
907 1.16 perseant {
908 1.16 perseant struct uvnode *vp;
909 1.16 perseant struct inode *ip;
910 1.16 perseant IFILE *ifp;
911 1.16 perseant IFILE_V1 *ifp_v1;
912 1.16 perseant struct ubuf *bp, *cbp;
913 1.16 perseant daddr_t i, blkno, max;
914 1.16 perseant ino_t oldlast;
915 1.16 perseant CLEANERINFO *cip;
916 1.16 perseant
917 1.16 perseant vp = fs->lfs_ivnode;
918 1.16 perseant ip = VTOI(vp);
919 1.16 perseant blkno = lblkno(fs, ip->i_ffs1_size);
920 1.16 perseant
921 1.24 perseant lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
922 1.16 perseant ip->i_ffs1_size += fs->lfs_bsize;
923 1.24 perseant ip->i_flag |= IN_MODIFIED;
924 1.16 perseant
925 1.16 perseant i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
926 1.16 perseant fs->lfs_ifpb;
927 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
928 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, i);
929 1.16 perseant max = i + fs->lfs_ifpb;
930 1.16 perseant fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
931 1.16 perseant
932 1.16 perseant if (fs->lfs_version == 1) {
933 1.16 perseant for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
934 1.16 perseant ifp_v1->if_version = 1;
935 1.16 perseant ifp_v1->if_daddr = LFS_UNUSED_DADDR;
936 1.16 perseant ifp_v1->if_nextfree = ++i;
937 1.16 perseant }
938 1.16 perseant ifp_v1--;
939 1.16 perseant ifp_v1->if_nextfree = oldlast;
940 1.16 perseant } else {
941 1.16 perseant for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
942 1.16 perseant ifp->if_version = 1;
943 1.16 perseant ifp->if_daddr = LFS_UNUSED_DADDR;
944 1.16 perseant ifp->if_nextfree = ++i;
945 1.16 perseant }
946 1.16 perseant ifp--;
947 1.16 perseant ifp->if_nextfree = oldlast;
948 1.16 perseant }
949 1.16 perseant LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
950 1.16 perseant
951 1.16 perseant LFS_BWRITE_LOG(bp);
952 1.16 perseant
953 1.24 perseant #ifdef IN_FSCK_LFS
954 1.24 perseant reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
955 1.24 perseant fs->lfs_cleansz) * fs->lfs_ifpb);
956 1.24 perseant #endif
957 1.16 perseant return 0;
958 1.16 perseant }
959 1.16 perseant
960 1.24 perseant /*
961 1.24 perseant * Allocate a block, and to inode and filesystem block accounting for it
962 1.24 perseant * and for any indirect blocks the may need to be created in order for
963 1.24 perseant * this block to be created.
964 1.24 perseant *
965 1.24 perseant * Blocks which have never been accounted for (i.e., which "do not exist")
966 1.24 perseant * have disk address 0, which is translated by ufs_bmap to the special value
967 1.24 perseant * UNASSIGNED == -1, as in the historical UFS.
968 1.24 perseant *
969 1.24 perseant * Blocks which have been accounted for but which have not yet been written
970 1.24 perseant * to disk are given the new special disk address UNWRITTEN == -2, so that
971 1.24 perseant * they can be differentiated from completely new blocks.
972 1.24 perseant */
973 1.24 perseant int
974 1.24 perseant lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
975 1.24 perseant {
976 1.24 perseant int offset;
977 1.24 perseant daddr_t daddr, idaddr;
978 1.24 perseant struct ubuf *ibp, *bp;
979 1.24 perseant struct inode *ip;
980 1.24 perseant struct lfs *fs;
981 1.24 perseant struct indir indirs[NIADDR+2], *idp;
982 1.24 perseant daddr_t lbn, lastblock;
983 1.24 perseant int bb, bcount;
984 1.24 perseant int error, frags, i, nsize, osize, num;
985 1.24 perseant
986 1.24 perseant ip = VTOI(vp);
987 1.24 perseant fs = ip->i_lfs;
988 1.24 perseant offset = blkoff(fs, startoffset);
989 1.24 perseant lbn = lblkno(fs, startoffset);
990 1.24 perseant
991 1.24 perseant /*
992 1.24 perseant * Three cases: it's a block beyond the end of file, it's a block in
993 1.24 perseant * the file that may or may not have been assigned a disk address or
994 1.24 perseant * we're writing an entire block.
995 1.24 perseant *
996 1.24 perseant * Note, if the daddr is UNWRITTEN, the block already exists in
997 1.24 perseant * the cache (it was read or written earlier). If so, make sure
998 1.24 perseant * we don't count it as a new block or zero out its contents. If
999 1.24 perseant * it did not, make sure we allocate any necessary indirect
1000 1.24 perseant * blocks.
1001 1.24 perseant *
1002 1.24 perseant * If we are writing a block beyond the end of the file, we need to
1003 1.24 perseant * check if the old last block was a fragment. If it was, we need
1004 1.24 perseant * to rewrite it.
1005 1.24 perseant */
1006 1.24 perseant
1007 1.24 perseant if (bpp)
1008 1.24 perseant *bpp = NULL;
1009 1.24 perseant
1010 1.24 perseant /* Check for block beyond end of file and fragment extension needed. */
1011 1.24 perseant lastblock = lblkno(fs, ip->i_ffs1_size);
1012 1.24 perseant if (lastblock < NDADDR && lastblock < lbn) {
1013 1.24 perseant osize = blksize(fs, ip, lastblock);
1014 1.24 perseant if (osize < fs->lfs_bsize && osize > 0) {
1015 1.24 perseant if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1016 1.24 perseant lastblock,
1017 1.24 perseant (bpp ? &bp : NULL))))
1018 1.24 perseant return (error);
1019 1.24 perseant ip->i_ffs1_size = ip->i_ffs1_size =
1020 1.24 perseant (lastblock + 1) * fs->lfs_bsize;
1021 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1022 1.24 perseant if (bpp)
1023 1.24 perseant (void) VOP_BWRITE(bp);
1024 1.24 perseant }
1025 1.24 perseant }
1026 1.24 perseant
1027 1.24 perseant /*
1028 1.24 perseant * If the block we are writing is a direct block, it's the last
1029 1.24 perseant * block in the file, and offset + iosize is less than a full
1030 1.24 perseant * block, we can write one or more fragments. There are two cases:
1031 1.24 perseant * the block is brand new and we should allocate it the correct
1032 1.24 perseant * size or it already exists and contains some fragments and
1033 1.24 perseant * may need to extend it.
1034 1.24 perseant */
1035 1.24 perseant if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1036 1.24 perseant osize = blksize(fs, ip, lbn);
1037 1.24 perseant nsize = fragroundup(fs, offset + iosize);
1038 1.24 perseant if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1039 1.24 perseant /* Brand new block or fragment */
1040 1.24 perseant frags = numfrags(fs, nsize);
1041 1.24 perseant bb = fragstofsb(fs, frags);
1042 1.24 perseant if (bpp) {
1043 1.24 perseant *bpp = bp = getblk(vp, lbn, nsize);
1044 1.24 perseant bp->b_blkno = UNWRITTEN;
1045 1.24 perseant }
1046 1.24 perseant ip->i_lfs_effnblks += bb;
1047 1.24 perseant fs->lfs_bfree -= bb;
1048 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1049 1.24 perseant } else {
1050 1.24 perseant if (nsize <= osize) {
1051 1.24 perseant /* No need to extend */
1052 1.24 perseant if (bpp && (error = bread(vp, lbn, osize, NOCRED, &bp)))
1053 1.24 perseant return error;
1054 1.24 perseant } else {
1055 1.24 perseant /* Extend existing block */
1056 1.24 perseant if ((error =
1057 1.24 perseant lfs_fragextend(vp, osize, nsize, lbn,
1058 1.24 perseant (bpp ? &bp : NULL))))
1059 1.24 perseant return error;
1060 1.24 perseant }
1061 1.24 perseant if (bpp)
1062 1.24 perseant *bpp = bp;
1063 1.24 perseant }
1064 1.24 perseant return 0;
1065 1.24 perseant }
1066 1.24 perseant
1067 1.24 perseant error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1068 1.24 perseant if (error)
1069 1.24 perseant return (error);
1070 1.24 perseant
1071 1.24 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1072 1.24 perseant
1073 1.24 perseant /*
1074 1.24 perseant * Do byte accounting all at once, so we can gracefully fail *before*
1075 1.24 perseant * we start assigning blocks.
1076 1.24 perseant */
1077 1.24 perseant bb = fsbtodb(fs, 1); /* bb = VFSTOUFS(vp->v_mount)->um_seqinc; */
1078 1.24 perseant bcount = 0;
1079 1.24 perseant if (daddr == UNASSIGNED) {
1080 1.24 perseant bcount = bb;
1081 1.24 perseant }
1082 1.24 perseant for (i = 1; i < num; ++i) {
1083 1.24 perseant if (!indirs[i].in_exists) {
1084 1.24 perseant bcount += bb;
1085 1.24 perseant }
1086 1.24 perseant }
1087 1.24 perseant fs->lfs_bfree -= bcount;
1088 1.24 perseant ip->i_lfs_effnblks += bcount;
1089 1.24 perseant
1090 1.24 perseant if (daddr == UNASSIGNED) {
1091 1.24 perseant if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1092 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1093 1.24 perseant }
1094 1.24 perseant
1095 1.24 perseant /*
1096 1.24 perseant * Create new indirect blocks if necessary
1097 1.24 perseant */
1098 1.24 perseant if (num > 1) {
1099 1.24 perseant idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1100 1.24 perseant for (i = 1; i < num; ++i) {
1101 1.24 perseant ibp = getblk(vp, indirs[i].in_lbn,
1102 1.24 perseant fs->lfs_bsize);
1103 1.24 perseant if (!indirs[i].in_exists) {
1104 1.24 perseant memset(ibp->b_data, 0, ibp->b_bufsize);
1105 1.24 perseant ibp->b_blkno = UNWRITTEN;
1106 1.24 perseant } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1107 1.24 perseant ibp->b_blkno = fsbtodb(fs, idaddr);
1108 1.24 perseant ibp->b_flags |= B_READ;
1109 1.24 perseant VOP_STRATEGY(ibp);
1110 1.24 perseant }
1111 1.24 perseant /*
1112 1.24 perseant * This block exists, but the next one may not.
1113 1.24 perseant * If that is the case mark it UNWRITTEN to
1114 1.24 perseant * keep the accounting straight.
1115 1.24 perseant */
1116 1.24 perseant /* XXX ondisk32 */
1117 1.24 perseant if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1118 1.24 perseant ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1119 1.24 perseant UNWRITTEN;
1120 1.24 perseant /* XXX ondisk32 */
1121 1.24 perseant idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1122 1.24 perseant if ((error = VOP_BWRITE(ibp)))
1123 1.24 perseant return error;
1124 1.24 perseant }
1125 1.24 perseant }
1126 1.24 perseant }
1127 1.24 perseant
1128 1.24 perseant
1129 1.24 perseant /*
1130 1.24 perseant * Get the existing block from the cache, if requested.
1131 1.24 perseant */
1132 1.24 perseant frags = fsbtofrags(fs, bb);
1133 1.24 perseant if (bpp)
1134 1.24 perseant *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1135 1.24 perseant
1136 1.24 perseant /*
1137 1.24 perseant * The block we are writing may be a brand new block
1138 1.24 perseant * in which case we need to do accounting.
1139 1.24 perseant *
1140 1.24 perseant * We can tell a truly new block because ufs_bmaparray will say
1141 1.24 perseant * it is UNASSIGNED. Once we allocate it we will assign it the
1142 1.24 perseant * disk address UNWRITTEN.
1143 1.24 perseant */
1144 1.24 perseant if (daddr == UNASSIGNED) {
1145 1.24 perseant if (bpp) {
1146 1.24 perseant /* Note the new address */
1147 1.24 perseant bp->b_blkno = UNWRITTEN;
1148 1.24 perseant }
1149 1.24 perseant
1150 1.24 perseant switch (num) {
1151 1.24 perseant case 0:
1152 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1153 1.24 perseant break;
1154 1.24 perseant case 1:
1155 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1156 1.24 perseant break;
1157 1.24 perseant default:
1158 1.24 perseant idp = &indirs[num - 1];
1159 1.24 perseant if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1160 1.24 perseant &ibp))
1161 1.24 perseant panic("lfs_balloc: bread bno %lld",
1162 1.24 perseant (long long)idp->in_lbn);
1163 1.24 perseant /* XXX ondisk32 */
1164 1.24 perseant ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1165 1.24 perseant VOP_BWRITE(ibp);
1166 1.24 perseant }
1167 1.24 perseant } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1168 1.24 perseant /*
1169 1.24 perseant * Not a brand new block, also not in the cache;
1170 1.24 perseant * read it in from disk.
1171 1.24 perseant */
1172 1.24 perseant if (iosize == fs->lfs_bsize)
1173 1.24 perseant /* Optimization: I/O is unnecessary. */
1174 1.24 perseant bp->b_blkno = daddr;
1175 1.24 perseant else {
1176 1.24 perseant /*
1177 1.24 perseant * We need to read the block to preserve the
1178 1.24 perseant * existing bytes.
1179 1.24 perseant */
1180 1.24 perseant bp->b_blkno = daddr;
1181 1.24 perseant bp->b_flags |= B_READ;
1182 1.24 perseant VOP_STRATEGY(bp);
1183 1.24 perseant return 0;
1184 1.24 perseant }
1185 1.24 perseant }
1186 1.24 perseant
1187 1.24 perseant return (0);
1188 1.24 perseant }
1189 1.24 perseant
1190 1.24 perseant int
1191 1.24 perseant lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1192 1.24 perseant struct ubuf **bpp)
1193 1.24 perseant {
1194 1.24 perseant struct inode *ip;
1195 1.24 perseant struct lfs *fs;
1196 1.24 perseant long bb;
1197 1.24 perseant int error;
1198 1.24 perseant size_t obufsize;
1199 1.24 perseant
1200 1.24 perseant ip = VTOI(vp);
1201 1.24 perseant fs = ip->i_lfs;
1202 1.24 perseant bb = (long)fragstofsb(fs, numfrags(fs, nsize - osize));
1203 1.24 perseant error = 0;
1204 1.24 perseant
1205 1.24 perseant /*
1206 1.24 perseant * If we are not asked to actually return the block, all we need
1207 1.24 perseant * to do is allocate space for it. UBC will handle dirtying the
1208 1.24 perseant * appropriate things and making sure it all goes to disk.
1209 1.24 perseant * Don't bother to read in that case.
1210 1.24 perseant */
1211 1.24 perseant if (bpp && (error = bread(vp, lbn, osize, NOCRED, bpp))) {
1212 1.27 ad brelse(*bpp, 0);
1213 1.24 perseant goto out;
1214 1.24 perseant }
1215 1.24 perseant
1216 1.24 perseant fs->lfs_bfree -= bb;
1217 1.24 perseant ip->i_lfs_effnblks += bb;
1218 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1219 1.24 perseant
1220 1.24 perseant if (bpp) {
1221 1.24 perseant obufsize = (*bpp)->b_bufsize;
1222 1.26 christos (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1223 1.26 christos (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1224 1.24 perseant }
1225 1.24 perseant
1226 1.24 perseant out:
1227 1.24 perseant return (error);
1228 1.24 perseant }
1229