lfs.c revision 1.32 1 1.32 mlelstv /* $NetBSD: lfs.c,v 1.32 2010/02/16 23:20:30 mlelstv Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1989, 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant * (c) UNIX System Laboratories, Inc.
34 1.1 perseant * All or some portions of this file are derived from material licensed
35 1.1 perseant * to the University of California by American Telephone and Telegraph
36 1.1 perseant * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 1.1 perseant * the permission of UNIX System Laboratories, Inc.
38 1.1 perseant *
39 1.1 perseant * Redistribution and use in source and binary forms, with or without
40 1.1 perseant * modification, are permitted provided that the following conditions
41 1.1 perseant * are met:
42 1.1 perseant * 1. Redistributions of source code must retain the above copyright
43 1.1 perseant * notice, this list of conditions and the following disclaimer.
44 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 perseant * notice, this list of conditions and the following disclaimer in the
46 1.1 perseant * documentation and/or other materials provided with the distribution.
47 1.7 agc * 3. Neither the name of the University nor the names of its contributors
48 1.1 perseant * may be used to endorse or promote products derived from this software
49 1.1 perseant * without specific prior written permission.
50 1.1 perseant *
51 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 perseant * SUCH DAMAGE.
62 1.1 perseant *
63 1.1 perseant * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 1.1 perseant */
65 1.1 perseant
66 1.1 perseant
67 1.1 perseant #include <sys/types.h>
68 1.1 perseant #include <sys/param.h>
69 1.1 perseant #include <sys/time.h>
70 1.1 perseant #include <sys/buf.h>
71 1.1 perseant #include <sys/mount.h>
72 1.1 perseant
73 1.1 perseant #include <ufs/ufs/inode.h>
74 1.1 perseant #include <ufs/ufs/ufsmount.h>
75 1.1 perseant #define vnode uvnode
76 1.1 perseant #include <ufs/lfs/lfs.h>
77 1.1 perseant #undef vnode
78 1.1 perseant
79 1.1 perseant #include <assert.h>
80 1.1 perseant #include <err.h>
81 1.1 perseant #include <errno.h>
82 1.1 perseant #include <stdarg.h>
83 1.1 perseant #include <stdio.h>
84 1.1 perseant #include <stdlib.h>
85 1.1 perseant #include <string.h>
86 1.1 perseant #include <unistd.h>
87 1.26 christos #include <util.h>
88 1.1 perseant
89 1.1 perseant #include "bufcache.h"
90 1.1 perseant #include "vnode.h"
91 1.17 christos #include "lfs_user.h"
92 1.1 perseant #include "segwrite.h"
93 1.31 pooka #include "kernelops.h"
94 1.1 perseant
95 1.1 perseant #define panic call_panic
96 1.1 perseant
97 1.1 perseant extern u_int32_t cksum(void *, size_t);
98 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
99 1.8 perseant extern void pwarn(const char *, ...);
100 1.1 perseant
101 1.1 perseant extern struct uvnodelst vnodelist;
102 1.10 perseant extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 1.1 perseant extern int nvnodes;
104 1.1 perseant
105 1.32 mlelstv long dev_bsize;
106 1.32 mlelstv
107 1.24 perseant static int
108 1.24 perseant lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109 1.24 perseant
110 1.1 perseant int fsdirty = 0;
111 1.1 perseant void (*panic_func)(int, const char *, va_list) = my_vpanic;
112 1.1 perseant
113 1.1 perseant /*
114 1.1 perseant * LFS buffer and uvnode operations
115 1.1 perseant */
116 1.1 perseant
117 1.1 perseant int
118 1.1 perseant lfs_vop_strategy(struct ubuf * bp)
119 1.1 perseant {
120 1.1 perseant int count;
121 1.1 perseant
122 1.1 perseant if (bp->b_flags & B_READ) {
123 1.31 pooka count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 1.32 mlelstv bp->b_blkno * dev_bsize);
125 1.1 perseant if (count == bp->b_bcount)
126 1.1 perseant bp->b_flags |= B_DONE;
127 1.1 perseant } else {
128 1.31 pooka count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 1.32 mlelstv bp->b_blkno * dev_bsize);
130 1.1 perseant if (count == 0) {
131 1.23 christos perror("pwrite");
132 1.1 perseant return -1;
133 1.1 perseant }
134 1.1 perseant bp->b_flags &= ~B_DELWRI;
135 1.1 perseant reassignbuf(bp, bp->b_vp);
136 1.1 perseant }
137 1.1 perseant return 0;
138 1.1 perseant }
139 1.1 perseant
140 1.1 perseant int
141 1.1 perseant lfs_vop_bwrite(struct ubuf * bp)
142 1.1 perseant {
143 1.1 perseant struct lfs *fs;
144 1.1 perseant
145 1.1 perseant fs = bp->b_vp->v_fs;
146 1.1 perseant if (!(bp->b_flags & B_DELWRI)) {
147 1.1 perseant fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 1.1 perseant }
149 1.1 perseant bp->b_flags |= B_DELWRI | B_LOCKED;
150 1.1 perseant reassignbuf(bp, bp->b_vp);
151 1.27 ad brelse(bp, 0);
152 1.1 perseant return 0;
153 1.1 perseant }
154 1.1 perseant
155 1.1 perseant /*
156 1.1 perseant * ufs_bmaparray does the bmap conversion, and if requested returns the
157 1.1 perseant * array of logical blocks which must be traversed to get to a block.
158 1.1 perseant * Each entry contains the offset into that block that gets you to the
159 1.1 perseant * next block and the disk address of the block (if it is assigned).
160 1.1 perseant */
161 1.1 perseant int
162 1.1 perseant ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 1.1 perseant {
164 1.1 perseant struct inode *ip;
165 1.1 perseant struct ubuf *bp;
166 1.1 perseant struct indir a[NIADDR + 1], *xap;
167 1.1 perseant daddr_t daddr;
168 1.1 perseant daddr_t metalbn;
169 1.1 perseant int error, num;
170 1.1 perseant
171 1.1 perseant ip = VTOI(vp);
172 1.1 perseant
173 1.1 perseant if (bn >= 0 && bn < NDADDR) {
174 1.1 perseant if (nump != NULL)
175 1.1 perseant *nump = 0;
176 1.2 fvdl *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 1.1 perseant if (*bnp == 0)
178 1.1 perseant *bnp = -1;
179 1.1 perseant return (0);
180 1.1 perseant }
181 1.1 perseant xap = ap == NULL ? a : ap;
182 1.1 perseant if (!nump)
183 1.1 perseant nump = #
184 1.1 perseant if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 1.1 perseant return (error);
186 1.1 perseant
187 1.1 perseant num = *nump;
188 1.1 perseant
189 1.1 perseant /* Get disk address out of indirect block array */
190 1.2 fvdl daddr = ip->i_ffs1_ib[xap->in_off];
191 1.1 perseant
192 1.1 perseant for (bp = NULL, ++xap; --num; ++xap) {
193 1.1 perseant /* Exit the loop if there is no disk address assigned yet and
194 1.1 perseant * the indirect block isn't in the cache, or if we were
195 1.1 perseant * looking for an indirect block and we've found it. */
196 1.1 perseant
197 1.1 perseant metalbn = xap->in_lbn;
198 1.1 perseant if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 1.1 perseant break;
200 1.1 perseant /*
201 1.1 perseant * If we get here, we've either got the block in the cache
202 1.1 perseant * or we have a disk address for it, go fetch it.
203 1.1 perseant */
204 1.1 perseant if (bp)
205 1.27 ad brelse(bp, 0);
206 1.1 perseant
207 1.1 perseant xap->in_exists = 1;
208 1.1 perseant bp = getblk(vp, metalbn, fs->lfs_bsize);
209 1.1 perseant
210 1.1 perseant if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 1.1 perseant bp->b_blkno = fsbtodb(fs, daddr);
212 1.1 perseant bp->b_flags |= B_READ;
213 1.1 perseant VOP_STRATEGY(bp);
214 1.1 perseant }
215 1.1 perseant daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
216 1.1 perseant }
217 1.1 perseant if (bp)
218 1.27 ad brelse(bp, 0);
219 1.1 perseant
220 1.1 perseant daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
221 1.1 perseant *bnp = daddr == 0 ? -1 : daddr;
222 1.1 perseant return (0);
223 1.1 perseant }
224 1.1 perseant
225 1.1 perseant /*
226 1.1 perseant * Create an array of logical block number/offset pairs which represent the
227 1.1 perseant * path of indirect blocks required to access a data block. The first "pair"
228 1.1 perseant * contains the logical block number of the appropriate single, double or
229 1.1 perseant * triple indirect block and the offset into the inode indirect block array.
230 1.1 perseant * Note, the logical block number of the inode single/double/triple indirect
231 1.2 fvdl * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 1.1 perseant * once with the offset into the page itself.
233 1.1 perseant */
234 1.1 perseant int
235 1.1 perseant ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 1.1 perseant {
237 1.1 perseant daddr_t metalbn, realbn;
238 1.1 perseant int64_t blockcnt;
239 1.1 perseant int lbc;
240 1.1 perseant int i, numlevels, off;
241 1.1 perseant int lognindir, indir;
242 1.1 perseant
243 1.19 jmc metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244 1.19 jmc
245 1.1 perseant if (nump)
246 1.1 perseant *nump = 0;
247 1.1 perseant numlevels = 0;
248 1.1 perseant realbn = bn;
249 1.1 perseant if (bn < 0)
250 1.1 perseant bn = -bn;
251 1.1 perseant
252 1.1 perseant lognindir = -1;
253 1.1 perseant for (indir = fs->lfs_nindir; indir; indir >>= 1)
254 1.1 perseant ++lognindir;
255 1.1 perseant
256 1.1 perseant /* Determine the number of levels of indirection. After this loop is
257 1.1 perseant * done, blockcnt indicates the number of data blocks possible at the
258 1.1 perseant * given level of indirection, and NIADDR - i is the number of levels
259 1.1 perseant * of indirection needed to locate the requested block. */
260 1.1 perseant
261 1.1 perseant bn -= NDADDR;
262 1.1 perseant for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
263 1.1 perseant if (i == 0)
264 1.1 perseant return (EFBIG);
265 1.1 perseant
266 1.1 perseant lbc += lognindir;
267 1.1 perseant blockcnt = (int64_t) 1 << lbc;
268 1.1 perseant
269 1.1 perseant if (bn < blockcnt)
270 1.1 perseant break;
271 1.1 perseant }
272 1.1 perseant
273 1.1 perseant /* Calculate the address of the first meta-block. */
274 1.18 chs metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
275 1.1 perseant
276 1.1 perseant /* At each iteration, off is the offset into the bap array which is an
277 1.1 perseant * array of disk addresses at the current level of indirection. The
278 1.1 perseant * logical block number and the offset in that block are stored into
279 1.1 perseant * the argument array. */
280 1.1 perseant ap->in_lbn = metalbn;
281 1.1 perseant ap->in_off = off = NIADDR - i;
282 1.1 perseant ap->in_exists = 0;
283 1.1 perseant ap++;
284 1.1 perseant for (++numlevels; i <= NIADDR; i++) {
285 1.1 perseant /* If searching for a meta-data block, quit when found. */
286 1.1 perseant if (metalbn == realbn)
287 1.1 perseant break;
288 1.1 perseant
289 1.1 perseant lbc -= lognindir;
290 1.1 perseant blockcnt = (int64_t) 1 << lbc;
291 1.1 perseant off = (bn >> lbc) & (fs->lfs_nindir - 1);
292 1.1 perseant
293 1.1 perseant ++numlevels;
294 1.1 perseant ap->in_lbn = metalbn;
295 1.1 perseant ap->in_off = off;
296 1.1 perseant ap->in_exists = 0;
297 1.1 perseant ++ap;
298 1.1 perseant
299 1.1 perseant metalbn -= -1 + (off << lbc);
300 1.1 perseant }
301 1.1 perseant if (nump)
302 1.1 perseant *nump = numlevels;
303 1.1 perseant return (0);
304 1.1 perseant }
305 1.1 perseant
306 1.1 perseant int
307 1.1 perseant lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 1.1 perseant {
309 1.1 perseant return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 1.1 perseant }
311 1.1 perseant
312 1.1 perseant /* Search a block for a specific dinode. */
313 1.2 fvdl struct ufs1_dinode *
314 1.1 perseant lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 1.1 perseant {
316 1.2 fvdl struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
317 1.2 fvdl struct ufs1_dinode *ldip, *fin;
318 1.1 perseant
319 1.1 perseant fin = dip + INOPB(fs);
320 1.1 perseant
321 1.1 perseant /*
322 1.1 perseant * Read the inode block backwards, since later versions of the
323 1.1 perseant * inode will supercede earlier ones. Though it is unlikely, it is
324 1.1 perseant * possible that the same inode will appear in the same inode block.
325 1.1 perseant */
326 1.1 perseant for (ldip = fin - 1; ldip >= dip; --ldip)
327 1.1 perseant if (ldip->di_inumber == ino)
328 1.1 perseant return (ldip);
329 1.1 perseant return NULL;
330 1.1 perseant }
331 1.1 perseant
332 1.1 perseant /*
333 1.1 perseant * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 1.1 perseant * XXX it currently loses atime information.
335 1.1 perseant */
336 1.1 perseant struct uvnode *
337 1.1 perseant lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
338 1.1 perseant {
339 1.1 perseant struct uvnode *vp;
340 1.1 perseant struct inode *ip;
341 1.2 fvdl struct ufs1_dinode *dip;
342 1.1 perseant struct ubuf *bp;
343 1.10 perseant int i, hash;
344 1.1 perseant
345 1.26 christos vp = ecalloc(1, sizeof(*vp));
346 1.1 perseant vp->v_fd = fd;
347 1.1 perseant vp->v_fs = fs;
348 1.1 perseant vp->v_usecount = 0;
349 1.1 perseant vp->v_strategy_op = lfs_vop_strategy;
350 1.1 perseant vp->v_bwrite_op = lfs_vop_bwrite;
351 1.1 perseant vp->v_bmap_op = lfs_vop_bmap;
352 1.5 yamt LIST_INIT(&vp->v_cleanblkhd);
353 1.5 yamt LIST_INIT(&vp->v_dirtyblkhd);
354 1.1 perseant
355 1.26 christos ip = ecalloc(1, sizeof(*ip));
356 1.26 christos
357 1.26 christos ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358 1.2 fvdl
359 1.1 perseant /* Initialize the inode -- from lfs_vcreate. */
360 1.26 christos ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361 1.1 perseant vp->v_data = ip;
362 1.1 perseant /* ip->i_vnode = vp; */
363 1.1 perseant ip->i_number = ino;
364 1.1 perseant ip->i_lockf = 0;
365 1.1 perseant ip->i_diroff = 0;
366 1.1 perseant ip->i_lfs_effnblks = 0;
367 1.1 perseant ip->i_flag = 0;
368 1.1 perseant
369 1.1 perseant /* Load inode block and find inode */
370 1.8 perseant if (daddr > 0) {
371 1.29 hannken bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
372 1.29 hannken NULL, 0, &bp);
373 1.8 perseant bp->b_flags |= B_AGE;
374 1.8 perseant dip = lfs_ifind(fs, ino, bp);
375 1.8 perseant if (dip == NULL) {
376 1.27 ad brelse(bp, 0);
377 1.8 perseant free(ip);
378 1.8 perseant free(vp);
379 1.8 perseant return NULL;
380 1.8 perseant }
381 1.8 perseant memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
382 1.27 ad brelse(bp, 0);
383 1.1 perseant }
384 1.1 perseant ip->i_number = ino;
385 1.9 perseant /* ip->i_devvp = fs->lfs_devvp; */
386 1.1 perseant ip->i_lfs = fs;
387 1.1 perseant
388 1.2 fvdl ip->i_lfs_effnblks = ip->i_ffs1_blocks;
389 1.2 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
390 1.1 perseant #if 0
391 1.1 perseant if (fs->lfs_version > 1) {
392 1.2 fvdl ip->i_ffs1_atime = ts.tv_sec;
393 1.2 fvdl ip->i_ffs1_atimensec = ts.tv_nsec;
394 1.1 perseant }
395 1.1 perseant #endif
396 1.1 perseant
397 1.1 perseant memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
398 1.1 perseant for (i = 0; i < NDADDR; i++)
399 1.2 fvdl if (ip->i_ffs1_db[i] != 0)
400 1.1 perseant ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
401 1.6 yamt
402 1.6 yamt ++nvnodes;
403 1.11 martin hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
404 1.10 perseant LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
405 1.6 yamt LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
406 1.1 perseant
407 1.1 perseant return vp;
408 1.1 perseant }
409 1.1 perseant
410 1.1 perseant static struct uvnode *
411 1.1 perseant lfs_vget(void *vfs, ino_t ino)
412 1.1 perseant {
413 1.1 perseant struct lfs *fs = (struct lfs *)vfs;
414 1.1 perseant ufs_daddr_t daddr;
415 1.1 perseant struct ubuf *bp;
416 1.1 perseant IFILE *ifp;
417 1.1 perseant
418 1.1 perseant LFS_IENTRY(ifp, fs, ino, bp);
419 1.1 perseant daddr = ifp->if_daddr;
420 1.27 ad brelse(bp, 0);
421 1.13 perseant if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
422 1.1 perseant return NULL;
423 1.1 perseant return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
424 1.1 perseant }
425 1.1 perseant
426 1.1 perseant /* Check superblock magic number and checksum */
427 1.1 perseant static int
428 1.1 perseant check_sb(struct lfs *fs)
429 1.1 perseant {
430 1.1 perseant u_int32_t checksum;
431 1.1 perseant
432 1.1 perseant if (fs->lfs_magic != LFS_MAGIC) {
433 1.1 perseant printf("Superblock magic number (0x%lx) does not match "
434 1.1 perseant "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
435 1.1 perseant (unsigned long) LFS_MAGIC);
436 1.1 perseant return 1;
437 1.1 perseant }
438 1.1 perseant /* checksum */
439 1.1 perseant checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
440 1.1 perseant if (fs->lfs_cksum != checksum) {
441 1.1 perseant printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
442 1.1 perseant (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
443 1.1 perseant return 1;
444 1.1 perseant }
445 1.1 perseant return 0;
446 1.1 perseant }
447 1.1 perseant
448 1.1 perseant /* Initialize LFS library; load superblocks and choose which to use. */
449 1.1 perseant struct lfs *
450 1.8 perseant lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
451 1.1 perseant {
452 1.1 perseant struct uvnode *devvp;
453 1.1 perseant struct ubuf *bp;
454 1.1 perseant int tryalt;
455 1.1 perseant struct lfs *fs, *altfs;
456 1.1 perseant int error;
457 1.1 perseant
458 1.1 perseant vfs_init();
459 1.1 perseant
460 1.26 christos devvp = ecalloc(1, sizeof(*devvp));
461 1.1 perseant devvp->v_fs = NULL;
462 1.1 perseant devvp->v_fd = devfd;
463 1.1 perseant devvp->v_strategy_op = raw_vop_strategy;
464 1.1 perseant devvp->v_bwrite_op = raw_vop_bwrite;
465 1.1 perseant devvp->v_bmap_op = raw_vop_bmap;
466 1.5 yamt LIST_INIT(&devvp->v_cleanblkhd);
467 1.5 yamt LIST_INIT(&devvp->v_dirtyblkhd);
468 1.1 perseant
469 1.1 perseant tryalt = 0;
470 1.8 perseant if (dummy_read) {
471 1.8 perseant if (sblkno == 0)
472 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
473 1.26 christos fs = ecalloc(1, sizeof(*fs));
474 1.9 perseant fs->lfs_devvp = devvp;
475 1.8 perseant } else {
476 1.8 perseant if (sblkno == 0) {
477 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
478 1.8 perseant tryalt = 1;
479 1.8 perseant } else if (debug) {
480 1.8 perseant printf("No -b flag given, not attempting to verify checkpoint\n");
481 1.8 perseant }
482 1.32 mlelstv
483 1.32 mlelstv dev_bsize = DEV_BSIZE;
484 1.32 mlelstv
485 1.29 hannken error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, 0, &bp);
486 1.26 christos fs = ecalloc(1, sizeof(*fs));
487 1.8 perseant fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
488 1.9 perseant fs->lfs_devvp = devvp;
489 1.1 perseant bp->b_flags |= B_INVAL;
490 1.27 ad brelse(bp, 0);
491 1.32 mlelstv
492 1.32 mlelstv dev_bsize = fs->lfs_fsize >> fs->lfs_fsbtodb;
493 1.8 perseant
494 1.8 perseant if (tryalt) {
495 1.8 perseant error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
496 1.29 hannken LFS_SBPAD, NOCRED, 0, &bp);
497 1.26 christos altfs = ecalloc(1, sizeof(*altfs));
498 1.8 perseant altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
499 1.9 perseant altfs->lfs_devvp = devvp;
500 1.8 perseant bp->b_flags |= B_INVAL;
501 1.27 ad brelse(bp, 0);
502 1.8 perseant
503 1.8 perseant if (check_sb(fs) || fs->lfs_idaddr <= 0) {
504 1.1 perseant if (debug)
505 1.8 perseant printf("Primary superblock is no good, using first alternate\n");
506 1.8 perseant free(fs);
507 1.8 perseant fs = altfs;
508 1.1 perseant } else {
509 1.8 perseant /* If both superblocks check out, try verification */
510 1.8 perseant if (check_sb(altfs)) {
511 1.8 perseant if (debug)
512 1.8 perseant printf("First alternate superblock is no good, using primary\n");
513 1.1 perseant free(altfs);
514 1.1 perseant } else {
515 1.8 perseant if (lfs_verify(fs, altfs, devvp, debug) == fs) {
516 1.8 perseant free(altfs);
517 1.8 perseant } else {
518 1.8 perseant free(fs);
519 1.8 perseant fs = altfs;
520 1.8 perseant }
521 1.1 perseant }
522 1.1 perseant }
523 1.1 perseant }
524 1.8 perseant if (check_sb(fs)) {
525 1.8 perseant free(fs);
526 1.8 perseant return NULL;
527 1.8 perseant }
528 1.1 perseant }
529 1.8 perseant
530 1.1 perseant /* Compatibility */
531 1.1 perseant if (fs->lfs_version < 2) {
532 1.1 perseant fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
533 1.1 perseant fs->lfs_ibsize = fs->lfs_bsize;
534 1.1 perseant fs->lfs_start = fs->lfs_sboffs[0];
535 1.1 perseant fs->lfs_tstamp = fs->lfs_otstamp;
536 1.1 perseant fs->lfs_fsbtodb = 0;
537 1.1 perseant }
538 1.8 perseant
539 1.8 perseant if (!dummy_read) {
540 1.26 christos fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
541 1.26 christos fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542 1.26 christos fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
543 1.8 perseant }
544 1.1 perseant
545 1.1 perseant if (idaddr == 0)
546 1.1 perseant idaddr = fs->lfs_idaddr;
547 1.10 perseant else
548 1.10 perseant fs->lfs_idaddr = idaddr;
549 1.8 perseant /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
550 1.8 perseant fs->lfs_ivnode = lfs_raw_vget(fs,
551 1.8 perseant (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
552 1.8 perseant idaddr);
553 1.21 perseant if (fs->lfs_ivnode == NULL)
554 1.21 perseant return NULL;
555 1.1 perseant
556 1.1 perseant register_vget((void *)fs, lfs_vget);
557 1.1 perseant
558 1.1 perseant return fs;
559 1.1 perseant }
560 1.1 perseant
561 1.1 perseant /*
562 1.1 perseant * Check partial segment validity between fs->lfs_offset and the given goal.
563 1.12 perseant *
564 1.12 perseant * If goal == 0, just keep on going until the segments stop making sense,
565 1.12 perseant * and return the address of the last valid partial segment.
566 1.12 perseant *
567 1.12 perseant * If goal != 0, return the address of the first partial segment that failed,
568 1.12 perseant * or "goal" if we reached it without failure (the partial segment *at* goal
569 1.12 perseant * need not be valid).
570 1.1 perseant */
571 1.1 perseant ufs_daddr_t
572 1.1 perseant try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
573 1.1 perseant {
574 1.1 perseant ufs_daddr_t daddr, odaddr;
575 1.1 perseant SEGSUM *sp;
576 1.25 perseant int i, bc, hitclean;
577 1.1 perseant struct ubuf *bp;
578 1.1 perseant ufs_daddr_t nodirop_daddr;
579 1.1 perseant u_int64_t serial;
580 1.1 perseant
581 1.25 perseant bc = 0;
582 1.25 perseant hitclean = 0;
583 1.12 perseant odaddr = -1;
584 1.1 perseant daddr = osb->lfs_offset;
585 1.1 perseant nodirop_daddr = daddr;
586 1.1 perseant serial = osb->lfs_serial;
587 1.1 perseant while (daddr != goal) {
588 1.24 perseant /*
589 1.24 perseant * Don't mistakenly read a superblock, if there is one here.
590 1.24 perseant */
591 1.24 perseant if (sntod(osb, dtosn(osb, daddr)) == daddr) {
592 1.25 perseant if (daddr == osb->lfs_start)
593 1.25 perseant daddr += btofsb(osb, LFS_LABELPAD);
594 1.24 perseant for (i = 0; i < LFS_MAXNUMSB; i++) {
595 1.24 perseant if (osb->lfs_sboffs[i] < daddr)
596 1.24 perseant break;
597 1.24 perseant if (osb->lfs_sboffs[i] == daddr)
598 1.24 perseant daddr += btofsb(osb, LFS_SBPAD);
599 1.24 perseant }
600 1.24 perseant }
601 1.24 perseant
602 1.1 perseant /* Read in summary block */
603 1.29 hannken bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize,
604 1.29 hannken NULL, 0, &bp);
605 1.1 perseant sp = (SEGSUM *)bp->b_data;
606 1.1 perseant
607 1.1 perseant /*
608 1.24 perseant * Check for a valid segment summary belonging to our fs.
609 1.1 perseant */
610 1.1 perseant if (sp->ss_magic != SS_MAGIC ||
611 1.1 perseant sp->ss_ident != osb->lfs_ident ||
612 1.24 perseant sp->ss_serial < serial || /* XXX strengthen this */
613 1.1 perseant sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
614 1.1 perseant sizeof(sp->ss_sumsum))) {
615 1.27 ad brelse(bp, 0);
616 1.24 perseant if (debug) {
617 1.24 perseant if (sp->ss_magic != SS_MAGIC)
618 1.24 perseant pwarn("pseg at 0x%x: "
619 1.24 perseant "wrong magic number\n",
620 1.24 perseant (int)daddr);
621 1.24 perseant else if (sp->ss_ident != osb->lfs_ident)
622 1.24 perseant pwarn("pseg at 0x%x: "
623 1.24 perseant "expected ident %llx, got %llx\n",
624 1.24 perseant (int)daddr,
625 1.24 perseant (long long)sp->ss_ident,
626 1.24 perseant (long long)osb->lfs_ident);
627 1.24 perseant else if (sp->ss_serial >= serial)
628 1.24 perseant pwarn("pseg at 0x%x: "
629 1.24 perseant "serial %d < %d\n", (int)daddr,
630 1.24 perseant (int)sp->ss_serial, (int)serial);
631 1.24 perseant else
632 1.24 perseant pwarn("pseg at 0x%x: "
633 1.24 perseant "summary checksum wrong\n",
634 1.24 perseant (int)daddr);
635 1.1 perseant }
636 1.1 perseant break;
637 1.1 perseant }
638 1.24 perseant if (debug && sp->ss_serial != serial)
639 1.25 perseant pwarn("warning, serial=%d ss_serial=%d\n",
640 1.24 perseant (int)serial, (int)sp->ss_serial);
641 1.1 perseant ++serial;
642 1.1 perseant bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
643 1.1 perseant if (bc == 0) {
644 1.27 ad brelse(bp, 0);
645 1.1 perseant break;
646 1.1 perseant }
647 1.24 perseant if (debug)
648 1.24 perseant pwarn("summary good: 0x%x/%d\n", (int)daddr,
649 1.24 perseant (int)sp->ss_serial);
650 1.1 perseant assert (bc > 0);
651 1.1 perseant odaddr = daddr;
652 1.1 perseant daddr += btofsb(osb, osb->lfs_sumsize + bc);
653 1.1 perseant if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
654 1.1 perseant dtosn(osb, daddr) != dtosn(osb, daddr +
655 1.25 perseant btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
656 1.1 perseant daddr = sp->ss_next;
657 1.1 perseant }
658 1.24 perseant
659 1.24 perseant /*
660 1.24 perseant * Check for the beginning and ending of a sequence of
661 1.25 perseant * dirops. Writes from the cleaner never involve new
662 1.25 perseant * information, and are always checkpoints; so don't try
663 1.25 perseant * to roll forward through them. Likewise, psegs written
664 1.25 perseant * by a previous roll-forward attempt are not interesting.
665 1.24 perseant */
666 1.25 perseant if (sp->ss_flags & (SS_CLEAN | SS_RFW))
667 1.25 perseant hitclean = 1;
668 1.25 perseant if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
669 1.1 perseant nodirop_daddr = daddr;
670 1.24 perseant
671 1.27 ad brelse(bp, 0);
672 1.1 perseant }
673 1.1 perseant
674 1.1 perseant if (goal == 0)
675 1.1 perseant return nodirop_daddr;
676 1.1 perseant else
677 1.1 perseant return daddr;
678 1.1 perseant }
679 1.1 perseant
680 1.1 perseant /* Use try_verify to check whether the newer superblock is valid. */
681 1.1 perseant struct lfs *
682 1.1 perseant lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
683 1.1 perseant {
684 1.1 perseant ufs_daddr_t daddr;
685 1.1 perseant struct lfs *osb, *nsb;
686 1.1 perseant
687 1.1 perseant /*
688 1.1 perseant * Verify the checkpoint of the newer superblock,
689 1.1 perseant * if the timestamp/serial number of the two superblocks is
690 1.1 perseant * different.
691 1.1 perseant */
692 1.1 perseant
693 1.14 lukem osb = NULL;
694 1.1 perseant if (debug)
695 1.24 perseant pwarn("sb0 %lld, sb1 %lld",
696 1.24 perseant (long long) sb0->lfs_serial,
697 1.24 perseant (long long) sb1->lfs_serial);
698 1.1 perseant
699 1.1 perseant if ((sb0->lfs_version == 1 &&
700 1.1 perseant sb0->lfs_otstamp != sb1->lfs_otstamp) ||
701 1.1 perseant (sb0->lfs_version > 1 &&
702 1.1 perseant sb0->lfs_serial != sb1->lfs_serial)) {
703 1.1 perseant if (sb0->lfs_version == 1) {
704 1.1 perseant if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
705 1.1 perseant osb = sb1;
706 1.1 perseant nsb = sb0;
707 1.1 perseant } else {
708 1.1 perseant osb = sb0;
709 1.1 perseant nsb = sb1;
710 1.1 perseant }
711 1.1 perseant } else {
712 1.1 perseant if (sb0->lfs_serial > sb1->lfs_serial) {
713 1.1 perseant osb = sb1;
714 1.1 perseant nsb = sb0;
715 1.1 perseant } else {
716 1.1 perseant osb = sb0;
717 1.1 perseant nsb = sb1;
718 1.1 perseant }
719 1.1 perseant }
720 1.1 perseant if (debug) {
721 1.1 perseant printf("Attempting to verify newer checkpoint...");
722 1.1 perseant fflush(stdout);
723 1.1 perseant }
724 1.1 perseant daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
725 1.1 perseant
726 1.1 perseant if (debug)
727 1.1 perseant printf("done.\n");
728 1.1 perseant if (daddr == nsb->lfs_offset) {
729 1.8 perseant pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
730 1.1 perseant (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
731 1.1 perseant sbdirty();
732 1.1 perseant } else {
733 1.8 perseant pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
734 1.1 perseant }
735 1.1 perseant return (daddr == nsb->lfs_offset ? nsb : osb);
736 1.1 perseant }
737 1.1 perseant /* Nothing to check */
738 1.1 perseant return osb;
739 1.1 perseant }
740 1.1 perseant
741 1.1 perseant /* Verify a partial-segment summary; return the number of bytes on disk. */
742 1.1 perseant int
743 1.1 perseant check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
744 1.1 perseant struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
745 1.1 perseant {
746 1.1 perseant FINFO *fp;
747 1.1 perseant int bc; /* Bytes in partial segment */
748 1.1 perseant int nblocks;
749 1.1 perseant ufs_daddr_t seg_addr, daddr;
750 1.1 perseant ufs_daddr_t *dp, *idp;
751 1.1 perseant struct ubuf *bp;
752 1.1 perseant int i, j, k, datac, len;
753 1.1 perseant long sn;
754 1.1 perseant u_int32_t *datap;
755 1.1 perseant u_int32_t ccksum;
756 1.1 perseant
757 1.1 perseant sn = dtosn(fs, pseg_addr);
758 1.1 perseant seg_addr = sntod(fs, sn);
759 1.1 perseant
760 1.1 perseant /* We've already checked the sumsum, just do the data bounds and sum */
761 1.1 perseant
762 1.1 perseant /* Count the blocks. */
763 1.1 perseant nblocks = howmany(sp->ss_ninos, INOPB(fs));
764 1.1 perseant bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
765 1.1 perseant assert(bc >= 0);
766 1.1 perseant
767 1.1 perseant fp = (FINFO *) (sp + 1);
768 1.1 perseant for (i = 0; i < sp->ss_nfinfo; i++) {
769 1.1 perseant nblocks += fp->fi_nblocks;
770 1.1 perseant bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
771 1.1 perseant << fs->lfs_bshift);
772 1.1 perseant assert(bc >= 0);
773 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
774 1.24 perseant if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
775 1.24 perseant return 0;
776 1.1 perseant }
777 1.26 christos datap = emalloc(nblocks * sizeof(*datap));
778 1.1 perseant datac = 0;
779 1.1 perseant
780 1.1 perseant dp = (ufs_daddr_t *) sp;
781 1.1 perseant dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
782 1.1 perseant dp--;
783 1.1 perseant
784 1.1 perseant idp = dp;
785 1.1 perseant daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
786 1.1 perseant fp = (FINFO *) (sp + 1);
787 1.1 perseant for (i = 0, j = 0;
788 1.1 perseant i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
789 1.1 perseant if (i >= sp->ss_nfinfo && *idp != daddr) {
790 1.8 perseant pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
791 1.1 perseant ": found %d, wanted %d\n",
792 1.1 perseant pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
793 1.1 perseant if (debug)
794 1.8 perseant pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
795 1.1 perseant daddr);
796 1.1 perseant break;
797 1.1 perseant }
798 1.1 perseant while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
799 1.29 hannken bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
800 1.29 hannken NOCRED, 0, &bp);
801 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
802 1.27 ad brelse(bp, 0);
803 1.1 perseant
804 1.1 perseant ++j;
805 1.1 perseant daddr += btofsb(fs, fs->lfs_ibsize);
806 1.1 perseant --idp;
807 1.1 perseant }
808 1.1 perseant if (i < sp->ss_nfinfo) {
809 1.1 perseant if (func)
810 1.1 perseant func(daddr, fp);
811 1.1 perseant for (k = 0; k < fp->fi_nblocks; k++) {
812 1.1 perseant len = (k == fp->fi_nblocks - 1 ?
813 1.1 perseant fp->fi_lastlength
814 1.1 perseant : fs->lfs_bsize);
815 1.29 hannken bread(devvp, fsbtodb(fs, daddr), len,
816 1.29 hannken NOCRED, 0, &bp);
817 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
818 1.27 ad brelse(bp, 0);
819 1.1 perseant daddr += btofsb(fs, len);
820 1.1 perseant }
821 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
822 1.1 perseant }
823 1.1 perseant }
824 1.1 perseant
825 1.1 perseant if (datac != nblocks) {
826 1.8 perseant pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
827 1.1 perseant (long long) pseg_addr, nblocks, datac);
828 1.1 perseant }
829 1.1 perseant ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
830 1.1 perseant /* Check the data checksum */
831 1.1 perseant if (ccksum != sp->ss_datasum) {
832 1.8 perseant pwarn("Partial segment at 0x%" PRIx32 " data checksum"
833 1.1 perseant " mismatch: given 0x%x, computed 0x%x\n",
834 1.1 perseant pseg_addr, sp->ss_datasum, ccksum);
835 1.1 perseant free(datap);
836 1.1 perseant return 0;
837 1.1 perseant }
838 1.1 perseant free(datap);
839 1.1 perseant assert(bc >= 0);
840 1.1 perseant return bc;
841 1.1 perseant }
842 1.1 perseant
843 1.1 perseant /* print message and exit */
844 1.1 perseant void
845 1.1 perseant my_vpanic(int fatal, const char *fmt, va_list ap)
846 1.1 perseant {
847 1.1 perseant (void) vprintf(fmt, ap);
848 1.1 perseant exit(8);
849 1.1 perseant }
850 1.1 perseant
851 1.1 perseant void
852 1.1 perseant call_panic(const char *fmt, ...)
853 1.1 perseant {
854 1.1 perseant va_list ap;
855 1.1 perseant
856 1.1 perseant va_start(ap, fmt);
857 1.1 perseant panic_func(1, fmt, ap);
858 1.1 perseant va_end(ap);
859 1.1 perseant }
860 1.16 perseant
861 1.16 perseant /* Allocate a new inode. */
862 1.16 perseant struct uvnode *
863 1.16 perseant lfs_valloc(struct lfs *fs, ino_t ino)
864 1.16 perseant {
865 1.16 perseant struct ubuf *bp, *cbp;
866 1.16 perseant struct ifile *ifp;
867 1.16 perseant ino_t new_ino;
868 1.16 perseant int error;
869 1.16 perseant int new_gen;
870 1.16 perseant CLEANERINFO *cip;
871 1.16 perseant
872 1.16 perseant /* Get the head of the freelist. */
873 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
874 1.16 perseant
875 1.16 perseant /*
876 1.16 perseant * Remove the inode from the free list and write the new start
877 1.16 perseant * of the free list into the superblock.
878 1.16 perseant */
879 1.16 perseant LFS_IENTRY(ifp, fs, new_ino, bp);
880 1.16 perseant if (ifp->if_daddr != LFS_UNUSED_DADDR)
881 1.16 perseant panic("lfs_valloc: inuse inode %d on the free list", new_ino);
882 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
883 1.16 perseant
884 1.16 perseant new_gen = ifp->if_version; /* version was updated by vfree */
885 1.27 ad brelse(bp, 0);
886 1.16 perseant
887 1.16 perseant /* Extend IFILE so that the next lfs_valloc will succeed. */
888 1.16 perseant if (fs->lfs_freehd == LFS_UNUSED_INUM) {
889 1.16 perseant if ((error = extend_ifile(fs)) != 0) {
890 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
891 1.16 perseant return NULL;
892 1.16 perseant }
893 1.16 perseant }
894 1.16 perseant
895 1.16 perseant /* Set superblock modified bit and increment file count. */
896 1.16 perseant sbdirty();
897 1.16 perseant ++fs->lfs_nfiles;
898 1.16 perseant
899 1.16 perseant return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
900 1.16 perseant }
901 1.16 perseant
902 1.24 perseant #ifdef IN_FSCK_LFS
903 1.24 perseant void reset_maxino(ino_t);
904 1.24 perseant #endif
905 1.24 perseant
906 1.16 perseant /*
907 1.16 perseant * Add a new block to the Ifile, to accommodate future file creations.
908 1.16 perseant */
909 1.16 perseant int
910 1.16 perseant extend_ifile(struct lfs *fs)
911 1.16 perseant {
912 1.16 perseant struct uvnode *vp;
913 1.16 perseant struct inode *ip;
914 1.16 perseant IFILE *ifp;
915 1.16 perseant IFILE_V1 *ifp_v1;
916 1.16 perseant struct ubuf *bp, *cbp;
917 1.16 perseant daddr_t i, blkno, max;
918 1.16 perseant ino_t oldlast;
919 1.16 perseant CLEANERINFO *cip;
920 1.16 perseant
921 1.16 perseant vp = fs->lfs_ivnode;
922 1.16 perseant ip = VTOI(vp);
923 1.16 perseant blkno = lblkno(fs, ip->i_ffs1_size);
924 1.16 perseant
925 1.24 perseant lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
926 1.16 perseant ip->i_ffs1_size += fs->lfs_bsize;
927 1.24 perseant ip->i_flag |= IN_MODIFIED;
928 1.16 perseant
929 1.16 perseant i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
930 1.16 perseant fs->lfs_ifpb;
931 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
932 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, i);
933 1.16 perseant max = i + fs->lfs_ifpb;
934 1.16 perseant fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
935 1.16 perseant
936 1.16 perseant if (fs->lfs_version == 1) {
937 1.16 perseant for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
938 1.16 perseant ifp_v1->if_version = 1;
939 1.16 perseant ifp_v1->if_daddr = LFS_UNUSED_DADDR;
940 1.16 perseant ifp_v1->if_nextfree = ++i;
941 1.16 perseant }
942 1.16 perseant ifp_v1--;
943 1.16 perseant ifp_v1->if_nextfree = oldlast;
944 1.16 perseant } else {
945 1.16 perseant for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
946 1.16 perseant ifp->if_version = 1;
947 1.16 perseant ifp->if_daddr = LFS_UNUSED_DADDR;
948 1.16 perseant ifp->if_nextfree = ++i;
949 1.16 perseant }
950 1.16 perseant ifp--;
951 1.16 perseant ifp->if_nextfree = oldlast;
952 1.16 perseant }
953 1.16 perseant LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
954 1.16 perseant
955 1.16 perseant LFS_BWRITE_LOG(bp);
956 1.16 perseant
957 1.24 perseant #ifdef IN_FSCK_LFS
958 1.24 perseant reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
959 1.24 perseant fs->lfs_cleansz) * fs->lfs_ifpb);
960 1.24 perseant #endif
961 1.16 perseant return 0;
962 1.16 perseant }
963 1.16 perseant
964 1.24 perseant /*
965 1.24 perseant * Allocate a block, and to inode and filesystem block accounting for it
966 1.24 perseant * and for any indirect blocks the may need to be created in order for
967 1.24 perseant * this block to be created.
968 1.24 perseant *
969 1.24 perseant * Blocks which have never been accounted for (i.e., which "do not exist")
970 1.24 perseant * have disk address 0, which is translated by ufs_bmap to the special value
971 1.24 perseant * UNASSIGNED == -1, as in the historical UFS.
972 1.24 perseant *
973 1.24 perseant * Blocks which have been accounted for but which have not yet been written
974 1.24 perseant * to disk are given the new special disk address UNWRITTEN == -2, so that
975 1.24 perseant * they can be differentiated from completely new blocks.
976 1.24 perseant */
977 1.24 perseant int
978 1.24 perseant lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
979 1.24 perseant {
980 1.24 perseant int offset;
981 1.24 perseant daddr_t daddr, idaddr;
982 1.24 perseant struct ubuf *ibp, *bp;
983 1.24 perseant struct inode *ip;
984 1.24 perseant struct lfs *fs;
985 1.24 perseant struct indir indirs[NIADDR+2], *idp;
986 1.24 perseant daddr_t lbn, lastblock;
987 1.32 mlelstv int bcount;
988 1.24 perseant int error, frags, i, nsize, osize, num;
989 1.24 perseant
990 1.24 perseant ip = VTOI(vp);
991 1.24 perseant fs = ip->i_lfs;
992 1.24 perseant offset = blkoff(fs, startoffset);
993 1.24 perseant lbn = lblkno(fs, startoffset);
994 1.24 perseant
995 1.24 perseant /*
996 1.24 perseant * Three cases: it's a block beyond the end of file, it's a block in
997 1.24 perseant * the file that may or may not have been assigned a disk address or
998 1.24 perseant * we're writing an entire block.
999 1.24 perseant *
1000 1.24 perseant * Note, if the daddr is UNWRITTEN, the block already exists in
1001 1.24 perseant * the cache (it was read or written earlier). If so, make sure
1002 1.24 perseant * we don't count it as a new block or zero out its contents. If
1003 1.24 perseant * it did not, make sure we allocate any necessary indirect
1004 1.24 perseant * blocks.
1005 1.24 perseant *
1006 1.24 perseant * If we are writing a block beyond the end of the file, we need to
1007 1.24 perseant * check if the old last block was a fragment. If it was, we need
1008 1.24 perseant * to rewrite it.
1009 1.24 perseant */
1010 1.24 perseant
1011 1.24 perseant if (bpp)
1012 1.24 perseant *bpp = NULL;
1013 1.24 perseant
1014 1.24 perseant /* Check for block beyond end of file and fragment extension needed. */
1015 1.24 perseant lastblock = lblkno(fs, ip->i_ffs1_size);
1016 1.24 perseant if (lastblock < NDADDR && lastblock < lbn) {
1017 1.24 perseant osize = blksize(fs, ip, lastblock);
1018 1.24 perseant if (osize < fs->lfs_bsize && osize > 0) {
1019 1.24 perseant if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1020 1.24 perseant lastblock,
1021 1.24 perseant (bpp ? &bp : NULL))))
1022 1.24 perseant return (error);
1023 1.24 perseant ip->i_ffs1_size = ip->i_ffs1_size =
1024 1.24 perseant (lastblock + 1) * fs->lfs_bsize;
1025 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1026 1.24 perseant if (bpp)
1027 1.24 perseant (void) VOP_BWRITE(bp);
1028 1.24 perseant }
1029 1.24 perseant }
1030 1.24 perseant
1031 1.24 perseant /*
1032 1.24 perseant * If the block we are writing is a direct block, it's the last
1033 1.24 perseant * block in the file, and offset + iosize is less than a full
1034 1.24 perseant * block, we can write one or more fragments. There are two cases:
1035 1.24 perseant * the block is brand new and we should allocate it the correct
1036 1.24 perseant * size or it already exists and contains some fragments and
1037 1.24 perseant * may need to extend it.
1038 1.24 perseant */
1039 1.24 perseant if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1040 1.24 perseant osize = blksize(fs, ip, lbn);
1041 1.24 perseant nsize = fragroundup(fs, offset + iosize);
1042 1.24 perseant if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1043 1.24 perseant /* Brand new block or fragment */
1044 1.24 perseant frags = numfrags(fs, nsize);
1045 1.24 perseant if (bpp) {
1046 1.24 perseant *bpp = bp = getblk(vp, lbn, nsize);
1047 1.24 perseant bp->b_blkno = UNWRITTEN;
1048 1.24 perseant }
1049 1.32 mlelstv ip->i_lfs_effnblks += frags;
1050 1.32 mlelstv fs->lfs_bfree -= frags;
1051 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1052 1.24 perseant } else {
1053 1.24 perseant if (nsize <= osize) {
1054 1.24 perseant /* No need to extend */
1055 1.29 hannken if (bpp && (error = bread(vp, lbn, osize,
1056 1.29 hannken NOCRED, 0, &bp)))
1057 1.24 perseant return error;
1058 1.24 perseant } else {
1059 1.24 perseant /* Extend existing block */
1060 1.24 perseant if ((error =
1061 1.24 perseant lfs_fragextend(vp, osize, nsize, lbn,
1062 1.24 perseant (bpp ? &bp : NULL))))
1063 1.24 perseant return error;
1064 1.24 perseant }
1065 1.24 perseant if (bpp)
1066 1.24 perseant *bpp = bp;
1067 1.24 perseant }
1068 1.24 perseant return 0;
1069 1.24 perseant }
1070 1.24 perseant
1071 1.24 perseant error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1072 1.24 perseant if (error)
1073 1.24 perseant return (error);
1074 1.24 perseant
1075 1.24 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1076 1.24 perseant
1077 1.24 perseant /*
1078 1.24 perseant * Do byte accounting all at once, so we can gracefully fail *before*
1079 1.24 perseant * we start assigning blocks.
1080 1.24 perseant */
1081 1.32 mlelstv frags = fsbtodb(fs, 1); /* frags = VFSTOUFS(vp->v_mount)->um_seqinc; */
1082 1.24 perseant bcount = 0;
1083 1.24 perseant if (daddr == UNASSIGNED) {
1084 1.32 mlelstv bcount = frags;
1085 1.24 perseant }
1086 1.24 perseant for (i = 1; i < num; ++i) {
1087 1.24 perseant if (!indirs[i].in_exists) {
1088 1.32 mlelstv bcount += frags;
1089 1.24 perseant }
1090 1.24 perseant }
1091 1.24 perseant fs->lfs_bfree -= bcount;
1092 1.24 perseant ip->i_lfs_effnblks += bcount;
1093 1.24 perseant
1094 1.24 perseant if (daddr == UNASSIGNED) {
1095 1.24 perseant if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1096 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1097 1.24 perseant }
1098 1.24 perseant
1099 1.24 perseant /*
1100 1.24 perseant * Create new indirect blocks if necessary
1101 1.24 perseant */
1102 1.24 perseant if (num > 1) {
1103 1.24 perseant idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1104 1.24 perseant for (i = 1; i < num; ++i) {
1105 1.24 perseant ibp = getblk(vp, indirs[i].in_lbn,
1106 1.24 perseant fs->lfs_bsize);
1107 1.24 perseant if (!indirs[i].in_exists) {
1108 1.24 perseant memset(ibp->b_data, 0, ibp->b_bufsize);
1109 1.24 perseant ibp->b_blkno = UNWRITTEN;
1110 1.24 perseant } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1111 1.24 perseant ibp->b_blkno = fsbtodb(fs, idaddr);
1112 1.24 perseant ibp->b_flags |= B_READ;
1113 1.24 perseant VOP_STRATEGY(ibp);
1114 1.24 perseant }
1115 1.24 perseant /*
1116 1.24 perseant * This block exists, but the next one may not.
1117 1.24 perseant * If that is the case mark it UNWRITTEN to
1118 1.24 perseant * keep the accounting straight.
1119 1.24 perseant */
1120 1.24 perseant /* XXX ondisk32 */
1121 1.24 perseant if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1122 1.24 perseant ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1123 1.24 perseant UNWRITTEN;
1124 1.24 perseant /* XXX ondisk32 */
1125 1.24 perseant idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1126 1.24 perseant if ((error = VOP_BWRITE(ibp)))
1127 1.24 perseant return error;
1128 1.24 perseant }
1129 1.24 perseant }
1130 1.24 perseant }
1131 1.24 perseant
1132 1.24 perseant
1133 1.24 perseant /*
1134 1.24 perseant * Get the existing block from the cache, if requested.
1135 1.24 perseant */
1136 1.24 perseant if (bpp)
1137 1.24 perseant *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1138 1.24 perseant
1139 1.24 perseant /*
1140 1.24 perseant * The block we are writing may be a brand new block
1141 1.24 perseant * in which case we need to do accounting.
1142 1.24 perseant *
1143 1.24 perseant * We can tell a truly new block because ufs_bmaparray will say
1144 1.24 perseant * it is UNASSIGNED. Once we allocate it we will assign it the
1145 1.24 perseant * disk address UNWRITTEN.
1146 1.24 perseant */
1147 1.24 perseant if (daddr == UNASSIGNED) {
1148 1.24 perseant if (bpp) {
1149 1.24 perseant /* Note the new address */
1150 1.24 perseant bp->b_blkno = UNWRITTEN;
1151 1.24 perseant }
1152 1.24 perseant
1153 1.24 perseant switch (num) {
1154 1.24 perseant case 0:
1155 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1156 1.24 perseant break;
1157 1.24 perseant case 1:
1158 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1159 1.24 perseant break;
1160 1.24 perseant default:
1161 1.24 perseant idp = &indirs[num - 1];
1162 1.24 perseant if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1163 1.29 hannken 0, &ibp))
1164 1.24 perseant panic("lfs_balloc: bread bno %lld",
1165 1.24 perseant (long long)idp->in_lbn);
1166 1.24 perseant /* XXX ondisk32 */
1167 1.24 perseant ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1168 1.24 perseant VOP_BWRITE(ibp);
1169 1.24 perseant }
1170 1.24 perseant } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1171 1.24 perseant /*
1172 1.24 perseant * Not a brand new block, also not in the cache;
1173 1.24 perseant * read it in from disk.
1174 1.24 perseant */
1175 1.24 perseant if (iosize == fs->lfs_bsize)
1176 1.24 perseant /* Optimization: I/O is unnecessary. */
1177 1.24 perseant bp->b_blkno = daddr;
1178 1.24 perseant else {
1179 1.24 perseant /*
1180 1.24 perseant * We need to read the block to preserve the
1181 1.24 perseant * existing bytes.
1182 1.24 perseant */
1183 1.24 perseant bp->b_blkno = daddr;
1184 1.24 perseant bp->b_flags |= B_READ;
1185 1.24 perseant VOP_STRATEGY(bp);
1186 1.24 perseant return 0;
1187 1.24 perseant }
1188 1.24 perseant }
1189 1.24 perseant
1190 1.24 perseant return (0);
1191 1.24 perseant }
1192 1.24 perseant
1193 1.24 perseant int
1194 1.24 perseant lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1195 1.24 perseant struct ubuf **bpp)
1196 1.24 perseant {
1197 1.24 perseant struct inode *ip;
1198 1.24 perseant struct lfs *fs;
1199 1.32 mlelstv int frags;
1200 1.24 perseant int error;
1201 1.24 perseant size_t obufsize;
1202 1.24 perseant
1203 1.24 perseant ip = VTOI(vp);
1204 1.24 perseant fs = ip->i_lfs;
1205 1.32 mlelstv frags = (long)numfrags(fs, nsize - osize);
1206 1.24 perseant error = 0;
1207 1.24 perseant
1208 1.24 perseant /*
1209 1.24 perseant * If we are not asked to actually return the block, all we need
1210 1.24 perseant * to do is allocate space for it. UBC will handle dirtying the
1211 1.24 perseant * appropriate things and making sure it all goes to disk.
1212 1.24 perseant * Don't bother to read in that case.
1213 1.24 perseant */
1214 1.29 hannken if (bpp && (error = bread(vp, lbn, osize, NOCRED, 0, bpp))) {
1215 1.27 ad brelse(*bpp, 0);
1216 1.24 perseant goto out;
1217 1.24 perseant }
1218 1.24 perseant
1219 1.32 mlelstv fs->lfs_bfree -= frags;
1220 1.32 mlelstv ip->i_lfs_effnblks += frags;
1221 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1222 1.24 perseant
1223 1.24 perseant if (bpp) {
1224 1.24 perseant obufsize = (*bpp)->b_bufsize;
1225 1.26 christos (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1226 1.26 christos (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1227 1.24 perseant }
1228 1.24 perseant
1229 1.24 perseant out:
1230 1.24 perseant return (error);
1231 1.24 perseant }
1232