lfs.c revision 1.37 1 1.37 dholland /* $NetBSD: lfs.c,v 1.37 2013/06/06 00:52:50 dholland Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1989, 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant * (c) UNIX System Laboratories, Inc.
34 1.1 perseant * All or some portions of this file are derived from material licensed
35 1.1 perseant * to the University of California by American Telephone and Telegraph
36 1.1 perseant * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 1.1 perseant * the permission of UNIX System Laboratories, Inc.
38 1.1 perseant *
39 1.1 perseant * Redistribution and use in source and binary forms, with or without
40 1.1 perseant * modification, are permitted provided that the following conditions
41 1.1 perseant * are met:
42 1.1 perseant * 1. Redistributions of source code must retain the above copyright
43 1.1 perseant * notice, this list of conditions and the following disclaimer.
44 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 perseant * notice, this list of conditions and the following disclaimer in the
46 1.1 perseant * documentation and/or other materials provided with the distribution.
47 1.7 agc * 3. Neither the name of the University nor the names of its contributors
48 1.1 perseant * may be used to endorse or promote products derived from this software
49 1.1 perseant * without specific prior written permission.
50 1.1 perseant *
51 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 perseant * SUCH DAMAGE.
62 1.1 perseant *
63 1.1 perseant * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 1.1 perseant */
65 1.1 perseant
66 1.1 perseant
67 1.1 perseant #include <sys/types.h>
68 1.1 perseant #include <sys/param.h>
69 1.1 perseant #include <sys/time.h>
70 1.1 perseant #include <sys/buf.h>
71 1.1 perseant #include <sys/mount.h>
72 1.1 perseant
73 1.37 dholland #include <ufs/lfs/ulfs_inode.h>
74 1.37 dholland #include <ufs/lfs/ulfsmount.h>
75 1.1 perseant #define vnode uvnode
76 1.1 perseant #include <ufs/lfs/lfs.h>
77 1.1 perseant #undef vnode
78 1.1 perseant
79 1.1 perseant #include <assert.h>
80 1.1 perseant #include <err.h>
81 1.1 perseant #include <errno.h>
82 1.1 perseant #include <stdarg.h>
83 1.1 perseant #include <stdio.h>
84 1.1 perseant #include <stdlib.h>
85 1.1 perseant #include <string.h>
86 1.1 perseant #include <unistd.h>
87 1.26 christos #include <util.h>
88 1.1 perseant
89 1.1 perseant #include "bufcache.h"
90 1.1 perseant #include "vnode.h"
91 1.17 christos #include "lfs_user.h"
92 1.1 perseant #include "segwrite.h"
93 1.31 pooka #include "kernelops.h"
94 1.1 perseant
95 1.1 perseant #define panic call_panic
96 1.1 perseant
97 1.1 perseant extern u_int32_t cksum(void *, size_t);
98 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
99 1.8 perseant extern void pwarn(const char *, ...);
100 1.1 perseant
101 1.1 perseant extern struct uvnodelst vnodelist;
102 1.10 perseant extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 1.1 perseant extern int nvnodes;
104 1.1 perseant
105 1.33 mlelstv long dev_bsize = DEV_BSIZE;
106 1.32 mlelstv
107 1.24 perseant static int
108 1.24 perseant lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109 1.24 perseant
110 1.1 perseant int fsdirty = 0;
111 1.1 perseant void (*panic_func)(int, const char *, va_list) = my_vpanic;
112 1.1 perseant
113 1.1 perseant /*
114 1.1 perseant * LFS buffer and uvnode operations
115 1.1 perseant */
116 1.1 perseant
117 1.1 perseant int
118 1.1 perseant lfs_vop_strategy(struct ubuf * bp)
119 1.1 perseant {
120 1.1 perseant int count;
121 1.1 perseant
122 1.1 perseant if (bp->b_flags & B_READ) {
123 1.31 pooka count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 1.32 mlelstv bp->b_blkno * dev_bsize);
125 1.1 perseant if (count == bp->b_bcount)
126 1.1 perseant bp->b_flags |= B_DONE;
127 1.1 perseant } else {
128 1.31 pooka count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 1.32 mlelstv bp->b_blkno * dev_bsize);
130 1.1 perseant if (count == 0) {
131 1.23 christos perror("pwrite");
132 1.1 perseant return -1;
133 1.1 perseant }
134 1.1 perseant bp->b_flags &= ~B_DELWRI;
135 1.1 perseant reassignbuf(bp, bp->b_vp);
136 1.1 perseant }
137 1.1 perseant return 0;
138 1.1 perseant }
139 1.1 perseant
140 1.1 perseant int
141 1.1 perseant lfs_vop_bwrite(struct ubuf * bp)
142 1.1 perseant {
143 1.1 perseant struct lfs *fs;
144 1.1 perseant
145 1.1 perseant fs = bp->b_vp->v_fs;
146 1.1 perseant if (!(bp->b_flags & B_DELWRI)) {
147 1.1 perseant fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 1.1 perseant }
149 1.1 perseant bp->b_flags |= B_DELWRI | B_LOCKED;
150 1.1 perseant reassignbuf(bp, bp->b_vp);
151 1.27 ad brelse(bp, 0);
152 1.1 perseant return 0;
153 1.1 perseant }
154 1.1 perseant
155 1.1 perseant /*
156 1.37 dholland * ulfs_bmaparray does the bmap conversion, and if requested returns the
157 1.1 perseant * array of logical blocks which must be traversed to get to a block.
158 1.1 perseant * Each entry contains the offset into that block that gets you to the
159 1.1 perseant * next block and the disk address of the block (if it is assigned).
160 1.1 perseant */
161 1.1 perseant int
162 1.37 dholland ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 1.1 perseant {
164 1.1 perseant struct inode *ip;
165 1.1 perseant struct ubuf *bp;
166 1.37 dholland struct indir a[ULFS_NIADDR + 1], *xap;
167 1.1 perseant daddr_t daddr;
168 1.1 perseant daddr_t metalbn;
169 1.1 perseant int error, num;
170 1.1 perseant
171 1.1 perseant ip = VTOI(vp);
172 1.1 perseant
173 1.37 dholland if (bn >= 0 && bn < ULFS_NDADDR) {
174 1.1 perseant if (nump != NULL)
175 1.1 perseant *nump = 0;
176 1.2 fvdl *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 1.1 perseant if (*bnp == 0)
178 1.1 perseant *bnp = -1;
179 1.1 perseant return (0);
180 1.1 perseant }
181 1.1 perseant xap = ap == NULL ? a : ap;
182 1.1 perseant if (!nump)
183 1.1 perseant nump = #
184 1.37 dholland if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 1.1 perseant return (error);
186 1.1 perseant
187 1.1 perseant num = *nump;
188 1.1 perseant
189 1.1 perseant /* Get disk address out of indirect block array */
190 1.2 fvdl daddr = ip->i_ffs1_ib[xap->in_off];
191 1.1 perseant
192 1.1 perseant for (bp = NULL, ++xap; --num; ++xap) {
193 1.1 perseant /* Exit the loop if there is no disk address assigned yet and
194 1.1 perseant * the indirect block isn't in the cache, or if we were
195 1.1 perseant * looking for an indirect block and we've found it. */
196 1.1 perseant
197 1.1 perseant metalbn = xap->in_lbn;
198 1.1 perseant if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 1.1 perseant break;
200 1.1 perseant /*
201 1.1 perseant * If we get here, we've either got the block in the cache
202 1.1 perseant * or we have a disk address for it, go fetch it.
203 1.1 perseant */
204 1.1 perseant if (bp)
205 1.27 ad brelse(bp, 0);
206 1.1 perseant
207 1.1 perseant xap->in_exists = 1;
208 1.1 perseant bp = getblk(vp, metalbn, fs->lfs_bsize);
209 1.1 perseant
210 1.1 perseant if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 1.1 perseant bp->b_blkno = fsbtodb(fs, daddr);
212 1.1 perseant bp->b_flags |= B_READ;
213 1.1 perseant VOP_STRATEGY(bp);
214 1.1 perseant }
215 1.37 dholland daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
216 1.1 perseant }
217 1.1 perseant if (bp)
218 1.27 ad brelse(bp, 0);
219 1.1 perseant
220 1.37 dholland daddr = fsbtodb(fs, (ulfs_daddr_t) daddr);
221 1.1 perseant *bnp = daddr == 0 ? -1 : daddr;
222 1.1 perseant return (0);
223 1.1 perseant }
224 1.1 perseant
225 1.1 perseant /*
226 1.1 perseant * Create an array of logical block number/offset pairs which represent the
227 1.1 perseant * path of indirect blocks required to access a data block. The first "pair"
228 1.1 perseant * contains the logical block number of the appropriate single, double or
229 1.1 perseant * triple indirect block and the offset into the inode indirect block array.
230 1.1 perseant * Note, the logical block number of the inode single/double/triple indirect
231 1.2 fvdl * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 1.1 perseant * once with the offset into the page itself.
233 1.1 perseant */
234 1.1 perseant int
235 1.37 dholland ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 1.1 perseant {
237 1.1 perseant daddr_t metalbn, realbn;
238 1.1 perseant int64_t blockcnt;
239 1.1 perseant int lbc;
240 1.1 perseant int i, numlevels, off;
241 1.1 perseant int lognindir, indir;
242 1.1 perseant
243 1.19 jmc metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244 1.19 jmc
245 1.1 perseant if (nump)
246 1.1 perseant *nump = 0;
247 1.1 perseant numlevels = 0;
248 1.1 perseant realbn = bn;
249 1.1 perseant if (bn < 0)
250 1.1 perseant bn = -bn;
251 1.1 perseant
252 1.1 perseant lognindir = -1;
253 1.1 perseant for (indir = fs->lfs_nindir; indir; indir >>= 1)
254 1.1 perseant ++lognindir;
255 1.1 perseant
256 1.1 perseant /* Determine the number of levels of indirection. After this loop is
257 1.1 perseant * done, blockcnt indicates the number of data blocks possible at the
258 1.37 dholland * given level of indirection, and ULFS_NIADDR - i is the number of levels
259 1.1 perseant * of indirection needed to locate the requested block. */
260 1.1 perseant
261 1.37 dholland bn -= ULFS_NDADDR;
262 1.37 dholland for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
263 1.1 perseant if (i == 0)
264 1.1 perseant return (EFBIG);
265 1.1 perseant
266 1.1 perseant lbc += lognindir;
267 1.1 perseant blockcnt = (int64_t) 1 << lbc;
268 1.1 perseant
269 1.1 perseant if (bn < blockcnt)
270 1.1 perseant break;
271 1.1 perseant }
272 1.1 perseant
273 1.1 perseant /* Calculate the address of the first meta-block. */
274 1.37 dholland metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
275 1.1 perseant
276 1.1 perseant /* At each iteration, off is the offset into the bap array which is an
277 1.1 perseant * array of disk addresses at the current level of indirection. The
278 1.1 perseant * logical block number and the offset in that block are stored into
279 1.1 perseant * the argument array. */
280 1.1 perseant ap->in_lbn = metalbn;
281 1.37 dholland ap->in_off = off = ULFS_NIADDR - i;
282 1.1 perseant ap->in_exists = 0;
283 1.1 perseant ap++;
284 1.37 dholland for (++numlevels; i <= ULFS_NIADDR; i++) {
285 1.1 perseant /* If searching for a meta-data block, quit when found. */
286 1.1 perseant if (metalbn == realbn)
287 1.1 perseant break;
288 1.1 perseant
289 1.1 perseant lbc -= lognindir;
290 1.1 perseant blockcnt = (int64_t) 1 << lbc;
291 1.1 perseant off = (bn >> lbc) & (fs->lfs_nindir - 1);
292 1.1 perseant
293 1.1 perseant ++numlevels;
294 1.1 perseant ap->in_lbn = metalbn;
295 1.1 perseant ap->in_off = off;
296 1.1 perseant ap->in_exists = 0;
297 1.1 perseant ++ap;
298 1.1 perseant
299 1.1 perseant metalbn -= -1 + (off << lbc);
300 1.1 perseant }
301 1.1 perseant if (nump)
302 1.1 perseant *nump = numlevels;
303 1.1 perseant return (0);
304 1.1 perseant }
305 1.1 perseant
306 1.1 perseant int
307 1.1 perseant lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 1.1 perseant {
309 1.37 dholland return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 1.1 perseant }
311 1.1 perseant
312 1.1 perseant /* Search a block for a specific dinode. */
313 1.37 dholland struct ulfs1_dinode *
314 1.1 perseant lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 1.1 perseant {
316 1.37 dholland struct ulfs1_dinode *dip = (struct ulfs1_dinode *) bp->b_data;
317 1.37 dholland struct ulfs1_dinode *ldip, *fin;
318 1.1 perseant
319 1.1 perseant fin = dip + INOPB(fs);
320 1.1 perseant
321 1.1 perseant /*
322 1.1 perseant * Read the inode block backwards, since later versions of the
323 1.1 perseant * inode will supercede earlier ones. Though it is unlikely, it is
324 1.1 perseant * possible that the same inode will appear in the same inode block.
325 1.1 perseant */
326 1.1 perseant for (ldip = fin - 1; ldip >= dip; --ldip)
327 1.1 perseant if (ldip->di_inumber == ino)
328 1.1 perseant return (ldip);
329 1.1 perseant return NULL;
330 1.1 perseant }
331 1.1 perseant
332 1.1 perseant /*
333 1.1 perseant * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 1.1 perseant * XXX it currently loses atime information.
335 1.1 perseant */
336 1.1 perseant struct uvnode *
337 1.37 dholland lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
338 1.1 perseant {
339 1.1 perseant struct uvnode *vp;
340 1.1 perseant struct inode *ip;
341 1.37 dholland struct ulfs1_dinode *dip;
342 1.1 perseant struct ubuf *bp;
343 1.10 perseant int i, hash;
344 1.1 perseant
345 1.26 christos vp = ecalloc(1, sizeof(*vp));
346 1.1 perseant vp->v_fd = fd;
347 1.1 perseant vp->v_fs = fs;
348 1.1 perseant vp->v_usecount = 0;
349 1.1 perseant vp->v_strategy_op = lfs_vop_strategy;
350 1.1 perseant vp->v_bwrite_op = lfs_vop_bwrite;
351 1.1 perseant vp->v_bmap_op = lfs_vop_bmap;
352 1.5 yamt LIST_INIT(&vp->v_cleanblkhd);
353 1.5 yamt LIST_INIT(&vp->v_dirtyblkhd);
354 1.1 perseant
355 1.26 christos ip = ecalloc(1, sizeof(*ip));
356 1.26 christos
357 1.26 christos ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358 1.2 fvdl
359 1.1 perseant /* Initialize the inode -- from lfs_vcreate. */
360 1.26 christos ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361 1.1 perseant vp->v_data = ip;
362 1.1 perseant /* ip->i_vnode = vp; */
363 1.1 perseant ip->i_number = ino;
364 1.1 perseant ip->i_lockf = 0;
365 1.1 perseant ip->i_lfs_effnblks = 0;
366 1.1 perseant ip->i_flag = 0;
367 1.1 perseant
368 1.1 perseant /* Load inode block and find inode */
369 1.8 perseant if (daddr > 0) {
370 1.29 hannken bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
371 1.29 hannken NULL, 0, &bp);
372 1.8 perseant bp->b_flags |= B_AGE;
373 1.8 perseant dip = lfs_ifind(fs, ino, bp);
374 1.8 perseant if (dip == NULL) {
375 1.27 ad brelse(bp, 0);
376 1.8 perseant free(ip);
377 1.8 perseant free(vp);
378 1.8 perseant return NULL;
379 1.8 perseant }
380 1.8 perseant memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
381 1.27 ad brelse(bp, 0);
382 1.1 perseant }
383 1.1 perseant ip->i_number = ino;
384 1.9 perseant /* ip->i_devvp = fs->lfs_devvp; */
385 1.1 perseant ip->i_lfs = fs;
386 1.1 perseant
387 1.2 fvdl ip->i_lfs_effnblks = ip->i_ffs1_blocks;
388 1.2 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
389 1.1 perseant #if 0
390 1.1 perseant if (fs->lfs_version > 1) {
391 1.2 fvdl ip->i_ffs1_atime = ts.tv_sec;
392 1.2 fvdl ip->i_ffs1_atimensec = ts.tv_nsec;
393 1.1 perseant }
394 1.1 perseant #endif
395 1.1 perseant
396 1.37 dholland memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
397 1.37 dholland for (i = 0; i < ULFS_NDADDR; i++)
398 1.2 fvdl if (ip->i_ffs1_db[i] != 0)
399 1.1 perseant ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
400 1.6 yamt
401 1.6 yamt ++nvnodes;
402 1.11 martin hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
403 1.10 perseant LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
404 1.6 yamt LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
405 1.1 perseant
406 1.1 perseant return vp;
407 1.1 perseant }
408 1.1 perseant
409 1.1 perseant static struct uvnode *
410 1.1 perseant lfs_vget(void *vfs, ino_t ino)
411 1.1 perseant {
412 1.1 perseant struct lfs *fs = (struct lfs *)vfs;
413 1.37 dholland ulfs_daddr_t daddr;
414 1.1 perseant struct ubuf *bp;
415 1.1 perseant IFILE *ifp;
416 1.1 perseant
417 1.1 perseant LFS_IENTRY(ifp, fs, ino, bp);
418 1.1 perseant daddr = ifp->if_daddr;
419 1.27 ad brelse(bp, 0);
420 1.13 perseant if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
421 1.1 perseant return NULL;
422 1.1 perseant return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
423 1.1 perseant }
424 1.1 perseant
425 1.1 perseant /* Check superblock magic number and checksum */
426 1.1 perseant static int
427 1.1 perseant check_sb(struct lfs *fs)
428 1.1 perseant {
429 1.1 perseant u_int32_t checksum;
430 1.1 perseant
431 1.1 perseant if (fs->lfs_magic != LFS_MAGIC) {
432 1.1 perseant printf("Superblock magic number (0x%lx) does not match "
433 1.1 perseant "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
434 1.1 perseant (unsigned long) LFS_MAGIC);
435 1.1 perseant return 1;
436 1.1 perseant }
437 1.1 perseant /* checksum */
438 1.1 perseant checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
439 1.1 perseant if (fs->lfs_cksum != checksum) {
440 1.1 perseant printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
441 1.1 perseant (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
442 1.1 perseant return 1;
443 1.1 perseant }
444 1.1 perseant return 0;
445 1.1 perseant }
446 1.1 perseant
447 1.1 perseant /* Initialize LFS library; load superblocks and choose which to use. */
448 1.1 perseant struct lfs *
449 1.8 perseant lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
450 1.1 perseant {
451 1.1 perseant struct uvnode *devvp;
452 1.1 perseant struct ubuf *bp;
453 1.1 perseant int tryalt;
454 1.1 perseant struct lfs *fs, *altfs;
455 1.1 perseant int error;
456 1.1 perseant
457 1.1 perseant vfs_init();
458 1.1 perseant
459 1.26 christos devvp = ecalloc(1, sizeof(*devvp));
460 1.1 perseant devvp->v_fs = NULL;
461 1.1 perseant devvp->v_fd = devfd;
462 1.1 perseant devvp->v_strategy_op = raw_vop_strategy;
463 1.1 perseant devvp->v_bwrite_op = raw_vop_bwrite;
464 1.1 perseant devvp->v_bmap_op = raw_vop_bmap;
465 1.5 yamt LIST_INIT(&devvp->v_cleanblkhd);
466 1.5 yamt LIST_INIT(&devvp->v_dirtyblkhd);
467 1.1 perseant
468 1.1 perseant tryalt = 0;
469 1.8 perseant if (dummy_read) {
470 1.8 perseant if (sblkno == 0)
471 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
472 1.26 christos fs = ecalloc(1, sizeof(*fs));
473 1.9 perseant fs->lfs_devvp = devvp;
474 1.8 perseant } else {
475 1.8 perseant if (sblkno == 0) {
476 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
477 1.8 perseant tryalt = 1;
478 1.8 perseant } else if (debug) {
479 1.8 perseant printf("No -b flag given, not attempting to verify checkpoint\n");
480 1.8 perseant }
481 1.32 mlelstv
482 1.32 mlelstv dev_bsize = DEV_BSIZE;
483 1.32 mlelstv
484 1.29 hannken error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, 0, &bp);
485 1.26 christos fs = ecalloc(1, sizeof(*fs));
486 1.8 perseant fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
487 1.9 perseant fs->lfs_devvp = devvp;
488 1.1 perseant bp->b_flags |= B_INVAL;
489 1.27 ad brelse(bp, 0);
490 1.32 mlelstv
491 1.32 mlelstv dev_bsize = fs->lfs_fsize >> fs->lfs_fsbtodb;
492 1.8 perseant
493 1.8 perseant if (tryalt) {
494 1.8 perseant error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
495 1.29 hannken LFS_SBPAD, NOCRED, 0, &bp);
496 1.26 christos altfs = ecalloc(1, sizeof(*altfs));
497 1.8 perseant altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
498 1.9 perseant altfs->lfs_devvp = devvp;
499 1.8 perseant bp->b_flags |= B_INVAL;
500 1.27 ad brelse(bp, 0);
501 1.8 perseant
502 1.8 perseant if (check_sb(fs) || fs->lfs_idaddr <= 0) {
503 1.1 perseant if (debug)
504 1.8 perseant printf("Primary superblock is no good, using first alternate\n");
505 1.8 perseant free(fs);
506 1.8 perseant fs = altfs;
507 1.1 perseant } else {
508 1.8 perseant /* If both superblocks check out, try verification */
509 1.8 perseant if (check_sb(altfs)) {
510 1.8 perseant if (debug)
511 1.8 perseant printf("First alternate superblock is no good, using primary\n");
512 1.1 perseant free(altfs);
513 1.1 perseant } else {
514 1.8 perseant if (lfs_verify(fs, altfs, devvp, debug) == fs) {
515 1.8 perseant free(altfs);
516 1.8 perseant } else {
517 1.8 perseant free(fs);
518 1.8 perseant fs = altfs;
519 1.8 perseant }
520 1.1 perseant }
521 1.1 perseant }
522 1.1 perseant }
523 1.8 perseant if (check_sb(fs)) {
524 1.8 perseant free(fs);
525 1.8 perseant return NULL;
526 1.8 perseant }
527 1.1 perseant }
528 1.8 perseant
529 1.1 perseant /* Compatibility */
530 1.1 perseant if (fs->lfs_version < 2) {
531 1.1 perseant fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
532 1.1 perseant fs->lfs_ibsize = fs->lfs_bsize;
533 1.1 perseant fs->lfs_start = fs->lfs_sboffs[0];
534 1.1 perseant fs->lfs_tstamp = fs->lfs_otstamp;
535 1.1 perseant fs->lfs_fsbtodb = 0;
536 1.1 perseant }
537 1.8 perseant
538 1.8 perseant if (!dummy_read) {
539 1.26 christos fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
540 1.26 christos fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
541 1.26 christos fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542 1.8 perseant }
543 1.1 perseant
544 1.1 perseant if (idaddr == 0)
545 1.1 perseant idaddr = fs->lfs_idaddr;
546 1.10 perseant else
547 1.10 perseant fs->lfs_idaddr = idaddr;
548 1.8 perseant /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
549 1.8 perseant fs->lfs_ivnode = lfs_raw_vget(fs,
550 1.8 perseant (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
551 1.8 perseant idaddr);
552 1.21 perseant if (fs->lfs_ivnode == NULL)
553 1.21 perseant return NULL;
554 1.1 perseant
555 1.1 perseant register_vget((void *)fs, lfs_vget);
556 1.1 perseant
557 1.1 perseant return fs;
558 1.1 perseant }
559 1.1 perseant
560 1.1 perseant /*
561 1.1 perseant * Check partial segment validity between fs->lfs_offset and the given goal.
562 1.12 perseant *
563 1.12 perseant * If goal == 0, just keep on going until the segments stop making sense,
564 1.12 perseant * and return the address of the last valid partial segment.
565 1.12 perseant *
566 1.12 perseant * If goal != 0, return the address of the first partial segment that failed,
567 1.12 perseant * or "goal" if we reached it without failure (the partial segment *at* goal
568 1.12 perseant * need not be valid).
569 1.1 perseant */
570 1.37 dholland ulfs_daddr_t
571 1.37 dholland try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
572 1.1 perseant {
573 1.37 dholland ulfs_daddr_t daddr, odaddr;
574 1.1 perseant SEGSUM *sp;
575 1.25 perseant int i, bc, hitclean;
576 1.1 perseant struct ubuf *bp;
577 1.37 dholland ulfs_daddr_t nodirop_daddr;
578 1.1 perseant u_int64_t serial;
579 1.1 perseant
580 1.25 perseant bc = 0;
581 1.25 perseant hitclean = 0;
582 1.12 perseant odaddr = -1;
583 1.1 perseant daddr = osb->lfs_offset;
584 1.1 perseant nodirop_daddr = daddr;
585 1.1 perseant serial = osb->lfs_serial;
586 1.1 perseant while (daddr != goal) {
587 1.24 perseant /*
588 1.24 perseant * Don't mistakenly read a superblock, if there is one here.
589 1.24 perseant */
590 1.24 perseant if (sntod(osb, dtosn(osb, daddr)) == daddr) {
591 1.25 perseant if (daddr == osb->lfs_start)
592 1.25 perseant daddr += btofsb(osb, LFS_LABELPAD);
593 1.24 perseant for (i = 0; i < LFS_MAXNUMSB; i++) {
594 1.24 perseant if (osb->lfs_sboffs[i] < daddr)
595 1.24 perseant break;
596 1.24 perseant if (osb->lfs_sboffs[i] == daddr)
597 1.24 perseant daddr += btofsb(osb, LFS_SBPAD);
598 1.24 perseant }
599 1.24 perseant }
600 1.24 perseant
601 1.1 perseant /* Read in summary block */
602 1.29 hannken bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize,
603 1.29 hannken NULL, 0, &bp);
604 1.1 perseant sp = (SEGSUM *)bp->b_data;
605 1.1 perseant
606 1.1 perseant /*
607 1.24 perseant * Check for a valid segment summary belonging to our fs.
608 1.1 perseant */
609 1.1 perseant if (sp->ss_magic != SS_MAGIC ||
610 1.1 perseant sp->ss_ident != osb->lfs_ident ||
611 1.24 perseant sp->ss_serial < serial || /* XXX strengthen this */
612 1.1 perseant sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
613 1.1 perseant sizeof(sp->ss_sumsum))) {
614 1.27 ad brelse(bp, 0);
615 1.24 perseant if (debug) {
616 1.24 perseant if (sp->ss_magic != SS_MAGIC)
617 1.24 perseant pwarn("pseg at 0x%x: "
618 1.24 perseant "wrong magic number\n",
619 1.24 perseant (int)daddr);
620 1.24 perseant else if (sp->ss_ident != osb->lfs_ident)
621 1.24 perseant pwarn("pseg at 0x%x: "
622 1.24 perseant "expected ident %llx, got %llx\n",
623 1.24 perseant (int)daddr,
624 1.24 perseant (long long)sp->ss_ident,
625 1.24 perseant (long long)osb->lfs_ident);
626 1.24 perseant else if (sp->ss_serial >= serial)
627 1.24 perseant pwarn("pseg at 0x%x: "
628 1.24 perseant "serial %d < %d\n", (int)daddr,
629 1.24 perseant (int)sp->ss_serial, (int)serial);
630 1.24 perseant else
631 1.24 perseant pwarn("pseg at 0x%x: "
632 1.24 perseant "summary checksum wrong\n",
633 1.24 perseant (int)daddr);
634 1.1 perseant }
635 1.1 perseant break;
636 1.1 perseant }
637 1.24 perseant if (debug && sp->ss_serial != serial)
638 1.25 perseant pwarn("warning, serial=%d ss_serial=%d\n",
639 1.24 perseant (int)serial, (int)sp->ss_serial);
640 1.1 perseant ++serial;
641 1.1 perseant bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
642 1.1 perseant if (bc == 0) {
643 1.27 ad brelse(bp, 0);
644 1.1 perseant break;
645 1.1 perseant }
646 1.24 perseant if (debug)
647 1.24 perseant pwarn("summary good: 0x%x/%d\n", (int)daddr,
648 1.24 perseant (int)sp->ss_serial);
649 1.1 perseant assert (bc > 0);
650 1.1 perseant odaddr = daddr;
651 1.1 perseant daddr += btofsb(osb, osb->lfs_sumsize + bc);
652 1.1 perseant if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
653 1.1 perseant dtosn(osb, daddr) != dtosn(osb, daddr +
654 1.25 perseant btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
655 1.1 perseant daddr = sp->ss_next;
656 1.1 perseant }
657 1.24 perseant
658 1.24 perseant /*
659 1.24 perseant * Check for the beginning and ending of a sequence of
660 1.25 perseant * dirops. Writes from the cleaner never involve new
661 1.25 perseant * information, and are always checkpoints; so don't try
662 1.25 perseant * to roll forward through them. Likewise, psegs written
663 1.25 perseant * by a previous roll-forward attempt are not interesting.
664 1.24 perseant */
665 1.25 perseant if (sp->ss_flags & (SS_CLEAN | SS_RFW))
666 1.25 perseant hitclean = 1;
667 1.25 perseant if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
668 1.1 perseant nodirop_daddr = daddr;
669 1.24 perseant
670 1.27 ad brelse(bp, 0);
671 1.1 perseant }
672 1.1 perseant
673 1.1 perseant if (goal == 0)
674 1.1 perseant return nodirop_daddr;
675 1.1 perseant else
676 1.1 perseant return daddr;
677 1.1 perseant }
678 1.1 perseant
679 1.1 perseant /* Use try_verify to check whether the newer superblock is valid. */
680 1.1 perseant struct lfs *
681 1.1 perseant lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
682 1.1 perseant {
683 1.37 dholland ulfs_daddr_t daddr;
684 1.1 perseant struct lfs *osb, *nsb;
685 1.1 perseant
686 1.1 perseant /*
687 1.1 perseant * Verify the checkpoint of the newer superblock,
688 1.1 perseant * if the timestamp/serial number of the two superblocks is
689 1.1 perseant * different.
690 1.1 perseant */
691 1.1 perseant
692 1.14 lukem osb = NULL;
693 1.1 perseant if (debug)
694 1.24 perseant pwarn("sb0 %lld, sb1 %lld",
695 1.24 perseant (long long) sb0->lfs_serial,
696 1.24 perseant (long long) sb1->lfs_serial);
697 1.1 perseant
698 1.1 perseant if ((sb0->lfs_version == 1 &&
699 1.1 perseant sb0->lfs_otstamp != sb1->lfs_otstamp) ||
700 1.1 perseant (sb0->lfs_version > 1 &&
701 1.1 perseant sb0->lfs_serial != sb1->lfs_serial)) {
702 1.1 perseant if (sb0->lfs_version == 1) {
703 1.1 perseant if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
704 1.1 perseant osb = sb1;
705 1.1 perseant nsb = sb0;
706 1.1 perseant } else {
707 1.1 perseant osb = sb0;
708 1.1 perseant nsb = sb1;
709 1.1 perseant }
710 1.1 perseant } else {
711 1.1 perseant if (sb0->lfs_serial > sb1->lfs_serial) {
712 1.1 perseant osb = sb1;
713 1.1 perseant nsb = sb0;
714 1.1 perseant } else {
715 1.1 perseant osb = sb0;
716 1.1 perseant nsb = sb1;
717 1.1 perseant }
718 1.1 perseant }
719 1.1 perseant if (debug) {
720 1.1 perseant printf("Attempting to verify newer checkpoint...");
721 1.1 perseant fflush(stdout);
722 1.1 perseant }
723 1.1 perseant daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
724 1.1 perseant
725 1.1 perseant if (debug)
726 1.1 perseant printf("done.\n");
727 1.1 perseant if (daddr == nsb->lfs_offset) {
728 1.8 perseant pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
729 1.1 perseant (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
730 1.1 perseant sbdirty();
731 1.1 perseant } else {
732 1.8 perseant pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
733 1.1 perseant }
734 1.1 perseant return (daddr == nsb->lfs_offset ? nsb : osb);
735 1.1 perseant }
736 1.1 perseant /* Nothing to check */
737 1.1 perseant return osb;
738 1.1 perseant }
739 1.1 perseant
740 1.1 perseant /* Verify a partial-segment summary; return the number of bytes on disk. */
741 1.1 perseant int
742 1.37 dholland check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
743 1.37 dholland struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
744 1.1 perseant {
745 1.1 perseant FINFO *fp;
746 1.1 perseant int bc; /* Bytes in partial segment */
747 1.1 perseant int nblocks;
748 1.37 dholland ulfs_daddr_t seg_addr, daddr;
749 1.37 dholland ulfs_daddr_t *dp, *idp;
750 1.1 perseant struct ubuf *bp;
751 1.1 perseant int i, j, k, datac, len;
752 1.1 perseant long sn;
753 1.1 perseant u_int32_t *datap;
754 1.1 perseant u_int32_t ccksum;
755 1.1 perseant
756 1.1 perseant sn = dtosn(fs, pseg_addr);
757 1.1 perseant seg_addr = sntod(fs, sn);
758 1.1 perseant
759 1.1 perseant /* We've already checked the sumsum, just do the data bounds and sum */
760 1.1 perseant
761 1.1 perseant /* Count the blocks. */
762 1.1 perseant nblocks = howmany(sp->ss_ninos, INOPB(fs));
763 1.1 perseant bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
764 1.1 perseant assert(bc >= 0);
765 1.1 perseant
766 1.1 perseant fp = (FINFO *) (sp + 1);
767 1.1 perseant for (i = 0; i < sp->ss_nfinfo; i++) {
768 1.1 perseant nblocks += fp->fi_nblocks;
769 1.1 perseant bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
770 1.1 perseant << fs->lfs_bshift);
771 1.1 perseant assert(bc >= 0);
772 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
773 1.24 perseant if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
774 1.24 perseant return 0;
775 1.1 perseant }
776 1.26 christos datap = emalloc(nblocks * sizeof(*datap));
777 1.1 perseant datac = 0;
778 1.1 perseant
779 1.37 dholland dp = (ulfs_daddr_t *) sp;
780 1.37 dholland dp += fs->lfs_sumsize / sizeof(ulfs_daddr_t);
781 1.1 perseant dp--;
782 1.1 perseant
783 1.1 perseant idp = dp;
784 1.1 perseant daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
785 1.1 perseant fp = (FINFO *) (sp + 1);
786 1.1 perseant for (i = 0, j = 0;
787 1.1 perseant i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
788 1.1 perseant if (i >= sp->ss_nfinfo && *idp != daddr) {
789 1.8 perseant pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
790 1.1 perseant ": found %d, wanted %d\n",
791 1.1 perseant pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
792 1.1 perseant if (debug)
793 1.8 perseant pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
794 1.1 perseant daddr);
795 1.1 perseant break;
796 1.1 perseant }
797 1.1 perseant while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
798 1.29 hannken bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
799 1.29 hannken NOCRED, 0, &bp);
800 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
801 1.27 ad brelse(bp, 0);
802 1.1 perseant
803 1.1 perseant ++j;
804 1.1 perseant daddr += btofsb(fs, fs->lfs_ibsize);
805 1.1 perseant --idp;
806 1.1 perseant }
807 1.1 perseant if (i < sp->ss_nfinfo) {
808 1.1 perseant if (func)
809 1.1 perseant func(daddr, fp);
810 1.1 perseant for (k = 0; k < fp->fi_nblocks; k++) {
811 1.1 perseant len = (k == fp->fi_nblocks - 1 ?
812 1.1 perseant fp->fi_lastlength
813 1.1 perseant : fs->lfs_bsize);
814 1.29 hannken bread(devvp, fsbtodb(fs, daddr), len,
815 1.29 hannken NOCRED, 0, &bp);
816 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
817 1.27 ad brelse(bp, 0);
818 1.1 perseant daddr += btofsb(fs, len);
819 1.1 perseant }
820 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
821 1.1 perseant }
822 1.1 perseant }
823 1.1 perseant
824 1.1 perseant if (datac != nblocks) {
825 1.8 perseant pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
826 1.1 perseant (long long) pseg_addr, nblocks, datac);
827 1.1 perseant }
828 1.1 perseant ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
829 1.1 perseant /* Check the data checksum */
830 1.1 perseant if (ccksum != sp->ss_datasum) {
831 1.8 perseant pwarn("Partial segment at 0x%" PRIx32 " data checksum"
832 1.1 perseant " mismatch: given 0x%x, computed 0x%x\n",
833 1.1 perseant pseg_addr, sp->ss_datasum, ccksum);
834 1.1 perseant free(datap);
835 1.1 perseant return 0;
836 1.1 perseant }
837 1.1 perseant free(datap);
838 1.1 perseant assert(bc >= 0);
839 1.1 perseant return bc;
840 1.1 perseant }
841 1.1 perseant
842 1.1 perseant /* print message and exit */
843 1.1 perseant void
844 1.1 perseant my_vpanic(int fatal, const char *fmt, va_list ap)
845 1.1 perseant {
846 1.1 perseant (void) vprintf(fmt, ap);
847 1.1 perseant exit(8);
848 1.1 perseant }
849 1.1 perseant
850 1.1 perseant void
851 1.1 perseant call_panic(const char *fmt, ...)
852 1.1 perseant {
853 1.1 perseant va_list ap;
854 1.1 perseant
855 1.1 perseant va_start(ap, fmt);
856 1.1 perseant panic_func(1, fmt, ap);
857 1.1 perseant va_end(ap);
858 1.1 perseant }
859 1.16 perseant
860 1.16 perseant /* Allocate a new inode. */
861 1.16 perseant struct uvnode *
862 1.16 perseant lfs_valloc(struct lfs *fs, ino_t ino)
863 1.16 perseant {
864 1.16 perseant struct ubuf *bp, *cbp;
865 1.16 perseant struct ifile *ifp;
866 1.16 perseant ino_t new_ino;
867 1.16 perseant int error;
868 1.16 perseant int new_gen;
869 1.16 perseant CLEANERINFO *cip;
870 1.16 perseant
871 1.16 perseant /* Get the head of the freelist. */
872 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
873 1.16 perseant
874 1.16 perseant /*
875 1.16 perseant * Remove the inode from the free list and write the new start
876 1.16 perseant * of the free list into the superblock.
877 1.16 perseant */
878 1.16 perseant LFS_IENTRY(ifp, fs, new_ino, bp);
879 1.16 perseant if (ifp->if_daddr != LFS_UNUSED_DADDR)
880 1.16 perseant panic("lfs_valloc: inuse inode %d on the free list", new_ino);
881 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
882 1.16 perseant
883 1.16 perseant new_gen = ifp->if_version; /* version was updated by vfree */
884 1.27 ad brelse(bp, 0);
885 1.16 perseant
886 1.16 perseant /* Extend IFILE so that the next lfs_valloc will succeed. */
887 1.16 perseant if (fs->lfs_freehd == LFS_UNUSED_INUM) {
888 1.16 perseant if ((error = extend_ifile(fs)) != 0) {
889 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
890 1.16 perseant return NULL;
891 1.16 perseant }
892 1.16 perseant }
893 1.16 perseant
894 1.16 perseant /* Set superblock modified bit and increment file count. */
895 1.16 perseant sbdirty();
896 1.16 perseant ++fs->lfs_nfiles;
897 1.16 perseant
898 1.16 perseant return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
899 1.16 perseant }
900 1.16 perseant
901 1.24 perseant #ifdef IN_FSCK_LFS
902 1.24 perseant void reset_maxino(ino_t);
903 1.24 perseant #endif
904 1.24 perseant
905 1.16 perseant /*
906 1.16 perseant * Add a new block to the Ifile, to accommodate future file creations.
907 1.16 perseant */
908 1.16 perseant int
909 1.16 perseant extend_ifile(struct lfs *fs)
910 1.16 perseant {
911 1.16 perseant struct uvnode *vp;
912 1.16 perseant struct inode *ip;
913 1.16 perseant IFILE *ifp;
914 1.16 perseant IFILE_V1 *ifp_v1;
915 1.16 perseant struct ubuf *bp, *cbp;
916 1.16 perseant daddr_t i, blkno, max;
917 1.16 perseant ino_t oldlast;
918 1.16 perseant CLEANERINFO *cip;
919 1.16 perseant
920 1.16 perseant vp = fs->lfs_ivnode;
921 1.16 perseant ip = VTOI(vp);
922 1.16 perseant blkno = lblkno(fs, ip->i_ffs1_size);
923 1.16 perseant
924 1.24 perseant lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
925 1.16 perseant ip->i_ffs1_size += fs->lfs_bsize;
926 1.24 perseant ip->i_flag |= IN_MODIFIED;
927 1.16 perseant
928 1.16 perseant i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
929 1.16 perseant fs->lfs_ifpb;
930 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
931 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, i);
932 1.16 perseant max = i + fs->lfs_ifpb;
933 1.16 perseant fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
934 1.16 perseant
935 1.16 perseant if (fs->lfs_version == 1) {
936 1.16 perseant for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
937 1.16 perseant ifp_v1->if_version = 1;
938 1.16 perseant ifp_v1->if_daddr = LFS_UNUSED_DADDR;
939 1.16 perseant ifp_v1->if_nextfree = ++i;
940 1.16 perseant }
941 1.16 perseant ifp_v1--;
942 1.16 perseant ifp_v1->if_nextfree = oldlast;
943 1.16 perseant } else {
944 1.16 perseant for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
945 1.16 perseant ifp->if_version = 1;
946 1.16 perseant ifp->if_daddr = LFS_UNUSED_DADDR;
947 1.16 perseant ifp->if_nextfree = ++i;
948 1.16 perseant }
949 1.16 perseant ifp--;
950 1.16 perseant ifp->if_nextfree = oldlast;
951 1.16 perseant }
952 1.16 perseant LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
953 1.16 perseant
954 1.16 perseant LFS_BWRITE_LOG(bp);
955 1.16 perseant
956 1.24 perseant #ifdef IN_FSCK_LFS
957 1.24 perseant reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
958 1.24 perseant fs->lfs_cleansz) * fs->lfs_ifpb);
959 1.24 perseant #endif
960 1.16 perseant return 0;
961 1.16 perseant }
962 1.16 perseant
963 1.24 perseant /*
964 1.24 perseant * Allocate a block, and to inode and filesystem block accounting for it
965 1.24 perseant * and for any indirect blocks the may need to be created in order for
966 1.24 perseant * this block to be created.
967 1.24 perseant *
968 1.24 perseant * Blocks which have never been accounted for (i.e., which "do not exist")
969 1.37 dholland * have disk address 0, which is translated by ulfs_bmap to the special value
970 1.37 dholland * UNASSIGNED == -1, as in the historical ULFS.
971 1.24 perseant *
972 1.24 perseant * Blocks which have been accounted for but which have not yet been written
973 1.24 perseant * to disk are given the new special disk address UNWRITTEN == -2, so that
974 1.24 perseant * they can be differentiated from completely new blocks.
975 1.24 perseant */
976 1.24 perseant int
977 1.24 perseant lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
978 1.24 perseant {
979 1.24 perseant int offset;
980 1.24 perseant daddr_t daddr, idaddr;
981 1.24 perseant struct ubuf *ibp, *bp;
982 1.24 perseant struct inode *ip;
983 1.24 perseant struct lfs *fs;
984 1.37 dholland struct indir indirs[ULFS_NIADDR+2], *idp;
985 1.24 perseant daddr_t lbn, lastblock;
986 1.32 mlelstv int bcount;
987 1.24 perseant int error, frags, i, nsize, osize, num;
988 1.24 perseant
989 1.24 perseant ip = VTOI(vp);
990 1.24 perseant fs = ip->i_lfs;
991 1.24 perseant offset = blkoff(fs, startoffset);
992 1.24 perseant lbn = lblkno(fs, startoffset);
993 1.24 perseant
994 1.24 perseant /*
995 1.24 perseant * Three cases: it's a block beyond the end of file, it's a block in
996 1.24 perseant * the file that may or may not have been assigned a disk address or
997 1.24 perseant * we're writing an entire block.
998 1.24 perseant *
999 1.24 perseant * Note, if the daddr is UNWRITTEN, the block already exists in
1000 1.24 perseant * the cache (it was read or written earlier). If so, make sure
1001 1.24 perseant * we don't count it as a new block or zero out its contents. If
1002 1.24 perseant * it did not, make sure we allocate any necessary indirect
1003 1.24 perseant * blocks.
1004 1.24 perseant *
1005 1.24 perseant * If we are writing a block beyond the end of the file, we need to
1006 1.24 perseant * check if the old last block was a fragment. If it was, we need
1007 1.24 perseant * to rewrite it.
1008 1.24 perseant */
1009 1.24 perseant
1010 1.24 perseant if (bpp)
1011 1.24 perseant *bpp = NULL;
1012 1.24 perseant
1013 1.24 perseant /* Check for block beyond end of file and fragment extension needed. */
1014 1.24 perseant lastblock = lblkno(fs, ip->i_ffs1_size);
1015 1.37 dholland if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1016 1.24 perseant osize = blksize(fs, ip, lastblock);
1017 1.24 perseant if (osize < fs->lfs_bsize && osize > 0) {
1018 1.24 perseant if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1019 1.24 perseant lastblock,
1020 1.24 perseant (bpp ? &bp : NULL))))
1021 1.24 perseant return (error);
1022 1.34 mrg ip->i_ffs1_size = (lastblock + 1) * fs->lfs_bsize;
1023 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1024 1.24 perseant if (bpp)
1025 1.24 perseant (void) VOP_BWRITE(bp);
1026 1.24 perseant }
1027 1.24 perseant }
1028 1.24 perseant
1029 1.24 perseant /*
1030 1.24 perseant * If the block we are writing is a direct block, it's the last
1031 1.24 perseant * block in the file, and offset + iosize is less than a full
1032 1.24 perseant * block, we can write one or more fragments. There are two cases:
1033 1.24 perseant * the block is brand new and we should allocate it the correct
1034 1.24 perseant * size or it already exists and contains some fragments and
1035 1.24 perseant * may need to extend it.
1036 1.24 perseant */
1037 1.37 dholland if (lbn < ULFS_NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1038 1.24 perseant osize = blksize(fs, ip, lbn);
1039 1.24 perseant nsize = fragroundup(fs, offset + iosize);
1040 1.24 perseant if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1041 1.24 perseant /* Brand new block or fragment */
1042 1.24 perseant frags = numfrags(fs, nsize);
1043 1.24 perseant if (bpp) {
1044 1.24 perseant *bpp = bp = getblk(vp, lbn, nsize);
1045 1.24 perseant bp->b_blkno = UNWRITTEN;
1046 1.24 perseant }
1047 1.32 mlelstv ip->i_lfs_effnblks += frags;
1048 1.32 mlelstv fs->lfs_bfree -= frags;
1049 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1050 1.24 perseant } else {
1051 1.24 perseant if (nsize <= osize) {
1052 1.24 perseant /* No need to extend */
1053 1.29 hannken if (bpp && (error = bread(vp, lbn, osize,
1054 1.29 hannken NOCRED, 0, &bp)))
1055 1.24 perseant return error;
1056 1.24 perseant } else {
1057 1.24 perseant /* Extend existing block */
1058 1.24 perseant if ((error =
1059 1.24 perseant lfs_fragextend(vp, osize, nsize, lbn,
1060 1.24 perseant (bpp ? &bp : NULL))))
1061 1.24 perseant return error;
1062 1.24 perseant }
1063 1.24 perseant if (bpp)
1064 1.24 perseant *bpp = bp;
1065 1.24 perseant }
1066 1.24 perseant return 0;
1067 1.24 perseant }
1068 1.24 perseant
1069 1.37 dholland error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1070 1.24 perseant if (error)
1071 1.24 perseant return (error);
1072 1.24 perseant
1073 1.24 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1074 1.24 perseant
1075 1.24 perseant /*
1076 1.24 perseant * Do byte accounting all at once, so we can gracefully fail *before*
1077 1.24 perseant * we start assigning blocks.
1078 1.24 perseant */
1079 1.37 dholland frags = fsbtodb(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1080 1.24 perseant bcount = 0;
1081 1.24 perseant if (daddr == UNASSIGNED) {
1082 1.32 mlelstv bcount = frags;
1083 1.24 perseant }
1084 1.24 perseant for (i = 1; i < num; ++i) {
1085 1.24 perseant if (!indirs[i].in_exists) {
1086 1.32 mlelstv bcount += frags;
1087 1.24 perseant }
1088 1.24 perseant }
1089 1.24 perseant fs->lfs_bfree -= bcount;
1090 1.24 perseant ip->i_lfs_effnblks += bcount;
1091 1.24 perseant
1092 1.24 perseant if (daddr == UNASSIGNED) {
1093 1.24 perseant if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1094 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1095 1.24 perseant }
1096 1.24 perseant
1097 1.24 perseant /*
1098 1.24 perseant * Create new indirect blocks if necessary
1099 1.24 perseant */
1100 1.24 perseant if (num > 1) {
1101 1.24 perseant idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1102 1.24 perseant for (i = 1; i < num; ++i) {
1103 1.24 perseant ibp = getblk(vp, indirs[i].in_lbn,
1104 1.24 perseant fs->lfs_bsize);
1105 1.24 perseant if (!indirs[i].in_exists) {
1106 1.24 perseant memset(ibp->b_data, 0, ibp->b_bufsize);
1107 1.24 perseant ibp->b_blkno = UNWRITTEN;
1108 1.24 perseant } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1109 1.24 perseant ibp->b_blkno = fsbtodb(fs, idaddr);
1110 1.24 perseant ibp->b_flags |= B_READ;
1111 1.24 perseant VOP_STRATEGY(ibp);
1112 1.24 perseant }
1113 1.24 perseant /*
1114 1.24 perseant * This block exists, but the next one may not.
1115 1.24 perseant * If that is the case mark it UNWRITTEN to
1116 1.24 perseant * keep the accounting straight.
1117 1.24 perseant */
1118 1.24 perseant /* XXX ondisk32 */
1119 1.24 perseant if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1120 1.24 perseant ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1121 1.24 perseant UNWRITTEN;
1122 1.24 perseant /* XXX ondisk32 */
1123 1.24 perseant idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1124 1.24 perseant if ((error = VOP_BWRITE(ibp)))
1125 1.24 perseant return error;
1126 1.24 perseant }
1127 1.24 perseant }
1128 1.24 perseant }
1129 1.24 perseant
1130 1.24 perseant
1131 1.24 perseant /*
1132 1.24 perseant * Get the existing block from the cache, if requested.
1133 1.24 perseant */
1134 1.24 perseant if (bpp)
1135 1.24 perseant *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1136 1.24 perseant
1137 1.24 perseant /*
1138 1.24 perseant * The block we are writing may be a brand new block
1139 1.24 perseant * in which case we need to do accounting.
1140 1.24 perseant *
1141 1.37 dholland * We can tell a truly new block because ulfs_bmaparray will say
1142 1.24 perseant * it is UNASSIGNED. Once we allocate it we will assign it the
1143 1.24 perseant * disk address UNWRITTEN.
1144 1.24 perseant */
1145 1.24 perseant if (daddr == UNASSIGNED) {
1146 1.24 perseant if (bpp) {
1147 1.24 perseant /* Note the new address */
1148 1.24 perseant bp->b_blkno = UNWRITTEN;
1149 1.24 perseant }
1150 1.24 perseant
1151 1.24 perseant switch (num) {
1152 1.24 perseant case 0:
1153 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1154 1.24 perseant break;
1155 1.24 perseant case 1:
1156 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1157 1.24 perseant break;
1158 1.24 perseant default:
1159 1.24 perseant idp = &indirs[num - 1];
1160 1.24 perseant if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1161 1.29 hannken 0, &ibp))
1162 1.24 perseant panic("lfs_balloc: bread bno %lld",
1163 1.24 perseant (long long)idp->in_lbn);
1164 1.24 perseant /* XXX ondisk32 */
1165 1.24 perseant ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1166 1.24 perseant VOP_BWRITE(ibp);
1167 1.24 perseant }
1168 1.24 perseant } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1169 1.24 perseant /*
1170 1.24 perseant * Not a brand new block, also not in the cache;
1171 1.24 perseant * read it in from disk.
1172 1.24 perseant */
1173 1.24 perseant if (iosize == fs->lfs_bsize)
1174 1.24 perseant /* Optimization: I/O is unnecessary. */
1175 1.24 perseant bp->b_blkno = daddr;
1176 1.24 perseant else {
1177 1.24 perseant /*
1178 1.24 perseant * We need to read the block to preserve the
1179 1.24 perseant * existing bytes.
1180 1.24 perseant */
1181 1.24 perseant bp->b_blkno = daddr;
1182 1.24 perseant bp->b_flags |= B_READ;
1183 1.24 perseant VOP_STRATEGY(bp);
1184 1.24 perseant return 0;
1185 1.24 perseant }
1186 1.24 perseant }
1187 1.24 perseant
1188 1.24 perseant return (0);
1189 1.24 perseant }
1190 1.24 perseant
1191 1.24 perseant int
1192 1.24 perseant lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1193 1.24 perseant struct ubuf **bpp)
1194 1.24 perseant {
1195 1.24 perseant struct inode *ip;
1196 1.24 perseant struct lfs *fs;
1197 1.32 mlelstv int frags;
1198 1.24 perseant int error;
1199 1.24 perseant size_t obufsize;
1200 1.24 perseant
1201 1.24 perseant ip = VTOI(vp);
1202 1.24 perseant fs = ip->i_lfs;
1203 1.32 mlelstv frags = (long)numfrags(fs, nsize - osize);
1204 1.24 perseant error = 0;
1205 1.24 perseant
1206 1.24 perseant /*
1207 1.24 perseant * If we are not asked to actually return the block, all we need
1208 1.24 perseant * to do is allocate space for it. UBC will handle dirtying the
1209 1.24 perseant * appropriate things and making sure it all goes to disk.
1210 1.24 perseant * Don't bother to read in that case.
1211 1.24 perseant */
1212 1.29 hannken if (bpp && (error = bread(vp, lbn, osize, NOCRED, 0, bpp))) {
1213 1.27 ad brelse(*bpp, 0);
1214 1.24 perseant goto out;
1215 1.24 perseant }
1216 1.24 perseant
1217 1.32 mlelstv fs->lfs_bfree -= frags;
1218 1.32 mlelstv ip->i_lfs_effnblks += frags;
1219 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1220 1.24 perseant
1221 1.24 perseant if (bpp) {
1222 1.24 perseant obufsize = (*bpp)->b_bufsize;
1223 1.26 christos (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1224 1.26 christos (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1225 1.24 perseant }
1226 1.24 perseant
1227 1.24 perseant out:
1228 1.24 perseant return (error);
1229 1.24 perseant }
1230