lfs.c revision 1.49 1 1.49 dholland /* $NetBSD: lfs.c,v 1.49 2015/08/02 18:08:12 dholland Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1989, 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant * (c) UNIX System Laboratories, Inc.
34 1.1 perseant * All or some portions of this file are derived from material licensed
35 1.1 perseant * to the University of California by American Telephone and Telegraph
36 1.1 perseant * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 1.1 perseant * the permission of UNIX System Laboratories, Inc.
38 1.1 perseant *
39 1.1 perseant * Redistribution and use in source and binary forms, with or without
40 1.1 perseant * modification, are permitted provided that the following conditions
41 1.1 perseant * are met:
42 1.1 perseant * 1. Redistributions of source code must retain the above copyright
43 1.1 perseant * notice, this list of conditions and the following disclaimer.
44 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
45 1.1 perseant * notice, this list of conditions and the following disclaimer in the
46 1.1 perseant * documentation and/or other materials provided with the distribution.
47 1.7 agc * 3. Neither the name of the University nor the names of its contributors
48 1.1 perseant * may be used to endorse or promote products derived from this software
49 1.1 perseant * without specific prior written permission.
50 1.1 perseant *
51 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 1.1 perseant * SUCH DAMAGE.
62 1.1 perseant *
63 1.1 perseant * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 1.1 perseant */
65 1.1 perseant
66 1.1 perseant
67 1.1 perseant #include <sys/types.h>
68 1.1 perseant #include <sys/param.h>
69 1.1 perseant #include <sys/time.h>
70 1.1 perseant #include <sys/buf.h>
71 1.1 perseant #include <sys/mount.h>
72 1.1 perseant
73 1.38 dholland #define vnode uvnode
74 1.1 perseant #include <ufs/lfs/lfs.h>
75 1.49 dholland #include <ufs/lfs/lfs_inode.h>
76 1.48 dholland #include <ufs/lfs/lfs_accessors.h>
77 1.1 perseant #undef vnode
78 1.1 perseant
79 1.1 perseant #include <assert.h>
80 1.1 perseant #include <err.h>
81 1.1 perseant #include <errno.h>
82 1.1 perseant #include <stdarg.h>
83 1.1 perseant #include <stdio.h>
84 1.1 perseant #include <stdlib.h>
85 1.1 perseant #include <string.h>
86 1.1 perseant #include <unistd.h>
87 1.26 christos #include <util.h>
88 1.1 perseant
89 1.1 perseant #include "bufcache.h"
90 1.1 perseant #include "vnode.h"
91 1.17 christos #include "lfs_user.h"
92 1.1 perseant #include "segwrite.h"
93 1.31 pooka #include "kernelops.h"
94 1.1 perseant
95 1.1 perseant #define panic call_panic
96 1.1 perseant
97 1.1 perseant extern u_int32_t cksum(void *, size_t);
98 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
99 1.8 perseant extern void pwarn(const char *, ...);
100 1.1 perseant
101 1.1 perseant extern struct uvnodelst vnodelist;
102 1.10 perseant extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 1.1 perseant extern int nvnodes;
104 1.1 perseant
105 1.33 mlelstv long dev_bsize = DEV_BSIZE;
106 1.32 mlelstv
107 1.24 perseant static int
108 1.24 perseant lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109 1.24 perseant
110 1.1 perseant int fsdirty = 0;
111 1.43 dholland void (*panic_func)(int, const char *, va_list) = my_vpanic;
112 1.1 perseant
113 1.1 perseant /*
114 1.1 perseant * LFS buffer and uvnode operations
115 1.1 perseant */
116 1.1 perseant
117 1.1 perseant int
118 1.1 perseant lfs_vop_strategy(struct ubuf * bp)
119 1.1 perseant {
120 1.1 perseant int count;
121 1.1 perseant
122 1.1 perseant if (bp->b_flags & B_READ) {
123 1.31 pooka count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 1.32 mlelstv bp->b_blkno * dev_bsize);
125 1.1 perseant if (count == bp->b_bcount)
126 1.1 perseant bp->b_flags |= B_DONE;
127 1.1 perseant } else {
128 1.31 pooka count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 1.32 mlelstv bp->b_blkno * dev_bsize);
130 1.1 perseant if (count == 0) {
131 1.23 christos perror("pwrite");
132 1.1 perseant return -1;
133 1.1 perseant }
134 1.1 perseant bp->b_flags &= ~B_DELWRI;
135 1.1 perseant reassignbuf(bp, bp->b_vp);
136 1.1 perseant }
137 1.1 perseant return 0;
138 1.1 perseant }
139 1.1 perseant
140 1.1 perseant int
141 1.1 perseant lfs_vop_bwrite(struct ubuf * bp)
142 1.1 perseant {
143 1.1 perseant struct lfs *fs;
144 1.1 perseant
145 1.1 perseant fs = bp->b_vp->v_fs;
146 1.1 perseant if (!(bp->b_flags & B_DELWRI)) {
147 1.46 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, bp->b_bcount));
148 1.1 perseant }
149 1.1 perseant bp->b_flags |= B_DELWRI | B_LOCKED;
150 1.1 perseant reassignbuf(bp, bp->b_vp);
151 1.27 ad brelse(bp, 0);
152 1.1 perseant return 0;
153 1.1 perseant }
154 1.1 perseant
155 1.1 perseant /*
156 1.37 dholland * ulfs_bmaparray does the bmap conversion, and if requested returns the
157 1.1 perseant * array of logical blocks which must be traversed to get to a block.
158 1.1 perseant * Each entry contains the offset into that block that gets you to the
159 1.1 perseant * next block and the disk address of the block (if it is assigned).
160 1.1 perseant */
161 1.1 perseant int
162 1.37 dholland ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 1.1 perseant {
164 1.1 perseant struct inode *ip;
165 1.1 perseant struct ubuf *bp;
166 1.37 dholland struct indir a[ULFS_NIADDR + 1], *xap;
167 1.1 perseant daddr_t daddr;
168 1.1 perseant daddr_t metalbn;
169 1.1 perseant int error, num;
170 1.1 perseant
171 1.1 perseant ip = VTOI(vp);
172 1.1 perseant
173 1.37 dholland if (bn >= 0 && bn < ULFS_NDADDR) {
174 1.1 perseant if (nump != NULL)
175 1.1 perseant *nump = 0;
176 1.40 christos *bnp = LFS_FSBTODB(fs, ip->i_ffs1_db[bn]);
177 1.1 perseant if (*bnp == 0)
178 1.1 perseant *bnp = -1;
179 1.1 perseant return (0);
180 1.1 perseant }
181 1.1 perseant xap = ap == NULL ? a : ap;
182 1.1 perseant if (!nump)
183 1.1 perseant nump = #
184 1.37 dholland if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 1.1 perseant return (error);
186 1.1 perseant
187 1.1 perseant num = *nump;
188 1.1 perseant
189 1.1 perseant /* Get disk address out of indirect block array */
190 1.2 fvdl daddr = ip->i_ffs1_ib[xap->in_off];
191 1.1 perseant
192 1.1 perseant for (bp = NULL, ++xap; --num; ++xap) {
193 1.1 perseant /* Exit the loop if there is no disk address assigned yet and
194 1.1 perseant * the indirect block isn't in the cache, or if we were
195 1.1 perseant * looking for an indirect block and we've found it. */
196 1.1 perseant
197 1.1 perseant metalbn = xap->in_lbn;
198 1.1 perseant if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 1.1 perseant break;
200 1.1 perseant /*
201 1.1 perseant * If we get here, we've either got the block in the cache
202 1.1 perseant * or we have a disk address for it, go fetch it.
203 1.1 perseant */
204 1.1 perseant if (bp)
205 1.27 ad brelse(bp, 0);
206 1.1 perseant
207 1.1 perseant xap->in_exists = 1;
208 1.46 dholland bp = getblk(vp, metalbn, lfs_sb_getbsize(fs));
209 1.1 perseant
210 1.1 perseant if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 1.40 christos bp->b_blkno = LFS_FSBTODB(fs, daddr);
212 1.1 perseant bp->b_flags |= B_READ;
213 1.1 perseant VOP_STRATEGY(bp);
214 1.1 perseant }
215 1.37 dholland daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
216 1.1 perseant }
217 1.1 perseant if (bp)
218 1.27 ad brelse(bp, 0);
219 1.1 perseant
220 1.40 christos daddr = LFS_FSBTODB(fs, (ulfs_daddr_t) daddr);
221 1.1 perseant *bnp = daddr == 0 ? -1 : daddr;
222 1.1 perseant return (0);
223 1.1 perseant }
224 1.1 perseant
225 1.1 perseant /*
226 1.1 perseant * Create an array of logical block number/offset pairs which represent the
227 1.1 perseant * path of indirect blocks required to access a data block. The first "pair"
228 1.1 perseant * contains the logical block number of the appropriate single, double or
229 1.1 perseant * triple indirect block and the offset into the inode indirect block array.
230 1.1 perseant * Note, the logical block number of the inode single/double/triple indirect
231 1.2 fvdl * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 1.1 perseant * once with the offset into the page itself.
233 1.1 perseant */
234 1.1 perseant int
235 1.37 dholland ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 1.1 perseant {
237 1.1 perseant daddr_t metalbn, realbn;
238 1.1 perseant int64_t blockcnt;
239 1.1 perseant int lbc;
240 1.1 perseant int i, numlevels, off;
241 1.1 perseant int lognindir, indir;
242 1.1 perseant
243 1.19 jmc metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244 1.19 jmc
245 1.1 perseant if (nump)
246 1.1 perseant *nump = 0;
247 1.1 perseant numlevels = 0;
248 1.1 perseant realbn = bn;
249 1.1 perseant if (bn < 0)
250 1.1 perseant bn = -bn;
251 1.1 perseant
252 1.1 perseant lognindir = -1;
253 1.47 dholland for (indir = lfs_sb_getnindir(fs); indir; indir >>= 1)
254 1.1 perseant ++lognindir;
255 1.1 perseant
256 1.1 perseant /* Determine the number of levels of indirection. After this loop is
257 1.1 perseant * done, blockcnt indicates the number of data blocks possible at the
258 1.37 dholland * given level of indirection, and ULFS_NIADDR - i is the number of levels
259 1.1 perseant * of indirection needed to locate the requested block. */
260 1.1 perseant
261 1.37 dholland bn -= ULFS_NDADDR;
262 1.37 dholland for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
263 1.1 perseant if (i == 0)
264 1.1 perseant return (EFBIG);
265 1.1 perseant
266 1.1 perseant lbc += lognindir;
267 1.1 perseant blockcnt = (int64_t) 1 << lbc;
268 1.1 perseant
269 1.1 perseant if (bn < blockcnt)
270 1.1 perseant break;
271 1.1 perseant }
272 1.1 perseant
273 1.1 perseant /* Calculate the address of the first meta-block. */
274 1.37 dholland metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
275 1.1 perseant
276 1.1 perseant /* At each iteration, off is the offset into the bap array which is an
277 1.1 perseant * array of disk addresses at the current level of indirection. The
278 1.1 perseant * logical block number and the offset in that block are stored into
279 1.1 perseant * the argument array. */
280 1.1 perseant ap->in_lbn = metalbn;
281 1.37 dholland ap->in_off = off = ULFS_NIADDR - i;
282 1.1 perseant ap->in_exists = 0;
283 1.1 perseant ap++;
284 1.37 dholland for (++numlevels; i <= ULFS_NIADDR; i++) {
285 1.1 perseant /* If searching for a meta-data block, quit when found. */
286 1.1 perseant if (metalbn == realbn)
287 1.1 perseant break;
288 1.1 perseant
289 1.1 perseant lbc -= lognindir;
290 1.1 perseant blockcnt = (int64_t) 1 << lbc;
291 1.47 dholland off = (bn >> lbc) & (lfs_sb_getnindir(fs) - 1);
292 1.1 perseant
293 1.1 perseant ++numlevels;
294 1.1 perseant ap->in_lbn = metalbn;
295 1.1 perseant ap->in_off = off;
296 1.1 perseant ap->in_exists = 0;
297 1.1 perseant ++ap;
298 1.1 perseant
299 1.1 perseant metalbn -= -1 + (off << lbc);
300 1.1 perseant }
301 1.1 perseant if (nump)
302 1.1 perseant *nump = numlevels;
303 1.1 perseant return (0);
304 1.1 perseant }
305 1.1 perseant
306 1.1 perseant int
307 1.1 perseant lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 1.1 perseant {
309 1.37 dholland return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 1.1 perseant }
311 1.1 perseant
312 1.1 perseant /* Search a block for a specific dinode. */
313 1.37 dholland struct ulfs1_dinode *
314 1.1 perseant lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 1.1 perseant {
316 1.37 dholland struct ulfs1_dinode *dip = (struct ulfs1_dinode *) bp->b_data;
317 1.37 dholland struct ulfs1_dinode *ldip, *fin;
318 1.1 perseant
319 1.40 christos fin = dip + LFS_INOPB(fs);
320 1.1 perseant
321 1.1 perseant /*
322 1.1 perseant * Read the inode block backwards, since later versions of the
323 1.1 perseant * inode will supercede earlier ones. Though it is unlikely, it is
324 1.1 perseant * possible that the same inode will appear in the same inode block.
325 1.1 perseant */
326 1.1 perseant for (ldip = fin - 1; ldip >= dip; --ldip)
327 1.1 perseant if (ldip->di_inumber == ino)
328 1.1 perseant return (ldip);
329 1.1 perseant return NULL;
330 1.1 perseant }
331 1.1 perseant
332 1.1 perseant /*
333 1.1 perseant * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 1.1 perseant * XXX it currently loses atime information.
335 1.1 perseant */
336 1.1 perseant struct uvnode *
337 1.37 dholland lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
338 1.1 perseant {
339 1.1 perseant struct uvnode *vp;
340 1.1 perseant struct inode *ip;
341 1.37 dholland struct ulfs1_dinode *dip;
342 1.1 perseant struct ubuf *bp;
343 1.10 perseant int i, hash;
344 1.1 perseant
345 1.26 christos vp = ecalloc(1, sizeof(*vp));
346 1.1 perseant vp->v_fd = fd;
347 1.1 perseant vp->v_fs = fs;
348 1.1 perseant vp->v_usecount = 0;
349 1.1 perseant vp->v_strategy_op = lfs_vop_strategy;
350 1.1 perseant vp->v_bwrite_op = lfs_vop_bwrite;
351 1.1 perseant vp->v_bmap_op = lfs_vop_bmap;
352 1.5 yamt LIST_INIT(&vp->v_cleanblkhd);
353 1.5 yamt LIST_INIT(&vp->v_dirtyblkhd);
354 1.1 perseant
355 1.26 christos ip = ecalloc(1, sizeof(*ip));
356 1.26 christos
357 1.26 christos ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358 1.2 fvdl
359 1.1 perseant /* Initialize the inode -- from lfs_vcreate. */
360 1.26 christos ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361 1.1 perseant vp->v_data = ip;
362 1.1 perseant /* ip->i_vnode = vp; */
363 1.1 perseant ip->i_number = ino;
364 1.1 perseant ip->i_lockf = 0;
365 1.1 perseant ip->i_lfs_effnblks = 0;
366 1.1 perseant ip->i_flag = 0;
367 1.1 perseant
368 1.1 perseant /* Load inode block and find inode */
369 1.8 perseant if (daddr > 0) {
370 1.47 dholland bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
371 1.44 chopps 0, &bp);
372 1.8 perseant bp->b_flags |= B_AGE;
373 1.8 perseant dip = lfs_ifind(fs, ino, bp);
374 1.8 perseant if (dip == NULL) {
375 1.27 ad brelse(bp, 0);
376 1.8 perseant free(ip);
377 1.8 perseant free(vp);
378 1.8 perseant return NULL;
379 1.8 perseant }
380 1.8 perseant memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
381 1.27 ad brelse(bp, 0);
382 1.1 perseant }
383 1.1 perseant ip->i_number = ino;
384 1.9 perseant /* ip->i_devvp = fs->lfs_devvp; */
385 1.1 perseant ip->i_lfs = fs;
386 1.1 perseant
387 1.2 fvdl ip->i_lfs_effnblks = ip->i_ffs1_blocks;
388 1.2 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
389 1.1 perseant #if 0
390 1.1 perseant if (fs->lfs_version > 1) {
391 1.2 fvdl ip->i_ffs1_atime = ts.tv_sec;
392 1.2 fvdl ip->i_ffs1_atimensec = ts.tv_nsec;
393 1.1 perseant }
394 1.1 perseant #endif
395 1.1 perseant
396 1.37 dholland memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
397 1.37 dholland for (i = 0; i < ULFS_NDADDR; i++)
398 1.2 fvdl if (ip->i_ffs1_db[i] != 0)
399 1.40 christos ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
400 1.6 yamt
401 1.6 yamt ++nvnodes;
402 1.11 martin hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
403 1.10 perseant LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
404 1.6 yamt LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
405 1.1 perseant
406 1.1 perseant return vp;
407 1.1 perseant }
408 1.1 perseant
409 1.1 perseant static struct uvnode *
410 1.1 perseant lfs_vget(void *vfs, ino_t ino)
411 1.1 perseant {
412 1.1 perseant struct lfs *fs = (struct lfs *)vfs;
413 1.37 dholland ulfs_daddr_t daddr;
414 1.1 perseant struct ubuf *bp;
415 1.1 perseant IFILE *ifp;
416 1.1 perseant
417 1.1 perseant LFS_IENTRY(ifp, fs, ino, bp);
418 1.1 perseant daddr = ifp->if_daddr;
419 1.27 ad brelse(bp, 0);
420 1.47 dholland if (daddr <= 0 || lfs_dtosn(fs, daddr) >= lfs_sb_getnseg(fs))
421 1.1 perseant return NULL;
422 1.1 perseant return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
423 1.1 perseant }
424 1.1 perseant
425 1.1 perseant /* Check superblock magic number and checksum */
426 1.1 perseant static int
427 1.1 perseant check_sb(struct lfs *fs)
428 1.1 perseant {
429 1.1 perseant u_int32_t checksum;
430 1.1 perseant
431 1.1 perseant if (fs->lfs_magic != LFS_MAGIC) {
432 1.1 perseant printf("Superblock magic number (0x%lx) does not match "
433 1.1 perseant "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
434 1.1 perseant (unsigned long) LFS_MAGIC);
435 1.1 perseant return 1;
436 1.1 perseant }
437 1.1 perseant /* checksum */
438 1.1 perseant checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
439 1.47 dholland if (lfs_sb_getcksum(fs) != checksum) {
440 1.1 perseant printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
441 1.47 dholland (unsigned long) lfs_sb_getcksum(fs), (unsigned long) checksum);
442 1.1 perseant return 1;
443 1.1 perseant }
444 1.1 perseant return 0;
445 1.1 perseant }
446 1.1 perseant
447 1.1 perseant /* Initialize LFS library; load superblocks and choose which to use. */
448 1.1 perseant struct lfs *
449 1.8 perseant lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
450 1.1 perseant {
451 1.1 perseant struct uvnode *devvp;
452 1.1 perseant struct ubuf *bp;
453 1.1 perseant int tryalt;
454 1.1 perseant struct lfs *fs, *altfs;
455 1.1 perseant
456 1.1 perseant vfs_init();
457 1.1 perseant
458 1.26 christos devvp = ecalloc(1, sizeof(*devvp));
459 1.1 perseant devvp->v_fs = NULL;
460 1.1 perseant devvp->v_fd = devfd;
461 1.1 perseant devvp->v_strategy_op = raw_vop_strategy;
462 1.1 perseant devvp->v_bwrite_op = raw_vop_bwrite;
463 1.1 perseant devvp->v_bmap_op = raw_vop_bmap;
464 1.5 yamt LIST_INIT(&devvp->v_cleanblkhd);
465 1.5 yamt LIST_INIT(&devvp->v_dirtyblkhd);
466 1.1 perseant
467 1.1 perseant tryalt = 0;
468 1.8 perseant if (dummy_read) {
469 1.8 perseant if (sblkno == 0)
470 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
471 1.26 christos fs = ecalloc(1, sizeof(*fs));
472 1.9 perseant fs->lfs_devvp = devvp;
473 1.8 perseant } else {
474 1.8 perseant if (sblkno == 0) {
475 1.32 mlelstv sblkno = LFS_LABELPAD / dev_bsize;
476 1.8 perseant tryalt = 1;
477 1.8 perseant } else if (debug) {
478 1.8 perseant printf("No -b flag given, not attempting to verify checkpoint\n");
479 1.8 perseant }
480 1.32 mlelstv
481 1.32 mlelstv dev_bsize = DEV_BSIZE;
482 1.32 mlelstv
483 1.44 chopps (void)bread(devvp, sblkno, LFS_SBPAD, 0, &bp);
484 1.26 christos fs = ecalloc(1, sizeof(*fs));
485 1.8 perseant fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
486 1.9 perseant fs->lfs_devvp = devvp;
487 1.1 perseant bp->b_flags |= B_INVAL;
488 1.27 ad brelse(bp, 0);
489 1.32 mlelstv
490 1.47 dholland dev_bsize = lfs_sb_getfsize(fs) >> lfs_sb_getfsbtodb(fs);
491 1.8 perseant
492 1.8 perseant if (tryalt) {
493 1.47 dholland (void)bread(devvp, LFS_FSBTODB(fs, lfs_sb_getsboff(fs, 1)),
494 1.44 chopps LFS_SBPAD, 0, &bp);
495 1.26 christos altfs = ecalloc(1, sizeof(*altfs));
496 1.8 perseant altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
497 1.9 perseant altfs->lfs_devvp = devvp;
498 1.8 perseant bp->b_flags |= B_INVAL;
499 1.27 ad brelse(bp, 0);
500 1.8 perseant
501 1.46 dholland if (check_sb(fs) || lfs_sb_getidaddr(fs) <= 0) {
502 1.1 perseant if (debug)
503 1.8 perseant printf("Primary superblock is no good, using first alternate\n");
504 1.8 perseant free(fs);
505 1.8 perseant fs = altfs;
506 1.1 perseant } else {
507 1.8 perseant /* If both superblocks check out, try verification */
508 1.8 perseant if (check_sb(altfs)) {
509 1.8 perseant if (debug)
510 1.8 perseant printf("First alternate superblock is no good, using primary\n");
511 1.1 perseant free(altfs);
512 1.1 perseant } else {
513 1.8 perseant if (lfs_verify(fs, altfs, devvp, debug) == fs) {
514 1.8 perseant free(altfs);
515 1.8 perseant } else {
516 1.8 perseant free(fs);
517 1.8 perseant fs = altfs;
518 1.8 perseant }
519 1.1 perseant }
520 1.1 perseant }
521 1.1 perseant }
522 1.8 perseant if (check_sb(fs)) {
523 1.8 perseant free(fs);
524 1.8 perseant return NULL;
525 1.8 perseant }
526 1.1 perseant }
527 1.8 perseant
528 1.1 perseant /* Compatibility */
529 1.1 perseant if (fs->lfs_version < 2) {
530 1.47 dholland lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
531 1.47 dholland lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
532 1.47 dholland lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
533 1.46 dholland lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
534 1.47 dholland lfs_sb_setfsbtodb(fs, 0);
535 1.1 perseant }
536 1.8 perseant
537 1.8 perseant if (!dummy_read) {
538 1.26 christos fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
539 1.47 dholland fs->lfs_suflags[0] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
540 1.47 dholland fs->lfs_suflags[1] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
541 1.8 perseant }
542 1.1 perseant
543 1.1 perseant if (idaddr == 0)
544 1.46 dholland idaddr = lfs_sb_getidaddr(fs);
545 1.10 perseant else
546 1.46 dholland lfs_sb_setidaddr(fs, idaddr);
547 1.8 perseant /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
548 1.8 perseant fs->lfs_ivnode = lfs_raw_vget(fs,
549 1.46 dholland (dummy_read ? LFS_IFILE_INUM : lfs_sb_getifile(fs)),
550 1.46 dholland devvp->v_fd, idaddr);
551 1.21 perseant if (fs->lfs_ivnode == NULL)
552 1.21 perseant return NULL;
553 1.1 perseant
554 1.1 perseant register_vget((void *)fs, lfs_vget);
555 1.1 perseant
556 1.1 perseant return fs;
557 1.1 perseant }
558 1.1 perseant
559 1.1 perseant /*
560 1.1 perseant * Check partial segment validity between fs->lfs_offset and the given goal.
561 1.12 perseant *
562 1.12 perseant * If goal == 0, just keep on going until the segments stop making sense,
563 1.12 perseant * and return the address of the last valid partial segment.
564 1.12 perseant *
565 1.12 perseant * If goal != 0, return the address of the first partial segment that failed,
566 1.12 perseant * or "goal" if we reached it without failure (the partial segment *at* goal
567 1.12 perseant * need not be valid).
568 1.1 perseant */
569 1.37 dholland ulfs_daddr_t
570 1.37 dholland try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
571 1.1 perseant {
572 1.37 dholland ulfs_daddr_t daddr, odaddr;
573 1.1 perseant SEGSUM *sp;
574 1.25 perseant int i, bc, hitclean;
575 1.1 perseant struct ubuf *bp;
576 1.37 dholland ulfs_daddr_t nodirop_daddr;
577 1.1 perseant u_int64_t serial;
578 1.1 perseant
579 1.25 perseant bc = 0;
580 1.25 perseant hitclean = 0;
581 1.12 perseant odaddr = -1;
582 1.46 dholland daddr = lfs_sb_getoffset(osb);
583 1.1 perseant nodirop_daddr = daddr;
584 1.46 dholland serial = lfs_sb_getserial(osb);
585 1.1 perseant while (daddr != goal) {
586 1.24 perseant /*
587 1.24 perseant * Don't mistakenly read a superblock, if there is one here.
588 1.24 perseant */
589 1.40 christos if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
590 1.47 dholland if (daddr == lfs_sb_gets0addr(osb))
591 1.40 christos daddr += lfs_btofsb(osb, LFS_LABELPAD);
592 1.24 perseant for (i = 0; i < LFS_MAXNUMSB; i++) {
593 1.47 dholland if (lfs_sb_getsboff(osb, i) < daddr)
594 1.24 perseant break;
595 1.47 dholland if (lfs_sb_getsboff(osb, i) == daddr)
596 1.40 christos daddr += lfs_btofsb(osb, LFS_SBPAD);
597 1.24 perseant }
598 1.24 perseant }
599 1.24 perseant
600 1.1 perseant /* Read in summary block */
601 1.47 dholland bread(devvp, LFS_FSBTODB(osb, daddr), lfs_sb_getsumsize(osb),
602 1.44 chopps 0, &bp);
603 1.1 perseant sp = (SEGSUM *)bp->b_data;
604 1.1 perseant
605 1.1 perseant /*
606 1.24 perseant * Check for a valid segment summary belonging to our fs.
607 1.1 perseant */
608 1.1 perseant if (sp->ss_magic != SS_MAGIC ||
609 1.47 dholland sp->ss_ident != lfs_sb_getident(osb) ||
610 1.24 perseant sp->ss_serial < serial || /* XXX strengthen this */
611 1.47 dholland sp->ss_sumsum != cksum(&sp->ss_datasum, lfs_sb_getsumsize(osb) -
612 1.1 perseant sizeof(sp->ss_sumsum))) {
613 1.27 ad brelse(bp, 0);
614 1.24 perseant if (debug) {
615 1.24 perseant if (sp->ss_magic != SS_MAGIC)
616 1.47 dholland pwarn("pseg at 0x%jx: "
617 1.24 perseant "wrong magic number\n",
618 1.47 dholland (uintmax_t)daddr);
619 1.47 dholland else if (sp->ss_ident != lfs_sb_getident(osb))
620 1.47 dholland pwarn("pseg at 0x%jx: "
621 1.47 dholland "expected ident %jx, got %jx\n",
622 1.47 dholland (uintmax_t)daddr,
623 1.47 dholland (uintmax_t)sp->ss_ident,
624 1.47 dholland (uintmax_t)lfs_sb_getident(osb));
625 1.24 perseant else if (sp->ss_serial >= serial)
626 1.47 dholland pwarn("pseg at 0x%jx: "
627 1.47 dholland "serial %d < %d\n",
628 1.47 dholland (uintmax_t)daddr,
629 1.24 perseant (int)sp->ss_serial, (int)serial);
630 1.24 perseant else
631 1.47 dholland pwarn("pseg at 0x%jx: "
632 1.24 perseant "summary checksum wrong\n",
633 1.47 dholland (uintmax_t)daddr);
634 1.1 perseant }
635 1.1 perseant break;
636 1.1 perseant }
637 1.24 perseant if (debug && sp->ss_serial != serial)
638 1.25 perseant pwarn("warning, serial=%d ss_serial=%d\n",
639 1.24 perseant (int)serial, (int)sp->ss_serial);
640 1.1 perseant ++serial;
641 1.1 perseant bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
642 1.1 perseant if (bc == 0) {
643 1.27 ad brelse(bp, 0);
644 1.1 perseant break;
645 1.1 perseant }
646 1.24 perseant if (debug)
647 1.24 perseant pwarn("summary good: 0x%x/%d\n", (int)daddr,
648 1.24 perseant (int)sp->ss_serial);
649 1.1 perseant assert (bc > 0);
650 1.1 perseant odaddr = daddr;
651 1.47 dholland daddr += lfs_btofsb(osb, lfs_sb_getsumsize(osb) + bc);
652 1.40 christos if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
653 1.40 christos lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
654 1.47 dholland lfs_btofsb(osb, lfs_sb_getsumsize(osb) + lfs_sb_getbsize(osb)) - 1)) {
655 1.1 perseant daddr = sp->ss_next;
656 1.1 perseant }
657 1.24 perseant
658 1.24 perseant /*
659 1.24 perseant * Check for the beginning and ending of a sequence of
660 1.25 perseant * dirops. Writes from the cleaner never involve new
661 1.25 perseant * information, and are always checkpoints; so don't try
662 1.25 perseant * to roll forward through them. Likewise, psegs written
663 1.25 perseant * by a previous roll-forward attempt are not interesting.
664 1.24 perseant */
665 1.25 perseant if (sp->ss_flags & (SS_CLEAN | SS_RFW))
666 1.25 perseant hitclean = 1;
667 1.25 perseant if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
668 1.1 perseant nodirop_daddr = daddr;
669 1.24 perseant
670 1.27 ad brelse(bp, 0);
671 1.1 perseant }
672 1.1 perseant
673 1.1 perseant if (goal == 0)
674 1.1 perseant return nodirop_daddr;
675 1.1 perseant else
676 1.1 perseant return daddr;
677 1.1 perseant }
678 1.1 perseant
679 1.1 perseant /* Use try_verify to check whether the newer superblock is valid. */
680 1.1 perseant struct lfs *
681 1.1 perseant lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
682 1.1 perseant {
683 1.37 dholland ulfs_daddr_t daddr;
684 1.1 perseant struct lfs *osb, *nsb;
685 1.1 perseant
686 1.1 perseant /*
687 1.1 perseant * Verify the checkpoint of the newer superblock,
688 1.1 perseant * if the timestamp/serial number of the two superblocks is
689 1.1 perseant * different.
690 1.1 perseant */
691 1.1 perseant
692 1.14 lukem osb = NULL;
693 1.1 perseant if (debug)
694 1.46 dholland pwarn("sb0 %ju, sb1 %ju",
695 1.46 dholland (uintmax_t) lfs_sb_getserial(sb0),
696 1.46 dholland (uintmax_t) lfs_sb_getserial(sb1));
697 1.1 perseant
698 1.1 perseant if ((sb0->lfs_version == 1 &&
699 1.46 dholland lfs_sb_getotstamp(sb0) != lfs_sb_getotstamp(sb1)) ||
700 1.1 perseant (sb0->lfs_version > 1 &&
701 1.46 dholland lfs_sb_getserial(sb0) != lfs_sb_getserial(sb1))) {
702 1.1 perseant if (sb0->lfs_version == 1) {
703 1.46 dholland if (lfs_sb_getotstamp(sb0) > lfs_sb_getotstamp(sb1)) {
704 1.1 perseant osb = sb1;
705 1.1 perseant nsb = sb0;
706 1.1 perseant } else {
707 1.1 perseant osb = sb0;
708 1.1 perseant nsb = sb1;
709 1.1 perseant }
710 1.1 perseant } else {
711 1.46 dholland if (lfs_sb_getserial(sb0) > lfs_sb_getserial(sb1)) {
712 1.1 perseant osb = sb1;
713 1.1 perseant nsb = sb0;
714 1.1 perseant } else {
715 1.1 perseant osb = sb0;
716 1.1 perseant nsb = sb1;
717 1.1 perseant }
718 1.1 perseant }
719 1.1 perseant if (debug) {
720 1.1 perseant printf("Attempting to verify newer checkpoint...");
721 1.1 perseant fflush(stdout);
722 1.1 perseant }
723 1.46 dholland daddr = try_verify(osb, devvp, lfs_sb_getoffset(nsb), debug);
724 1.1 perseant
725 1.1 perseant if (debug)
726 1.1 perseant printf("done.\n");
727 1.46 dholland if (daddr == lfs_sb_getoffset(nsb)) {
728 1.46 dholland pwarn("** Newer checkpoint verified; recovered %jd seconds of data\n",
729 1.46 dholland (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
730 1.1 perseant sbdirty();
731 1.1 perseant } else {
732 1.46 dholland pwarn("** Newer checkpoint invalid; lost %jd seconds of data\n", (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
733 1.1 perseant }
734 1.46 dholland return (daddr == lfs_sb_getoffset(nsb) ? nsb : osb);
735 1.1 perseant }
736 1.1 perseant /* Nothing to check */
737 1.1 perseant return osb;
738 1.1 perseant }
739 1.1 perseant
740 1.1 perseant /* Verify a partial-segment summary; return the number of bytes on disk. */
741 1.1 perseant int
742 1.37 dholland check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
743 1.37 dholland struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
744 1.1 perseant {
745 1.1 perseant FINFO *fp;
746 1.1 perseant int bc; /* Bytes in partial segment */
747 1.1 perseant int nblocks;
748 1.41 christos ulfs_daddr_t daddr;
749 1.37 dholland ulfs_daddr_t *dp, *idp;
750 1.1 perseant struct ubuf *bp;
751 1.1 perseant int i, j, k, datac, len;
752 1.1 perseant u_int32_t *datap;
753 1.1 perseant u_int32_t ccksum;
754 1.1 perseant
755 1.1 perseant /* We've already checked the sumsum, just do the data bounds and sum */
756 1.1 perseant
757 1.1 perseant /* Count the blocks. */
758 1.40 christos nblocks = howmany(sp->ss_ninos, LFS_INOPB(fs));
759 1.47 dholland bc = nblocks << (fs->lfs_version > 1 ? lfs_sb_getffshift(fs) : lfs_sb_getbshift(fs));
760 1.1 perseant assert(bc >= 0);
761 1.1 perseant
762 1.1 perseant fp = (FINFO *) (sp + 1);
763 1.1 perseant for (i = 0; i < sp->ss_nfinfo; i++) {
764 1.1 perseant nblocks += fp->fi_nblocks;
765 1.1 perseant bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
766 1.47 dholland << lfs_sb_getbshift(fs));
767 1.1 perseant assert(bc >= 0);
768 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
769 1.47 dholland if (((char *)fp) - (char *)sp > lfs_sb_getsumsize(fs))
770 1.24 perseant return 0;
771 1.1 perseant }
772 1.26 christos datap = emalloc(nblocks * sizeof(*datap));
773 1.1 perseant datac = 0;
774 1.1 perseant
775 1.37 dholland dp = (ulfs_daddr_t *) sp;
776 1.47 dholland dp += lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t);
777 1.1 perseant dp--;
778 1.1 perseant
779 1.1 perseant idp = dp;
780 1.47 dholland daddr = pseg_addr + lfs_btofsb(fs, lfs_sb_getsumsize(fs));
781 1.1 perseant fp = (FINFO *) (sp + 1);
782 1.1 perseant for (i = 0, j = 0;
783 1.40 christos i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, LFS_INOPB(fs)); i++) {
784 1.1 perseant if (i >= sp->ss_nfinfo && *idp != daddr) {
785 1.8 perseant pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
786 1.1 perseant ": found %d, wanted %d\n",
787 1.40 christos pseg_addr, j, howmany(sp->ss_ninos, LFS_INOPB(fs)));
788 1.1 perseant if (debug)
789 1.8 perseant pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
790 1.1 perseant daddr);
791 1.1 perseant break;
792 1.1 perseant }
793 1.40 christos while (j < howmany(sp->ss_ninos, LFS_INOPB(fs)) && *idp == daddr) {
794 1.47 dholland bread(devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
795 1.44 chopps 0, &bp);
796 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
797 1.27 ad brelse(bp, 0);
798 1.1 perseant
799 1.1 perseant ++j;
800 1.47 dholland daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs));
801 1.1 perseant --idp;
802 1.1 perseant }
803 1.1 perseant if (i < sp->ss_nfinfo) {
804 1.1 perseant if (func)
805 1.1 perseant func(daddr, fp);
806 1.1 perseant for (k = 0; k < fp->fi_nblocks; k++) {
807 1.1 perseant len = (k == fp->fi_nblocks - 1 ?
808 1.1 perseant fp->fi_lastlength
809 1.46 dholland : lfs_sb_getbsize(fs));
810 1.40 christos bread(devvp, LFS_FSBTODB(fs, daddr), len,
811 1.44 chopps 0, &bp);
812 1.1 perseant datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
813 1.27 ad brelse(bp, 0);
814 1.40 christos daddr += lfs_btofsb(fs, len);
815 1.1 perseant }
816 1.1 perseant fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
817 1.1 perseant }
818 1.1 perseant }
819 1.1 perseant
820 1.1 perseant if (datac != nblocks) {
821 1.8 perseant pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
822 1.1 perseant (long long) pseg_addr, nblocks, datac);
823 1.1 perseant }
824 1.1 perseant ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
825 1.1 perseant /* Check the data checksum */
826 1.1 perseant if (ccksum != sp->ss_datasum) {
827 1.8 perseant pwarn("Partial segment at 0x%" PRIx32 " data checksum"
828 1.1 perseant " mismatch: given 0x%x, computed 0x%x\n",
829 1.1 perseant pseg_addr, sp->ss_datasum, ccksum);
830 1.1 perseant free(datap);
831 1.1 perseant return 0;
832 1.1 perseant }
833 1.1 perseant free(datap);
834 1.1 perseant assert(bc >= 0);
835 1.1 perseant return bc;
836 1.1 perseant }
837 1.1 perseant
838 1.1 perseant /* print message and exit */
839 1.1 perseant void
840 1.43 dholland my_vpanic(int fatal, const char *fmt, va_list ap)
841 1.43 dholland {
842 1.43 dholland (void) vprintf(fmt, ap);
843 1.43 dholland exit(8);
844 1.43 dholland }
845 1.43 dholland
846 1.43 dholland void
847 1.1 perseant call_panic(const char *fmt, ...)
848 1.1 perseant {
849 1.1 perseant va_list ap;
850 1.1 perseant
851 1.1 perseant va_start(ap, fmt);
852 1.43 dholland panic_func(1, fmt, ap);
853 1.1 perseant va_end(ap);
854 1.1 perseant }
855 1.16 perseant
856 1.16 perseant /* Allocate a new inode. */
857 1.16 perseant struct uvnode *
858 1.16 perseant lfs_valloc(struct lfs *fs, ino_t ino)
859 1.16 perseant {
860 1.16 perseant struct ubuf *bp, *cbp;
861 1.16 perseant struct ifile *ifp;
862 1.16 perseant ino_t new_ino;
863 1.16 perseant int error;
864 1.16 perseant CLEANERINFO *cip;
865 1.16 perseant
866 1.16 perseant /* Get the head of the freelist. */
867 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
868 1.16 perseant
869 1.16 perseant /*
870 1.16 perseant * Remove the inode from the free list and write the new start
871 1.16 perseant * of the free list into the superblock.
872 1.16 perseant */
873 1.16 perseant LFS_IENTRY(ifp, fs, new_ino, bp);
874 1.16 perseant if (ifp->if_daddr != LFS_UNUSED_DADDR)
875 1.16 perseant panic("lfs_valloc: inuse inode %d on the free list", new_ino);
876 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
877 1.16 perseant
878 1.27 ad brelse(bp, 0);
879 1.16 perseant
880 1.16 perseant /* Extend IFILE so that the next lfs_valloc will succeed. */
881 1.46 dholland if (lfs_sb_getfreehd(fs) == LFS_UNUSED_INUM) {
882 1.16 perseant if ((error = extend_ifile(fs)) != 0) {
883 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
884 1.16 perseant return NULL;
885 1.16 perseant }
886 1.16 perseant }
887 1.16 perseant
888 1.16 perseant /* Set superblock modified bit and increment file count. */
889 1.16 perseant sbdirty();
890 1.46 dholland lfs_sb_addnfiles(fs, 1);
891 1.16 perseant
892 1.16 perseant return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
893 1.16 perseant }
894 1.16 perseant
895 1.24 perseant #ifdef IN_FSCK_LFS
896 1.24 perseant void reset_maxino(ino_t);
897 1.24 perseant #endif
898 1.24 perseant
899 1.16 perseant /*
900 1.16 perseant * Add a new block to the Ifile, to accommodate future file creations.
901 1.16 perseant */
902 1.16 perseant int
903 1.16 perseant extend_ifile(struct lfs *fs)
904 1.16 perseant {
905 1.16 perseant struct uvnode *vp;
906 1.16 perseant struct inode *ip;
907 1.16 perseant IFILE *ifp;
908 1.16 perseant IFILE_V1 *ifp_v1;
909 1.16 perseant struct ubuf *bp, *cbp;
910 1.16 perseant daddr_t i, blkno, max;
911 1.16 perseant ino_t oldlast;
912 1.16 perseant CLEANERINFO *cip;
913 1.16 perseant
914 1.16 perseant vp = fs->lfs_ivnode;
915 1.16 perseant ip = VTOI(vp);
916 1.40 christos blkno = lfs_lblkno(fs, ip->i_ffs1_size);
917 1.16 perseant
918 1.46 dholland lfs_balloc(vp, ip->i_ffs1_size, lfs_sb_getbsize(fs), &bp);
919 1.46 dholland ip->i_ffs1_size += lfs_sb_getbsize(fs);
920 1.24 perseant ip->i_flag |= IN_MODIFIED;
921 1.16 perseant
922 1.46 dholland i = (blkno - lfs_sb_getsegtabsz(fs) - lfs_sb_getcleansz(fs)) *
923 1.46 dholland lfs_sb_getifpb(fs);
924 1.16 perseant LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
925 1.16 perseant LFS_PUT_HEADFREE(fs, cip, cbp, i);
926 1.46 dholland max = i + lfs_sb_getifpb(fs);
927 1.46 dholland lfs_sb_subbfree(fs, lfs_btofsb(fs, lfs_sb_getbsize(fs)));
928 1.16 perseant
929 1.16 perseant if (fs->lfs_version == 1) {
930 1.16 perseant for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
931 1.16 perseant ifp_v1->if_version = 1;
932 1.16 perseant ifp_v1->if_daddr = LFS_UNUSED_DADDR;
933 1.16 perseant ifp_v1->if_nextfree = ++i;
934 1.16 perseant }
935 1.16 perseant ifp_v1--;
936 1.16 perseant ifp_v1->if_nextfree = oldlast;
937 1.16 perseant } else {
938 1.16 perseant for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
939 1.16 perseant ifp->if_version = 1;
940 1.16 perseant ifp->if_daddr = LFS_UNUSED_DADDR;
941 1.16 perseant ifp->if_nextfree = ++i;
942 1.16 perseant }
943 1.16 perseant ifp--;
944 1.16 perseant ifp->if_nextfree = oldlast;
945 1.16 perseant }
946 1.16 perseant LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
947 1.16 perseant
948 1.16 perseant LFS_BWRITE_LOG(bp);
949 1.16 perseant
950 1.24 perseant #ifdef IN_FSCK_LFS
951 1.47 dholland reset_maxino(((ip->i_ffs1_size >> lfs_sb_getbshift(fs))
952 1.46 dholland - lfs_sb_getsegtabsz(fs)
953 1.46 dholland - lfs_sb_getcleansz(fs)) * lfs_sb_getifpb(fs));
954 1.24 perseant #endif
955 1.16 perseant return 0;
956 1.16 perseant }
957 1.16 perseant
958 1.24 perseant /*
959 1.24 perseant * Allocate a block, and to inode and filesystem block accounting for it
960 1.24 perseant * and for any indirect blocks the may need to be created in order for
961 1.24 perseant * this block to be created.
962 1.24 perseant *
963 1.24 perseant * Blocks which have never been accounted for (i.e., which "do not exist")
964 1.37 dholland * have disk address 0, which is translated by ulfs_bmap to the special value
965 1.37 dholland * UNASSIGNED == -1, as in the historical ULFS.
966 1.24 perseant *
967 1.24 perseant * Blocks which have been accounted for but which have not yet been written
968 1.24 perseant * to disk are given the new special disk address UNWRITTEN == -2, so that
969 1.24 perseant * they can be differentiated from completely new blocks.
970 1.24 perseant */
971 1.24 perseant int
972 1.24 perseant lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
973 1.24 perseant {
974 1.24 perseant int offset;
975 1.24 perseant daddr_t daddr, idaddr;
976 1.24 perseant struct ubuf *ibp, *bp;
977 1.24 perseant struct inode *ip;
978 1.24 perseant struct lfs *fs;
979 1.37 dholland struct indir indirs[ULFS_NIADDR+2], *idp;
980 1.24 perseant daddr_t lbn, lastblock;
981 1.32 mlelstv int bcount;
982 1.24 perseant int error, frags, i, nsize, osize, num;
983 1.24 perseant
984 1.24 perseant ip = VTOI(vp);
985 1.24 perseant fs = ip->i_lfs;
986 1.40 christos offset = lfs_blkoff(fs, startoffset);
987 1.40 christos lbn = lfs_lblkno(fs, startoffset);
988 1.24 perseant
989 1.24 perseant /*
990 1.24 perseant * Three cases: it's a block beyond the end of file, it's a block in
991 1.24 perseant * the file that may or may not have been assigned a disk address or
992 1.24 perseant * we're writing an entire block.
993 1.24 perseant *
994 1.24 perseant * Note, if the daddr is UNWRITTEN, the block already exists in
995 1.24 perseant * the cache (it was read or written earlier). If so, make sure
996 1.24 perseant * we don't count it as a new block or zero out its contents. If
997 1.24 perseant * it did not, make sure we allocate any necessary indirect
998 1.24 perseant * blocks.
999 1.24 perseant *
1000 1.24 perseant * If we are writing a block beyond the end of the file, we need to
1001 1.24 perseant * check if the old last block was a fragment. If it was, we need
1002 1.24 perseant * to rewrite it.
1003 1.24 perseant */
1004 1.24 perseant
1005 1.24 perseant if (bpp)
1006 1.24 perseant *bpp = NULL;
1007 1.24 perseant
1008 1.24 perseant /* Check for block beyond end of file and fragment extension needed. */
1009 1.40 christos lastblock = lfs_lblkno(fs, ip->i_ffs1_size);
1010 1.37 dholland if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1011 1.40 christos osize = lfs_blksize(fs, ip, lastblock);
1012 1.46 dholland if (osize < lfs_sb_getbsize(fs) && osize > 0) {
1013 1.46 dholland if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
1014 1.24 perseant lastblock,
1015 1.24 perseant (bpp ? &bp : NULL))))
1016 1.24 perseant return (error);
1017 1.46 dholland ip->i_ffs1_size = (lastblock + 1) * lfs_sb_getbsize(fs);
1018 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1019 1.24 perseant if (bpp)
1020 1.24 perseant (void) VOP_BWRITE(bp);
1021 1.24 perseant }
1022 1.24 perseant }
1023 1.24 perseant
1024 1.24 perseant /*
1025 1.24 perseant * If the block we are writing is a direct block, it's the last
1026 1.24 perseant * block in the file, and offset + iosize is less than a full
1027 1.24 perseant * block, we can write one or more fragments. There are two cases:
1028 1.24 perseant * the block is brand new and we should allocate it the correct
1029 1.24 perseant * size or it already exists and contains some fragments and
1030 1.24 perseant * may need to extend it.
1031 1.24 perseant */
1032 1.40 christos if (lbn < ULFS_NDADDR && lfs_lblkno(fs, ip->i_ffs1_size) <= lbn) {
1033 1.40 christos osize = lfs_blksize(fs, ip, lbn);
1034 1.40 christos nsize = lfs_fragroundup(fs, offset + iosize);
1035 1.40 christos if (lfs_lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1036 1.24 perseant /* Brand new block or fragment */
1037 1.40 christos frags = lfs_numfrags(fs, nsize);
1038 1.24 perseant if (bpp) {
1039 1.24 perseant *bpp = bp = getblk(vp, lbn, nsize);
1040 1.24 perseant bp->b_blkno = UNWRITTEN;
1041 1.24 perseant }
1042 1.32 mlelstv ip->i_lfs_effnblks += frags;
1043 1.46 dholland lfs_sb_subbfree(fs, frags);
1044 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1045 1.24 perseant } else {
1046 1.24 perseant if (nsize <= osize) {
1047 1.24 perseant /* No need to extend */
1048 1.29 hannken if (bpp && (error = bread(vp, lbn, osize,
1049 1.44 chopps 0, &bp)))
1050 1.24 perseant return error;
1051 1.24 perseant } else {
1052 1.24 perseant /* Extend existing block */
1053 1.24 perseant if ((error =
1054 1.24 perseant lfs_fragextend(vp, osize, nsize, lbn,
1055 1.24 perseant (bpp ? &bp : NULL))))
1056 1.24 perseant return error;
1057 1.24 perseant }
1058 1.24 perseant if (bpp)
1059 1.24 perseant *bpp = bp;
1060 1.24 perseant }
1061 1.24 perseant return 0;
1062 1.24 perseant }
1063 1.24 perseant
1064 1.37 dholland error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1065 1.24 perseant if (error)
1066 1.24 perseant return (error);
1067 1.24 perseant
1068 1.24 perseant daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1069 1.24 perseant
1070 1.24 perseant /*
1071 1.24 perseant * Do byte accounting all at once, so we can gracefully fail *before*
1072 1.24 perseant * we start assigning blocks.
1073 1.24 perseant */
1074 1.40 christos frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1075 1.24 perseant bcount = 0;
1076 1.24 perseant if (daddr == UNASSIGNED) {
1077 1.32 mlelstv bcount = frags;
1078 1.24 perseant }
1079 1.24 perseant for (i = 1; i < num; ++i) {
1080 1.24 perseant if (!indirs[i].in_exists) {
1081 1.32 mlelstv bcount += frags;
1082 1.24 perseant }
1083 1.24 perseant }
1084 1.46 dholland lfs_sb_subbfree(fs, bcount);
1085 1.24 perseant ip->i_lfs_effnblks += bcount;
1086 1.24 perseant
1087 1.24 perseant if (daddr == UNASSIGNED) {
1088 1.24 perseant if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1089 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1090 1.24 perseant }
1091 1.24 perseant
1092 1.24 perseant /*
1093 1.24 perseant * Create new indirect blocks if necessary
1094 1.24 perseant */
1095 1.24 perseant if (num > 1) {
1096 1.24 perseant idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1097 1.24 perseant for (i = 1; i < num; ++i) {
1098 1.24 perseant ibp = getblk(vp, indirs[i].in_lbn,
1099 1.46 dholland lfs_sb_getbsize(fs));
1100 1.24 perseant if (!indirs[i].in_exists) {
1101 1.24 perseant memset(ibp->b_data, 0, ibp->b_bufsize);
1102 1.24 perseant ibp->b_blkno = UNWRITTEN;
1103 1.24 perseant } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1104 1.40 christos ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
1105 1.24 perseant ibp->b_flags |= B_READ;
1106 1.24 perseant VOP_STRATEGY(ibp);
1107 1.24 perseant }
1108 1.24 perseant /*
1109 1.24 perseant * This block exists, but the next one may not.
1110 1.24 perseant * If that is the case mark it UNWRITTEN to
1111 1.24 perseant * keep the accounting straight.
1112 1.24 perseant */
1113 1.24 perseant /* XXX ondisk32 */
1114 1.24 perseant if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1115 1.24 perseant ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1116 1.24 perseant UNWRITTEN;
1117 1.24 perseant /* XXX ondisk32 */
1118 1.24 perseant idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1119 1.24 perseant if ((error = VOP_BWRITE(ibp)))
1120 1.24 perseant return error;
1121 1.24 perseant }
1122 1.24 perseant }
1123 1.24 perseant }
1124 1.24 perseant
1125 1.24 perseant
1126 1.24 perseant /*
1127 1.24 perseant * Get the existing block from the cache, if requested.
1128 1.24 perseant */
1129 1.24 perseant if (bpp)
1130 1.40 christos *bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
1131 1.24 perseant
1132 1.24 perseant /*
1133 1.24 perseant * The block we are writing may be a brand new block
1134 1.24 perseant * in which case we need to do accounting.
1135 1.24 perseant *
1136 1.37 dholland * We can tell a truly new block because ulfs_bmaparray will say
1137 1.24 perseant * it is UNASSIGNED. Once we allocate it we will assign it the
1138 1.24 perseant * disk address UNWRITTEN.
1139 1.24 perseant */
1140 1.24 perseant if (daddr == UNASSIGNED) {
1141 1.24 perseant if (bpp) {
1142 1.24 perseant /* Note the new address */
1143 1.24 perseant bp->b_blkno = UNWRITTEN;
1144 1.24 perseant }
1145 1.24 perseant
1146 1.24 perseant switch (num) {
1147 1.24 perseant case 0:
1148 1.24 perseant ip->i_ffs1_db[lbn] = UNWRITTEN;
1149 1.24 perseant break;
1150 1.24 perseant case 1:
1151 1.24 perseant ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1152 1.24 perseant break;
1153 1.24 perseant default:
1154 1.24 perseant idp = &indirs[num - 1];
1155 1.46 dholland if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs), 0, &ibp))
1156 1.24 perseant panic("lfs_balloc: bread bno %lld",
1157 1.24 perseant (long long)idp->in_lbn);
1158 1.24 perseant /* XXX ondisk32 */
1159 1.24 perseant ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1160 1.24 perseant VOP_BWRITE(ibp);
1161 1.24 perseant }
1162 1.24 perseant } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1163 1.24 perseant /*
1164 1.24 perseant * Not a brand new block, also not in the cache;
1165 1.24 perseant * read it in from disk.
1166 1.24 perseant */
1167 1.46 dholland if (iosize == lfs_sb_getbsize(fs))
1168 1.24 perseant /* Optimization: I/O is unnecessary. */
1169 1.24 perseant bp->b_blkno = daddr;
1170 1.24 perseant else {
1171 1.24 perseant /*
1172 1.24 perseant * We need to read the block to preserve the
1173 1.24 perseant * existing bytes.
1174 1.24 perseant */
1175 1.24 perseant bp->b_blkno = daddr;
1176 1.24 perseant bp->b_flags |= B_READ;
1177 1.24 perseant VOP_STRATEGY(bp);
1178 1.24 perseant return 0;
1179 1.24 perseant }
1180 1.24 perseant }
1181 1.24 perseant
1182 1.24 perseant return (0);
1183 1.24 perseant }
1184 1.24 perseant
1185 1.24 perseant int
1186 1.24 perseant lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1187 1.24 perseant struct ubuf **bpp)
1188 1.24 perseant {
1189 1.24 perseant struct inode *ip;
1190 1.24 perseant struct lfs *fs;
1191 1.32 mlelstv int frags;
1192 1.24 perseant int error;
1193 1.24 perseant
1194 1.24 perseant ip = VTOI(vp);
1195 1.24 perseant fs = ip->i_lfs;
1196 1.40 christos frags = (long)lfs_numfrags(fs, nsize - osize);
1197 1.24 perseant error = 0;
1198 1.24 perseant
1199 1.24 perseant /*
1200 1.24 perseant * If we are not asked to actually return the block, all we need
1201 1.24 perseant * to do is allocate space for it. UBC will handle dirtying the
1202 1.24 perseant * appropriate things and making sure it all goes to disk.
1203 1.24 perseant * Don't bother to read in that case.
1204 1.24 perseant */
1205 1.44 chopps if (bpp && (error = bread(vp, lbn, osize, 0, bpp))) {
1206 1.27 ad brelse(*bpp, 0);
1207 1.24 perseant goto out;
1208 1.24 perseant }
1209 1.24 perseant
1210 1.46 dholland lfs_sb_subbfree(fs, frags);
1211 1.32 mlelstv ip->i_lfs_effnblks += frags;
1212 1.24 perseant ip->i_flag |= IN_CHANGE | IN_UPDATE;
1213 1.24 perseant
1214 1.24 perseant if (bpp) {
1215 1.26 christos (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1216 1.26 christos (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1217 1.24 perseant }
1218 1.24 perseant
1219 1.24 perseant out:
1220 1.24 perseant return (error);
1221 1.24 perseant }
1222