lfs.c revision 1.14 1 /* $NetBSD: lfs.c,v 1.14 2005/06/02 01:02:21 lukem Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs.h"
98 #include "segwrite.h"
99
100 #define panic call_panic
101
102 extern u_int32_t cksum(void *, size_t);
103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
104 extern void pwarn(const char *, ...);
105
106 extern struct uvnodelst vnodelist;
107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
108 extern int nvnodes;
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 dbtob(bp->b_blkno));
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 dbtob(bp->b_blkno));
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp);
152 return 0;
153 }
154
155 /*
156 * ufs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, fs->lfs_bsize);
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = fsbtodb(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp);
219
220 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 if (nump)
244 *nump = 0;
245 numlevels = 0;
246 realbn = bn;
247 if (bn < 0)
248 bn = -bn;
249
250 lognindir = -1;
251 for (indir = fs->lfs_nindir; indir; indir >>= 1)
252 ++lognindir;
253
254 /* Determine the number of levels of indirection. After this loop is
255 * done, blockcnt indicates the number of data blocks possible at the
256 * given level of indirection, and NIADDR - i is the number of levels
257 * of indirection needed to locate the requested block. */
258
259 bn -= NDADDR;
260 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
261 if (i == 0)
262 return (EFBIG);
263
264 lbc += lognindir;
265 blockcnt = (int64_t) 1 << lbc;
266
267 if (bn < blockcnt)
268 break;
269 }
270
271 /* Calculate the address of the first meta-block. */
272 if (realbn >= 0)
273 metalbn = -(realbn - bn + NIADDR - i);
274 else
275 metalbn = -(-realbn - bn + NIADDR - i);
276
277 /* At each iteration, off is the offset into the bap array which is an
278 * array of disk addresses at the current level of indirection. The
279 * logical block number and the offset in that block are stored into
280 * the argument array. */
281 ap->in_lbn = metalbn;
282 ap->in_off = off = NIADDR - i;
283 ap->in_exists = 0;
284 ap++;
285 for (++numlevels; i <= NIADDR; i++) {
286 /* If searching for a meta-data block, quit when found. */
287 if (metalbn == realbn)
288 break;
289
290 lbc -= lognindir;
291 blockcnt = (int64_t) 1 << lbc;
292 off = (bn >> lbc) & (fs->lfs_nindir - 1);
293
294 ++numlevels;
295 ap->in_lbn = metalbn;
296 ap->in_off = off;
297 ap->in_exists = 0;
298 ++ap;
299
300 metalbn -= -1 + (off << lbc);
301 }
302 if (nump)
303 *nump = numlevels;
304 return (0);
305 }
306
307 int
308 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
309 {
310 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
311 }
312
313 /* Search a block for a specific dinode. */
314 struct ufs1_dinode *
315 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
316 {
317 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
318 struct ufs1_dinode *ldip, *fin;
319
320 fin = dip + INOPB(fs);
321
322 /*
323 * Read the inode block backwards, since later versions of the
324 * inode will supercede earlier ones. Though it is unlikely, it is
325 * possible that the same inode will appear in the same inode block.
326 */
327 for (ldip = fin - 1; ldip >= dip; --ldip)
328 if (ldip->di_inumber == ino)
329 return (ldip);
330 return NULL;
331 }
332
333 /*
334 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
335 * XXX it currently loses atime information.
336 */
337 struct uvnode *
338 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
339 {
340 struct uvnode *vp;
341 struct inode *ip;
342 struct ufs1_dinode *dip;
343 struct ubuf *bp;
344 int i, hash;
345
346 vp = (struct uvnode *) malloc(sizeof(*vp));
347 memset(vp, 0, sizeof(*vp));
348 vp->v_fd = fd;
349 vp->v_fs = fs;
350 vp->v_usecount = 0;
351 vp->v_strategy_op = lfs_vop_strategy;
352 vp->v_bwrite_op = lfs_vop_bwrite;
353 vp->v_bmap_op = lfs_vop_bmap;
354 LIST_INIT(&vp->v_cleanblkhd);
355 LIST_INIT(&vp->v_dirtyblkhd);
356
357 ip = (struct inode *) malloc(sizeof(*ip));
358 memset(ip, 0, sizeof(*ip));
359
360 ip->i_din.ffs1_din = (struct ufs1_dinode *)
361 malloc(sizeof(struct ufs1_dinode));
362 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
363
364 /* Initialize the inode -- from lfs_vcreate. */
365 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
366 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
367 vp->v_data = ip;
368 /* ip->i_vnode = vp; */
369 ip->i_number = ino;
370 ip->i_lockf = 0;
371 ip->i_diroff = 0;
372 ip->i_lfs_effnblks = 0;
373 ip->i_flag = 0;
374
375 /* Load inode block and find inode */
376 if (daddr > 0) {
377 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
378 bp->b_flags |= B_AGE;
379 dip = lfs_ifind(fs, ino, bp);
380 if (dip == NULL) {
381 brelse(bp);
382 free(ip);
383 free(vp);
384 return NULL;
385 }
386 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
387 brelse(bp);
388 }
389 ip->i_number = ino;
390 /* ip->i_devvp = fs->lfs_devvp; */
391 ip->i_lfs = fs;
392
393 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
394 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
395 ip->i_lfs_osize = ip->i_ffs1_size;
396 #if 0
397 if (fs->lfs_version > 1) {
398 ip->i_ffs1_atime = ts.tv_sec;
399 ip->i_ffs1_atimensec = ts.tv_nsec;
400 }
401 #endif
402
403 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
404 for (i = 0; i < NDADDR; i++)
405 if (ip->i_ffs1_db[i] != 0)
406 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
407
408 ++nvnodes;
409 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
410 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
411 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
412
413 return vp;
414 }
415
416 static struct uvnode *
417 lfs_vget(void *vfs, ino_t ino)
418 {
419 struct lfs *fs = (struct lfs *)vfs;
420 ufs_daddr_t daddr;
421 struct ubuf *bp;
422 IFILE *ifp;
423
424 LFS_IENTRY(ifp, fs, ino, bp);
425 daddr = ifp->if_daddr;
426 brelse(bp);
427 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
428 return NULL;
429 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
430 }
431
432 /* Check superblock magic number and checksum */
433 static int
434 check_sb(struct lfs *fs)
435 {
436 u_int32_t checksum;
437
438 if (fs->lfs_magic != LFS_MAGIC) {
439 printf("Superblock magic number (0x%lx) does not match "
440 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
441 (unsigned long) LFS_MAGIC);
442 return 1;
443 }
444 /* checksum */
445 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
446 if (fs->lfs_cksum != checksum) {
447 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
448 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
449 return 1;
450 }
451 return 0;
452 }
453
454 /* Initialize LFS library; load superblocks and choose which to use. */
455 struct lfs *
456 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
457 {
458 struct uvnode *devvp;
459 struct ubuf *bp;
460 int tryalt;
461 struct lfs *fs, *altfs;
462 int error;
463
464 vfs_init();
465
466 devvp = (struct uvnode *) malloc(sizeof(*devvp));
467 memset(devvp, 0, sizeof(*devvp));
468 devvp->v_fs = NULL;
469 devvp->v_fd = devfd;
470 devvp->v_strategy_op = raw_vop_strategy;
471 devvp->v_bwrite_op = raw_vop_bwrite;
472 devvp->v_bmap_op = raw_vop_bmap;
473 LIST_INIT(&devvp->v_cleanblkhd);
474 LIST_INIT(&devvp->v_dirtyblkhd);
475
476 tryalt = 0;
477 if (dummy_read) {
478 if (sblkno == 0)
479 sblkno = btodb(LFS_LABELPAD);
480 fs = (struct lfs *) malloc(sizeof(*fs));
481 memset(fs, 0, sizeof(*fs));
482 fs->lfs_devvp = devvp;
483 } else {
484 if (sblkno == 0) {
485 sblkno = btodb(LFS_LABELPAD);
486 tryalt = 1;
487 } else if (debug) {
488 printf("No -b flag given, not attempting to verify checkpoint\n");
489 }
490 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
491 fs = (struct lfs *) malloc(sizeof(*fs));
492 memset(fs, 0, sizeof(*fs));
493 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
494 fs->lfs_devvp = devvp;
495 bp->b_flags |= B_INVAL;
496 brelse(bp);
497
498 if (tryalt) {
499 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
500 LFS_SBPAD, NOCRED, &bp);
501 altfs = (struct lfs *) malloc(sizeof(*altfs));
502 memset(altfs, 0, sizeof(*altfs));
503 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
504 altfs->lfs_devvp = devvp;
505 bp->b_flags |= B_INVAL;
506 brelse(bp);
507
508 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
509 if (debug)
510 printf("Primary superblock is no good, using first alternate\n");
511 free(fs);
512 fs = altfs;
513 } else {
514 /* If both superblocks check out, try verification */
515 if (check_sb(altfs)) {
516 if (debug)
517 printf("First alternate superblock is no good, using primary\n");
518 free(altfs);
519 } else {
520 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
521 free(altfs);
522 } else {
523 free(fs);
524 fs = altfs;
525 }
526 }
527 }
528 }
529 if (check_sb(fs)) {
530 free(fs);
531 return NULL;
532 }
533 }
534
535 /* Compatibility */
536 if (fs->lfs_version < 2) {
537 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
538 fs->lfs_ibsize = fs->lfs_bsize;
539 fs->lfs_start = fs->lfs_sboffs[0];
540 fs->lfs_tstamp = fs->lfs_otstamp;
541 fs->lfs_fsbtodb = 0;
542 }
543
544 if (!dummy_read) {
545 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
546 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
547 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
548 }
549
550 if (idaddr == 0)
551 idaddr = fs->lfs_idaddr;
552 else
553 fs->lfs_idaddr = idaddr;
554 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
555 fs->lfs_ivnode = lfs_raw_vget(fs,
556 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
557 idaddr);
558
559 register_vget((void *)fs, lfs_vget);
560
561 return fs;
562 }
563
564 /*
565 * Check partial segment validity between fs->lfs_offset and the given goal.
566 *
567 * If goal == 0, just keep on going until the segments stop making sense,
568 * and return the address of the last valid partial segment.
569 *
570 * If goal != 0, return the address of the first partial segment that failed,
571 * or "goal" if we reached it without failure (the partial segment *at* goal
572 * need not be valid).
573 */
574 ufs_daddr_t
575 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
576 {
577 ufs_daddr_t daddr, odaddr;
578 SEGSUM *sp;
579 int bc, flag;
580 struct ubuf *bp;
581 ufs_daddr_t nodirop_daddr;
582 u_int64_t serial;
583
584 odaddr = -1;
585 daddr = osb->lfs_offset;
586 nodirop_daddr = daddr;
587 serial = osb->lfs_serial;
588 while (daddr != goal) {
589 flag = 0;
590 oncemore:
591 /* Read in summary block */
592 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
593 sp = (SEGSUM *)bp->b_data;
594
595 /*
596 * Could be a superblock instead of a segment summary.
597 * XXX should use gseguse, but right now we need to do more
598 * setup before we can...fix this
599 */
600 if (sp->ss_magic != SS_MAGIC ||
601 sp->ss_ident != osb->lfs_ident ||
602 sp->ss_serial < serial ||
603 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
604 sizeof(sp->ss_sumsum))) {
605 brelse(bp);
606 if (flag == 0) {
607 flag = 1;
608 daddr += btofsb(osb, LFS_SBPAD);
609 goto oncemore;
610 }
611 break;
612 }
613 ++serial;
614 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
615 if (bc == 0) {
616 brelse(bp);
617 break;
618 }
619 assert (bc > 0);
620 odaddr = daddr;
621 daddr += btofsb(osb, osb->lfs_sumsize + bc);
622 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
623 dtosn(osb, daddr) != dtosn(osb, daddr +
624 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
625 daddr = sp->ss_next;
626 }
627 if (!(sp->ss_flags & SS_CONT))
628 nodirop_daddr = daddr;
629 brelse(bp);
630 }
631
632 if (goal == 0)
633 return nodirop_daddr;
634 else
635 return daddr;
636 }
637
638 /* Use try_verify to check whether the newer superblock is valid. */
639 struct lfs *
640 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
641 {
642 ufs_daddr_t daddr;
643 struct lfs *osb, *nsb;
644
645 /*
646 * Verify the checkpoint of the newer superblock,
647 * if the timestamp/serial number of the two superblocks is
648 * different.
649 */
650
651 osb = NULL;
652 if (debug)
653 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
654 (long long) sb1->lfs_serial);
655
656 if ((sb0->lfs_version == 1 &&
657 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
658 (sb0->lfs_version > 1 &&
659 sb0->lfs_serial != sb1->lfs_serial)) {
660 if (sb0->lfs_version == 1) {
661 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
662 osb = sb1;
663 nsb = sb0;
664 } else {
665 osb = sb0;
666 nsb = sb1;
667 }
668 } else {
669 if (sb0->lfs_serial > sb1->lfs_serial) {
670 osb = sb1;
671 nsb = sb0;
672 } else {
673 osb = sb0;
674 nsb = sb1;
675 }
676 }
677 if (debug) {
678 printf("Attempting to verify newer checkpoint...");
679 fflush(stdout);
680 }
681 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
682
683 if (debug)
684 printf("done.\n");
685 if (daddr == nsb->lfs_offset) {
686 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
687 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
688 sbdirty();
689 } else {
690 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
691 }
692 return (daddr == nsb->lfs_offset ? nsb : osb);
693 }
694 /* Nothing to check */
695 return osb;
696 }
697
698 /* Verify a partial-segment summary; return the number of bytes on disk. */
699 int
700 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
701 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
702 {
703 FINFO *fp;
704 int bc; /* Bytes in partial segment */
705 int nblocks;
706 ufs_daddr_t seg_addr, daddr;
707 ufs_daddr_t *dp, *idp;
708 struct ubuf *bp;
709 int i, j, k, datac, len;
710 long sn;
711 u_int32_t *datap;
712 u_int32_t ccksum;
713
714 sn = dtosn(fs, pseg_addr);
715 seg_addr = sntod(fs, sn);
716
717 /* We've already checked the sumsum, just do the data bounds and sum */
718
719 /* Count the blocks. */
720 nblocks = howmany(sp->ss_ninos, INOPB(fs));
721 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
722 assert(bc >= 0);
723
724 fp = (FINFO *) (sp + 1);
725 for (i = 0; i < sp->ss_nfinfo; i++) {
726 nblocks += fp->fi_nblocks;
727 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
728 << fs->lfs_bshift);
729 assert(bc >= 0);
730 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
731 }
732 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
733 datac = 0;
734
735 dp = (ufs_daddr_t *) sp;
736 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
737 dp--;
738
739 idp = dp;
740 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
741 fp = (FINFO *) (sp + 1);
742 for (i = 0, j = 0;
743 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
744 if (i >= sp->ss_nfinfo && *idp != daddr) {
745 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
746 ": found %d, wanted %d\n",
747 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
748 if (debug)
749 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
750 daddr);
751 break;
752 }
753 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
754 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
755 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
756 brelse(bp);
757
758 ++j;
759 daddr += btofsb(fs, fs->lfs_ibsize);
760 --idp;
761 }
762 if (i < sp->ss_nfinfo) {
763 if (func)
764 func(daddr, fp);
765 for (k = 0; k < fp->fi_nblocks; k++) {
766 len = (k == fp->fi_nblocks - 1 ?
767 fp->fi_lastlength
768 : fs->lfs_bsize);
769 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
770 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
771 brelse(bp);
772 daddr += btofsb(fs, len);
773 }
774 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
775 }
776 }
777
778 if (datac != nblocks) {
779 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
780 (long long) pseg_addr, nblocks, datac);
781 }
782 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
783 /* Check the data checksum */
784 if (ccksum != sp->ss_datasum) {
785 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
786 " mismatch: given 0x%x, computed 0x%x\n",
787 pseg_addr, sp->ss_datasum, ccksum);
788 free(datap);
789 return 0;
790 }
791 free(datap);
792 assert(bc >= 0);
793 return bc;
794 }
795
796 /* print message and exit */
797 void
798 my_vpanic(int fatal, const char *fmt, va_list ap)
799 {
800 (void) vprintf(fmt, ap);
801 exit(8);
802 }
803
804 void
805 call_panic(const char *fmt, ...)
806 {
807 va_list ap;
808
809 va_start(ap, fmt);
810 panic_func(1, fmt, ap);
811 va_end(ap);
812 }
813