Home | History | Annotate | Line # | Download | only in fsck_lfs
lfs.c revision 1.18
      1 /* $NetBSD: lfs.c,v 1.18 2005/10/08 03:21:17 chs Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1989, 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  * (c) UNIX System Laboratories, Inc.
     41  * All or some portions of this file are derived from material licensed
     42  * to the University of California by American Telephone and Telegraph
     43  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     44  * the permission of UNIX System Laboratories, Inc.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)ufs_bmap.c	8.8 (Berkeley) 8/11/95
     71  */
     72 
     73 
     74 #include <sys/types.h>
     75 #include <sys/param.h>
     76 #include <sys/time.h>
     77 #include <sys/buf.h>
     78 #include <sys/mount.h>
     79 
     80 #include <ufs/ufs/inode.h>
     81 #include <ufs/ufs/ufsmount.h>
     82 #define vnode uvnode
     83 #include <ufs/lfs/lfs.h>
     84 #undef vnode
     85 
     86 #include <assert.h>
     87 #include <err.h>
     88 #include <errno.h>
     89 #include <stdarg.h>
     90 #include <stdio.h>
     91 #include <stdlib.h>
     92 #include <string.h>
     93 #include <unistd.h>
     94 
     95 #include "bufcache.h"
     96 #include "vnode.h"
     97 #include "lfs_user.h"
     98 #include "segwrite.h"
     99 
    100 #define panic call_panic
    101 
    102 extern u_int32_t cksum(void *, size_t);
    103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    104 extern void pwarn(const char *, ...);
    105 
    106 extern struct uvnodelst vnodelist;
    107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
    108 extern int nvnodes;
    109 
    110 int fsdirty = 0;
    111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
    112 
    113 /*
    114  * LFS buffer and uvnode operations
    115  */
    116 
    117 int
    118 lfs_vop_strategy(struct ubuf * bp)
    119 {
    120 	int count;
    121 
    122 	if (bp->b_flags & B_READ) {
    123 		count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
    124 		    dbtob(bp->b_blkno));
    125 		if (count == bp->b_bcount)
    126 			bp->b_flags |= B_DONE;
    127 	} else {
    128 		count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
    129 		    dbtob(bp->b_blkno));
    130 		if (count == 0) {
    131 			perror("pwrite");
    132 			return -1;
    133 		}
    134 		bp->b_flags &= ~B_DELWRI;
    135 		reassignbuf(bp, bp->b_vp);
    136 	}
    137 	return 0;
    138 }
    139 
    140 int
    141 lfs_vop_bwrite(struct ubuf * bp)
    142 {
    143 	struct lfs *fs;
    144 
    145 	fs = bp->b_vp->v_fs;
    146 	if (!(bp->b_flags & B_DELWRI)) {
    147 		fs->lfs_avail -= btofsb(fs, bp->b_bcount);
    148 	}
    149 	bp->b_flags |= B_DELWRI | B_LOCKED;
    150 	reassignbuf(bp, bp->b_vp);
    151 	brelse(bp);
    152 	return 0;
    153 }
    154 
    155 /*
    156  * ufs_bmaparray does the bmap conversion, and if requested returns the
    157  * array of logical blocks which must be traversed to get to a block.
    158  * Each entry contains the offset into that block that gets you to the
    159  * next block and the disk address of the block (if it is assigned).
    160  */
    161 int
    162 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
    163 {
    164 	struct inode *ip;
    165 	struct ubuf *bp;
    166 	struct indir a[NIADDR + 1], *xap;
    167 	daddr_t daddr;
    168 	daddr_t metalbn;
    169 	int error, num;
    170 
    171 	ip = VTOI(vp);
    172 
    173 	if (bn >= 0 && bn < NDADDR) {
    174 		if (nump != NULL)
    175 			*nump = 0;
    176 		*bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
    177 		if (*bnp == 0)
    178 			*bnp = -1;
    179 		return (0);
    180 	}
    181 	xap = ap == NULL ? a : ap;
    182 	if (!nump)
    183 		nump = &num;
    184 	if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
    185 		return (error);
    186 
    187 	num = *nump;
    188 
    189 	/* Get disk address out of indirect block array */
    190 	daddr = ip->i_ffs1_ib[xap->in_off];
    191 
    192 	for (bp = NULL, ++xap; --num; ++xap) {
    193 		/* Exit the loop if there is no disk address assigned yet and
    194 		 * the indirect block isn't in the cache, or if we were
    195 		 * looking for an indirect block and we've found it. */
    196 
    197 		metalbn = xap->in_lbn;
    198 		if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
    199 			break;
    200 		/*
    201 		 * If we get here, we've either got the block in the cache
    202 		 * or we have a disk address for it, go fetch it.
    203 		 */
    204 		if (bp)
    205 			brelse(bp);
    206 
    207 		xap->in_exists = 1;
    208 		bp = getblk(vp, metalbn, fs->lfs_bsize);
    209 
    210 		if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
    211 			bp->b_blkno = fsbtodb(fs, daddr);
    212 			bp->b_flags |= B_READ;
    213 			VOP_STRATEGY(bp);
    214 		}
    215 		daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
    216 	}
    217 	if (bp)
    218 		brelse(bp);
    219 
    220 	daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
    221 	*bnp = daddr == 0 ? -1 : daddr;
    222 	return (0);
    223 }
    224 
    225 /*
    226  * Create an array of logical block number/offset pairs which represent the
    227  * path of indirect blocks required to access a data block.  The first "pair"
    228  * contains the logical block number of the appropriate single, double or
    229  * triple indirect block and the offset into the inode indirect block array.
    230  * Note, the logical block number of the inode single/double/triple indirect
    231  * block appears twice in the array, once with the offset into the i_ffs1_ib and
    232  * once with the offset into the page itself.
    233  */
    234 int
    235 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
    236 {
    237 	daddr_t metalbn, realbn;
    238 	int64_t blockcnt;
    239 	int lbc;
    240 	int i, numlevels, off;
    241 	int lognindir, indir;
    242 
    243 	if (nump)
    244 		*nump = 0;
    245 	numlevels = 0;
    246 	realbn = bn;
    247 	if (bn < 0)
    248 		bn = -bn;
    249 
    250 	lognindir = -1;
    251 	for (indir = fs->lfs_nindir; indir; indir >>= 1)
    252 		++lognindir;
    253 
    254 	/* Determine the number of levels of indirection.  After this loop is
    255 	 * done, blockcnt indicates the number of data blocks possible at the
    256 	 * given level of indirection, and NIADDR - i is the number of levels
    257 	 * of indirection needed to locate the requested block. */
    258 
    259 	bn -= NDADDR;
    260 	for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
    261 		if (i == 0)
    262 			return (EFBIG);
    263 
    264 		lbc += lognindir;
    265 		blockcnt = (int64_t) 1 << lbc;
    266 
    267 		if (bn < blockcnt)
    268 			break;
    269 	}
    270 
    271 	/* Calculate the address of the first meta-block. */
    272 	metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
    273 
    274 	/* At each iteration, off is the offset into the bap array which is an
    275 	 * array of disk addresses at the current level of indirection. The
    276 	 * logical block number and the offset in that block are stored into
    277 	 * the argument array. */
    278 	ap->in_lbn = metalbn;
    279 	ap->in_off = off = NIADDR - i;
    280 	ap->in_exists = 0;
    281 	ap++;
    282 	for (++numlevels; i <= NIADDR; i++) {
    283 		/* If searching for a meta-data block, quit when found. */
    284 		if (metalbn == realbn)
    285 			break;
    286 
    287 		lbc -= lognindir;
    288 		blockcnt = (int64_t) 1 << lbc;
    289 		off = (bn >> lbc) & (fs->lfs_nindir - 1);
    290 
    291 		++numlevels;
    292 		ap->in_lbn = metalbn;
    293 		ap->in_off = off;
    294 		ap->in_exists = 0;
    295 		++ap;
    296 
    297 		metalbn -= -1 + (off << lbc);
    298 	}
    299 	if (nump)
    300 		*nump = numlevels;
    301 	return (0);
    302 }
    303 
    304 int
    305 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
    306 {
    307 	return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
    308 }
    309 
    310 /* Search a block for a specific dinode. */
    311 struct ufs1_dinode *
    312 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
    313 {
    314 	struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
    315 	struct ufs1_dinode *ldip, *fin;
    316 
    317 	fin = dip + INOPB(fs);
    318 
    319 	/*
    320 	 * Read the inode block backwards, since later versions of the
    321 	 * inode will supercede earlier ones.  Though it is unlikely, it is
    322 	 * possible that the same inode will appear in the same inode block.
    323 	 */
    324 	for (ldip = fin - 1; ldip >= dip; --ldip)
    325 		if (ldip->di_inumber == ino)
    326 			return (ldip);
    327 	return NULL;
    328 }
    329 
    330 /*
    331  * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
    332  * XXX it currently loses atime information.
    333  */
    334 struct uvnode *
    335 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
    336 {
    337 	struct uvnode *vp;
    338 	struct inode *ip;
    339 	struct ufs1_dinode *dip;
    340 	struct ubuf *bp;
    341 	int i, hash;
    342 
    343 	vp = (struct uvnode *) malloc(sizeof(*vp));
    344 	memset(vp, 0, sizeof(*vp));
    345 	vp->v_fd = fd;
    346 	vp->v_fs = fs;
    347 	vp->v_usecount = 0;
    348 	vp->v_strategy_op = lfs_vop_strategy;
    349 	vp->v_bwrite_op = lfs_vop_bwrite;
    350 	vp->v_bmap_op = lfs_vop_bmap;
    351 	LIST_INIT(&vp->v_cleanblkhd);
    352 	LIST_INIT(&vp->v_dirtyblkhd);
    353 
    354 	ip = (struct inode *) malloc(sizeof(*ip));
    355 	memset(ip, 0, sizeof(*ip));
    356 
    357 	ip->i_din.ffs1_din = (struct ufs1_dinode *)
    358 	    malloc(sizeof(struct ufs1_dinode));
    359 	memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
    360 
    361 	/* Initialize the inode -- from lfs_vcreate. */
    362 	ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
    363 	memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
    364 	vp->v_data = ip;
    365 	/* ip->i_vnode = vp; */
    366 	ip->i_number = ino;
    367 	ip->i_lockf = 0;
    368 	ip->i_diroff = 0;
    369 	ip->i_lfs_effnblks = 0;
    370 	ip->i_flag = 0;
    371 
    372 	/* Load inode block and find inode */
    373 	if (daddr > 0) {
    374 		bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
    375 		bp->b_flags |= B_AGE;
    376 		dip = lfs_ifind(fs, ino, bp);
    377 		if (dip == NULL) {
    378 			brelse(bp);
    379 			free(ip);
    380 			free(vp);
    381 			return NULL;
    382 		}
    383 		memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
    384 		brelse(bp);
    385 	}
    386 	ip->i_number = ino;
    387 	/* ip->i_devvp = fs->lfs_devvp; */
    388 	ip->i_lfs = fs;
    389 
    390 	ip->i_ffs_effnlink = ip->i_ffs1_nlink;
    391 	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
    392 	ip->i_lfs_osize = ip->i_ffs1_size;
    393 #if 0
    394 	if (fs->lfs_version > 1) {
    395 		ip->i_ffs1_atime = ts.tv_sec;
    396 		ip->i_ffs1_atimensec = ts.tv_nsec;
    397 	}
    398 #endif
    399 
    400 	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
    401 	for (i = 0; i < NDADDR; i++)
    402 		if (ip->i_ffs1_db[i] != 0)
    403 			ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
    404 
    405 	++nvnodes;
    406 	hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
    407 	LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
    408 	LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
    409 
    410 	return vp;
    411 }
    412 
    413 static struct uvnode *
    414 lfs_vget(void *vfs, ino_t ino)
    415 {
    416 	struct lfs *fs = (struct lfs *)vfs;
    417 	ufs_daddr_t daddr;
    418 	struct ubuf *bp;
    419 	IFILE *ifp;
    420 
    421 	LFS_IENTRY(ifp, fs, ino, bp);
    422 	daddr = ifp->if_daddr;
    423 	brelse(bp);
    424 	if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
    425 		return NULL;
    426 	return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
    427 }
    428 
    429 /* Check superblock magic number and checksum */
    430 static int
    431 check_sb(struct lfs *fs)
    432 {
    433 	u_int32_t checksum;
    434 
    435 	if (fs->lfs_magic != LFS_MAGIC) {
    436 		printf("Superblock magic number (0x%lx) does not match "
    437 		       "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
    438 		       (unsigned long) LFS_MAGIC);
    439 		return 1;
    440 	}
    441 	/* checksum */
    442 	checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
    443 	if (fs->lfs_cksum != checksum) {
    444 		printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
    445 		    (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
    446 		return 1;
    447 	}
    448 	return 0;
    449 }
    450 
    451 /* Initialize LFS library; load superblocks and choose which to use. */
    452 struct lfs *
    453 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
    454 {
    455 	struct uvnode *devvp;
    456 	struct ubuf *bp;
    457 	int tryalt;
    458 	struct lfs *fs, *altfs;
    459 	int error;
    460 
    461 	vfs_init();
    462 
    463 	devvp = (struct uvnode *) malloc(sizeof(*devvp));
    464 	memset(devvp, 0, sizeof(*devvp));
    465 	devvp->v_fs = NULL;
    466 	devvp->v_fd = devfd;
    467 	devvp->v_strategy_op = raw_vop_strategy;
    468 	devvp->v_bwrite_op = raw_vop_bwrite;
    469 	devvp->v_bmap_op = raw_vop_bmap;
    470 	LIST_INIT(&devvp->v_cleanblkhd);
    471 	LIST_INIT(&devvp->v_dirtyblkhd);
    472 
    473 	tryalt = 0;
    474 	if (dummy_read) {
    475 		if (sblkno == 0)
    476 			sblkno = btodb(LFS_LABELPAD);
    477 		fs = (struct lfs *) malloc(sizeof(*fs));
    478 		memset(fs, 0, sizeof(*fs));
    479 		fs->lfs_devvp = devvp;
    480 	} else {
    481 		if (sblkno == 0) {
    482 			sblkno = btodb(LFS_LABELPAD);
    483 			tryalt = 1;
    484 		} else if (debug) {
    485 			printf("No -b flag given, not attempting to verify checkpoint\n");
    486 		}
    487 		error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
    488 		fs = (struct lfs *) malloc(sizeof(*fs));
    489 		memset(fs, 0, sizeof(*fs));
    490 		fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
    491 		fs->lfs_devvp = devvp;
    492 		bp->b_flags |= B_INVAL;
    493 		brelse(bp);
    494 
    495 		if (tryalt) {
    496 			error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
    497 		    	LFS_SBPAD, NOCRED, &bp);
    498 			altfs = (struct lfs *) malloc(sizeof(*altfs));
    499 			memset(altfs, 0, sizeof(*altfs));
    500 			altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
    501 			altfs->lfs_devvp = devvp;
    502 			bp->b_flags |= B_INVAL;
    503 			brelse(bp);
    504 
    505 			if (check_sb(fs) || fs->lfs_idaddr <= 0) {
    506 				if (debug)
    507 					printf("Primary superblock is no good, using first alternate\n");
    508 				free(fs);
    509 				fs = altfs;
    510 			} else {
    511 				/* If both superblocks check out, try verification */
    512 				if (check_sb(altfs)) {
    513 					if (debug)
    514 						printf("First alternate superblock is no good, using primary\n");
    515 					free(altfs);
    516 				} else {
    517 					if (lfs_verify(fs, altfs, devvp, debug) == fs) {
    518 						free(altfs);
    519 					} else {
    520 						free(fs);
    521 						fs = altfs;
    522 					}
    523 				}
    524 			}
    525 		}
    526 		if (check_sb(fs)) {
    527 			free(fs);
    528 			return NULL;
    529 		}
    530 	}
    531 
    532 	/* Compatibility */
    533 	if (fs->lfs_version < 2) {
    534 		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
    535 		fs->lfs_ibsize = fs->lfs_bsize;
    536 		fs->lfs_start = fs->lfs_sboffs[0];
    537 		fs->lfs_tstamp = fs->lfs_otstamp;
    538 		fs->lfs_fsbtodb = 0;
    539 	}
    540 
    541 	if (!dummy_read) {
    542 		fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
    543 		fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
    544 		fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
    545 	}
    546 
    547 	if (idaddr == 0)
    548 		idaddr = fs->lfs_idaddr;
    549 	else
    550 		fs->lfs_idaddr = idaddr;
    551 	/* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
    552 	fs->lfs_ivnode = lfs_raw_vget(fs,
    553 		(dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
    554 		idaddr);
    555 
    556 	register_vget((void *)fs, lfs_vget);
    557 
    558 	return fs;
    559 }
    560 
    561 /*
    562  * Check partial segment validity between fs->lfs_offset and the given goal.
    563  *
    564  * If goal == 0, just keep on going until the segments stop making sense,
    565  * and return the address of the last valid partial segment.
    566  *
    567  * If goal != 0, return the address of the first partial segment that failed,
    568  * or "goal" if we reached it without failure (the partial segment *at* goal
    569  * need not be valid).
    570  */
    571 ufs_daddr_t
    572 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
    573 {
    574 	ufs_daddr_t daddr, odaddr;
    575 	SEGSUM *sp;
    576 	int bc, flag;
    577 	struct ubuf *bp;
    578 	ufs_daddr_t nodirop_daddr;
    579 	u_int64_t serial;
    580 
    581 	odaddr = -1;
    582 	daddr = osb->lfs_offset;
    583 	nodirop_daddr = daddr;
    584 	serial = osb->lfs_serial;
    585 	while (daddr != goal) {
    586 		flag = 0;
    587 oncemore:
    588 		/* Read in summary block */
    589 		bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
    590 		sp = (SEGSUM *)bp->b_data;
    591 
    592 		/*
    593 		 * Could be a superblock instead of a segment summary.
    594 		 * XXX should use gseguse, but right now we need to do more
    595 		 * setup before we can...fix this
    596 		 */
    597 		if (sp->ss_magic != SS_MAGIC ||
    598 		    sp->ss_ident != osb->lfs_ident ||
    599 		    sp->ss_serial < serial ||
    600 		    sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
    601 			sizeof(sp->ss_sumsum))) {
    602 			brelse(bp);
    603 			if (flag == 0) {
    604 				flag = 1;
    605 				daddr += btofsb(osb, LFS_SBPAD);
    606 				goto oncemore;
    607 			}
    608 			break;
    609 		}
    610 		++serial;
    611 		bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
    612 		if (bc == 0) {
    613 			brelse(bp);
    614 			break;
    615 		}
    616 		assert (bc > 0);
    617 		odaddr = daddr;
    618 		daddr += btofsb(osb, osb->lfs_sumsize + bc);
    619 		if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
    620 		    dtosn(osb, daddr) != dtosn(osb, daddr +
    621 			btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
    622 			daddr = sp->ss_next;
    623 		}
    624 		if (!(sp->ss_flags & SS_CONT))
    625 			nodirop_daddr = daddr;
    626 		brelse(bp);
    627 	}
    628 
    629 	if (goal == 0)
    630 		return nodirop_daddr;
    631 	else
    632 		return daddr;
    633 }
    634 
    635 /* Use try_verify to check whether the newer superblock is valid. */
    636 struct lfs *
    637 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
    638 {
    639 	ufs_daddr_t daddr;
    640 	struct lfs *osb, *nsb;
    641 
    642 	/*
    643 	 * Verify the checkpoint of the newer superblock,
    644 	 * if the timestamp/serial number of the two superblocks is
    645 	 * different.
    646 	 */
    647 
    648 	osb = NULL;
    649 	if (debug)
    650 		printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
    651 		    (long long) sb1->lfs_serial);
    652 
    653 	if ((sb0->lfs_version == 1 &&
    654 		sb0->lfs_otstamp != sb1->lfs_otstamp) ||
    655 	    (sb0->lfs_version > 1 &&
    656 		sb0->lfs_serial != sb1->lfs_serial)) {
    657 		if (sb0->lfs_version == 1) {
    658 			if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
    659 				osb = sb1;
    660 				nsb = sb0;
    661 			} else {
    662 				osb = sb0;
    663 				nsb = sb1;
    664 			}
    665 		} else {
    666 			if (sb0->lfs_serial > sb1->lfs_serial) {
    667 				osb = sb1;
    668 				nsb = sb0;
    669 			} else {
    670 				osb = sb0;
    671 				nsb = sb1;
    672 			}
    673 		}
    674 		if (debug) {
    675 			printf("Attempting to verify newer checkpoint...");
    676 			fflush(stdout);
    677 		}
    678 		daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
    679 
    680 		if (debug)
    681 			printf("done.\n");
    682 		if (daddr == nsb->lfs_offset) {
    683 			pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
    684 			    (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
    685 			sbdirty();
    686 		} else {
    687 			pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
    688 		}
    689 		return (daddr == nsb->lfs_offset ? nsb : osb);
    690 	}
    691 	/* Nothing to check */
    692 	return osb;
    693 }
    694 
    695 /* Verify a partial-segment summary; return the number of bytes on disk. */
    696 int
    697 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
    698 	      struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
    699 {
    700 	FINFO *fp;
    701 	int bc;			/* Bytes in partial segment */
    702 	int nblocks;
    703 	ufs_daddr_t seg_addr, daddr;
    704 	ufs_daddr_t *dp, *idp;
    705 	struct ubuf *bp;
    706 	int i, j, k, datac, len;
    707 	long sn;
    708 	u_int32_t *datap;
    709 	u_int32_t ccksum;
    710 
    711 	sn = dtosn(fs, pseg_addr);
    712 	seg_addr = sntod(fs, sn);
    713 
    714 	/* We've already checked the sumsum, just do the data bounds and sum */
    715 
    716 	/* Count the blocks. */
    717 	nblocks = howmany(sp->ss_ninos, INOPB(fs));
    718 	bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
    719 	assert(bc >= 0);
    720 
    721 	fp = (FINFO *) (sp + 1);
    722 	for (i = 0; i < sp->ss_nfinfo; i++) {
    723 		nblocks += fp->fi_nblocks;
    724 		bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
    725 					   << fs->lfs_bshift);
    726 		assert(bc >= 0);
    727 		fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
    728 	}
    729 	datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
    730 	datac = 0;
    731 
    732 	dp = (ufs_daddr_t *) sp;
    733 	dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
    734 	dp--;
    735 
    736 	idp = dp;
    737 	daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
    738 	fp = (FINFO *) (sp + 1);
    739 	for (i = 0, j = 0;
    740 	     i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
    741 		if (i >= sp->ss_nfinfo && *idp != daddr) {
    742 			pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
    743 			      ": found %d, wanted %d\n",
    744 			      pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
    745 			if (debug)
    746 				pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
    747 				      daddr);
    748 			break;
    749 		}
    750 		while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
    751 			bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
    752 			datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
    753 			brelse(bp);
    754 
    755 			++j;
    756 			daddr += btofsb(fs, fs->lfs_ibsize);
    757 			--idp;
    758 		}
    759 		if (i < sp->ss_nfinfo) {
    760 			if (func)
    761 				func(daddr, fp);
    762 			for (k = 0; k < fp->fi_nblocks; k++) {
    763 				len = (k == fp->fi_nblocks - 1 ?
    764 				       fp->fi_lastlength
    765 				       : fs->lfs_bsize);
    766 				bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
    767 				datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
    768 				brelse(bp);
    769 				daddr += btofsb(fs, len);
    770 			}
    771 			fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
    772 		}
    773 	}
    774 
    775 	if (datac != nblocks) {
    776 		pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
    777 		    (long long) pseg_addr, nblocks, datac);
    778 	}
    779 	ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
    780 	/* Check the data checksum */
    781 	if (ccksum != sp->ss_datasum) {
    782 		pwarn("Partial segment at 0x%" PRIx32 " data checksum"
    783 		      " mismatch: given 0x%x, computed 0x%x\n",
    784 		      pseg_addr, sp->ss_datasum, ccksum);
    785 		free(datap);
    786 		return 0;
    787 	}
    788 	free(datap);
    789 	assert(bc >= 0);
    790 	return bc;
    791 }
    792 
    793 /* print message and exit */
    794 void
    795 my_vpanic(int fatal, const char *fmt, va_list ap)
    796 {
    797         (void) vprintf(fmt, ap);
    798 	exit(8);
    799 }
    800 
    801 void
    802 call_panic(const char *fmt, ...)
    803 {
    804 	va_list ap;
    805 
    806 	va_start(ap, fmt);
    807         panic_func(1, fmt, ap);
    808 	va_end(ap);
    809 }
    810 
    811 /* Allocate a new inode. */
    812 struct uvnode *
    813 lfs_valloc(struct lfs *fs, ino_t ino)
    814 {
    815 	struct ubuf *bp, *cbp;
    816 	struct ifile *ifp;
    817 	ino_t new_ino;
    818 	int error;
    819 	int new_gen;
    820 	CLEANERINFO *cip;
    821 
    822 	/* Get the head of the freelist. */
    823 	LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
    824 
    825 	/*
    826 	 * Remove the inode from the free list and write the new start
    827 	 * of the free list into the superblock.
    828 	 */
    829 	LFS_IENTRY(ifp, fs, new_ino, bp);
    830 	if (ifp->if_daddr != LFS_UNUSED_DADDR)
    831 		panic("lfs_valloc: inuse inode %d on the free list", new_ino);
    832 	LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
    833 
    834 	new_gen = ifp->if_version; /* version was updated by vfree */
    835 	brelse(bp);
    836 
    837 	/* Extend IFILE so that the next lfs_valloc will succeed. */
    838 	if (fs->lfs_freehd == LFS_UNUSED_INUM) {
    839 		if ((error = extend_ifile(fs)) != 0) {
    840 			LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
    841 			return NULL;
    842 		}
    843 	}
    844 
    845 	/* Set superblock modified bit and increment file count. */
    846         sbdirty();
    847 	++fs->lfs_nfiles;
    848 
    849         return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
    850 }
    851 
    852 /*
    853  * Add a new block to the Ifile, to accommodate future file creations.
    854  */
    855 int
    856 extend_ifile(struct lfs *fs)
    857 {
    858 	struct uvnode *vp;
    859 	struct inode *ip;
    860 	IFILE *ifp;
    861 	IFILE_V1 *ifp_v1;
    862 	struct ubuf *bp, *cbp;
    863 	daddr_t i, blkno, max;
    864 	ino_t oldlast;
    865 	CLEANERINFO *cip;
    866 
    867 	vp = fs->lfs_ivnode;
    868 	ip = VTOI(vp);
    869 	blkno = lblkno(fs, ip->i_ffs1_size);
    870 
    871 	bp = getblk(vp, blkno, fs->lfs_bsize);	/* XXX VOP_BALLOC() */
    872 	ip->i_ffs1_size += fs->lfs_bsize;
    873 
    874 	i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
    875 		fs->lfs_ifpb;
    876 	LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
    877 	LFS_PUT_HEADFREE(fs, cip, cbp, i);
    878 	max = i + fs->lfs_ifpb;
    879 	fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
    880 
    881 	if (fs->lfs_version == 1) {
    882 		for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
    883 			ifp_v1->if_version = 1;
    884 			ifp_v1->if_daddr = LFS_UNUSED_DADDR;
    885 			ifp_v1->if_nextfree = ++i;
    886 		}
    887 		ifp_v1--;
    888 		ifp_v1->if_nextfree = oldlast;
    889 	} else {
    890 		for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
    891 			ifp->if_version = 1;
    892 			ifp->if_daddr = LFS_UNUSED_DADDR;
    893 			ifp->if_nextfree = ++i;
    894 		}
    895 		ifp--;
    896 		ifp->if_nextfree = oldlast;
    897 	}
    898 	LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
    899 
    900 	LFS_BWRITE_LOG(bp);
    901 
    902 	return 0;
    903 }
    904 
    905