lfs.c revision 1.19 1 /* $NetBSD: lfs.c,v 1.19 2005/10/13 21:14:45 jmc Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs_user.h"
98 #include "segwrite.h"
99
100 #define panic call_panic
101
102 extern u_int32_t cksum(void *, size_t);
103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
104 extern void pwarn(const char *, ...);
105
106 extern struct uvnodelst vnodelist;
107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
108 extern int nvnodes;
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 dbtob(bp->b_blkno));
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 dbtob(bp->b_blkno));
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp);
152 return 0;
153 }
154
155 /*
156 * ufs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, fs->lfs_bsize);
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = fsbtodb(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp);
219
220 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244
245 if (nump)
246 *nump = 0;
247 numlevels = 0;
248 realbn = bn;
249 if (bn < 0)
250 bn = -bn;
251
252 lognindir = -1;
253 for (indir = fs->lfs_nindir; indir; indir >>= 1)
254 ++lognindir;
255
256 /* Determine the number of levels of indirection. After this loop is
257 * done, blockcnt indicates the number of data blocks possible at the
258 * given level of indirection, and NIADDR - i is the number of levels
259 * of indirection needed to locate the requested block. */
260
261 bn -= NDADDR;
262 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
263 if (i == 0)
264 return (EFBIG);
265
266 lbc += lognindir;
267 blockcnt = (int64_t) 1 << lbc;
268
269 if (bn < blockcnt)
270 break;
271 }
272
273 /* Calculate the address of the first meta-block. */
274 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
275
276 /* At each iteration, off is the offset into the bap array which is an
277 * array of disk addresses at the current level of indirection. The
278 * logical block number and the offset in that block are stored into
279 * the argument array. */
280 ap->in_lbn = metalbn;
281 ap->in_off = off = NIADDR - i;
282 ap->in_exists = 0;
283 ap++;
284 for (++numlevels; i <= NIADDR; i++) {
285 /* If searching for a meta-data block, quit when found. */
286 if (metalbn == realbn)
287 break;
288
289 lbc -= lognindir;
290 blockcnt = (int64_t) 1 << lbc;
291 off = (bn >> lbc) & (fs->lfs_nindir - 1);
292
293 ++numlevels;
294 ap->in_lbn = metalbn;
295 ap->in_off = off;
296 ap->in_exists = 0;
297 ++ap;
298
299 metalbn -= -1 + (off << lbc);
300 }
301 if (nump)
302 *nump = numlevels;
303 return (0);
304 }
305
306 int
307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 {
309 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 }
311
312 /* Search a block for a specific dinode. */
313 struct ufs1_dinode *
314 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 {
316 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
317 struct ufs1_dinode *ldip, *fin;
318
319 fin = dip + INOPB(fs);
320
321 /*
322 * Read the inode block backwards, since later versions of the
323 * inode will supercede earlier ones. Though it is unlikely, it is
324 * possible that the same inode will appear in the same inode block.
325 */
326 for (ldip = fin - 1; ldip >= dip; --ldip)
327 if (ldip->di_inumber == ino)
328 return (ldip);
329 return NULL;
330 }
331
332 /*
333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 * XXX it currently loses atime information.
335 */
336 struct uvnode *
337 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
338 {
339 struct uvnode *vp;
340 struct inode *ip;
341 struct ufs1_dinode *dip;
342 struct ubuf *bp;
343 int i, hash;
344
345 vp = (struct uvnode *) malloc(sizeof(*vp));
346 memset(vp, 0, sizeof(*vp));
347 vp->v_fd = fd;
348 vp->v_fs = fs;
349 vp->v_usecount = 0;
350 vp->v_strategy_op = lfs_vop_strategy;
351 vp->v_bwrite_op = lfs_vop_bwrite;
352 vp->v_bmap_op = lfs_vop_bmap;
353 LIST_INIT(&vp->v_cleanblkhd);
354 LIST_INIT(&vp->v_dirtyblkhd);
355
356 ip = (struct inode *) malloc(sizeof(*ip));
357 memset(ip, 0, sizeof(*ip));
358
359 ip->i_din.ffs1_din = (struct ufs1_dinode *)
360 malloc(sizeof(struct ufs1_dinode));
361 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
362
363 /* Initialize the inode -- from lfs_vcreate. */
364 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
365 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
366 vp->v_data = ip;
367 /* ip->i_vnode = vp; */
368 ip->i_number = ino;
369 ip->i_lockf = 0;
370 ip->i_diroff = 0;
371 ip->i_lfs_effnblks = 0;
372 ip->i_flag = 0;
373
374 /* Load inode block and find inode */
375 if (daddr > 0) {
376 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
377 bp->b_flags |= B_AGE;
378 dip = lfs_ifind(fs, ino, bp);
379 if (dip == NULL) {
380 brelse(bp);
381 free(ip);
382 free(vp);
383 return NULL;
384 }
385 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
386 brelse(bp);
387 }
388 ip->i_number = ino;
389 /* ip->i_devvp = fs->lfs_devvp; */
390 ip->i_lfs = fs;
391
392 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
393 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
394 ip->i_lfs_osize = ip->i_ffs1_size;
395 #if 0
396 if (fs->lfs_version > 1) {
397 ip->i_ffs1_atime = ts.tv_sec;
398 ip->i_ffs1_atimensec = ts.tv_nsec;
399 }
400 #endif
401
402 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
403 for (i = 0; i < NDADDR; i++)
404 if (ip->i_ffs1_db[i] != 0)
405 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
406
407 ++nvnodes;
408 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
409 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
410 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
411
412 return vp;
413 }
414
415 static struct uvnode *
416 lfs_vget(void *vfs, ino_t ino)
417 {
418 struct lfs *fs = (struct lfs *)vfs;
419 ufs_daddr_t daddr;
420 struct ubuf *bp;
421 IFILE *ifp;
422
423 LFS_IENTRY(ifp, fs, ino, bp);
424 daddr = ifp->if_daddr;
425 brelse(bp);
426 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
427 return NULL;
428 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
429 }
430
431 /* Check superblock magic number and checksum */
432 static int
433 check_sb(struct lfs *fs)
434 {
435 u_int32_t checksum;
436
437 if (fs->lfs_magic != LFS_MAGIC) {
438 printf("Superblock magic number (0x%lx) does not match "
439 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
440 (unsigned long) LFS_MAGIC);
441 return 1;
442 }
443 /* checksum */
444 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
445 if (fs->lfs_cksum != checksum) {
446 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
447 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
448 return 1;
449 }
450 return 0;
451 }
452
453 /* Initialize LFS library; load superblocks and choose which to use. */
454 struct lfs *
455 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
456 {
457 struct uvnode *devvp;
458 struct ubuf *bp;
459 int tryalt;
460 struct lfs *fs, *altfs;
461 int error;
462
463 vfs_init();
464
465 devvp = (struct uvnode *) malloc(sizeof(*devvp));
466 memset(devvp, 0, sizeof(*devvp));
467 devvp->v_fs = NULL;
468 devvp->v_fd = devfd;
469 devvp->v_strategy_op = raw_vop_strategy;
470 devvp->v_bwrite_op = raw_vop_bwrite;
471 devvp->v_bmap_op = raw_vop_bmap;
472 LIST_INIT(&devvp->v_cleanblkhd);
473 LIST_INIT(&devvp->v_dirtyblkhd);
474
475 tryalt = 0;
476 if (dummy_read) {
477 if (sblkno == 0)
478 sblkno = btodb(LFS_LABELPAD);
479 fs = (struct lfs *) malloc(sizeof(*fs));
480 memset(fs, 0, sizeof(*fs));
481 fs->lfs_devvp = devvp;
482 } else {
483 if (sblkno == 0) {
484 sblkno = btodb(LFS_LABELPAD);
485 tryalt = 1;
486 } else if (debug) {
487 printf("No -b flag given, not attempting to verify checkpoint\n");
488 }
489 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
490 fs = (struct lfs *) malloc(sizeof(*fs));
491 memset(fs, 0, sizeof(*fs));
492 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
493 fs->lfs_devvp = devvp;
494 bp->b_flags |= B_INVAL;
495 brelse(bp);
496
497 if (tryalt) {
498 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
499 LFS_SBPAD, NOCRED, &bp);
500 altfs = (struct lfs *) malloc(sizeof(*altfs));
501 memset(altfs, 0, sizeof(*altfs));
502 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
503 altfs->lfs_devvp = devvp;
504 bp->b_flags |= B_INVAL;
505 brelse(bp);
506
507 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
508 if (debug)
509 printf("Primary superblock is no good, using first alternate\n");
510 free(fs);
511 fs = altfs;
512 } else {
513 /* If both superblocks check out, try verification */
514 if (check_sb(altfs)) {
515 if (debug)
516 printf("First alternate superblock is no good, using primary\n");
517 free(altfs);
518 } else {
519 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
520 free(altfs);
521 } else {
522 free(fs);
523 fs = altfs;
524 }
525 }
526 }
527 }
528 if (check_sb(fs)) {
529 free(fs);
530 return NULL;
531 }
532 }
533
534 /* Compatibility */
535 if (fs->lfs_version < 2) {
536 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
537 fs->lfs_ibsize = fs->lfs_bsize;
538 fs->lfs_start = fs->lfs_sboffs[0];
539 fs->lfs_tstamp = fs->lfs_otstamp;
540 fs->lfs_fsbtodb = 0;
541 }
542
543 if (!dummy_read) {
544 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
545 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
546 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
547 }
548
549 if (idaddr == 0)
550 idaddr = fs->lfs_idaddr;
551 else
552 fs->lfs_idaddr = idaddr;
553 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
554 fs->lfs_ivnode = lfs_raw_vget(fs,
555 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
556 idaddr);
557
558 register_vget((void *)fs, lfs_vget);
559
560 return fs;
561 }
562
563 /*
564 * Check partial segment validity between fs->lfs_offset and the given goal.
565 *
566 * If goal == 0, just keep on going until the segments stop making sense,
567 * and return the address of the last valid partial segment.
568 *
569 * If goal != 0, return the address of the first partial segment that failed,
570 * or "goal" if we reached it without failure (the partial segment *at* goal
571 * need not be valid).
572 */
573 ufs_daddr_t
574 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
575 {
576 ufs_daddr_t daddr, odaddr;
577 SEGSUM *sp;
578 int bc, flag;
579 struct ubuf *bp;
580 ufs_daddr_t nodirop_daddr;
581 u_int64_t serial;
582
583 odaddr = -1;
584 daddr = osb->lfs_offset;
585 nodirop_daddr = daddr;
586 serial = osb->lfs_serial;
587 while (daddr != goal) {
588 flag = 0;
589 oncemore:
590 /* Read in summary block */
591 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
592 sp = (SEGSUM *)bp->b_data;
593
594 /*
595 * Could be a superblock instead of a segment summary.
596 * XXX should use gseguse, but right now we need to do more
597 * setup before we can...fix this
598 */
599 if (sp->ss_magic != SS_MAGIC ||
600 sp->ss_ident != osb->lfs_ident ||
601 sp->ss_serial < serial ||
602 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
603 sizeof(sp->ss_sumsum))) {
604 brelse(bp);
605 if (flag == 0) {
606 flag = 1;
607 daddr += btofsb(osb, LFS_SBPAD);
608 goto oncemore;
609 }
610 break;
611 }
612 ++serial;
613 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
614 if (bc == 0) {
615 brelse(bp);
616 break;
617 }
618 assert (bc > 0);
619 odaddr = daddr;
620 daddr += btofsb(osb, osb->lfs_sumsize + bc);
621 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
622 dtosn(osb, daddr) != dtosn(osb, daddr +
623 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
624 daddr = sp->ss_next;
625 }
626 if (!(sp->ss_flags & SS_CONT))
627 nodirop_daddr = daddr;
628 brelse(bp);
629 }
630
631 if (goal == 0)
632 return nodirop_daddr;
633 else
634 return daddr;
635 }
636
637 /* Use try_verify to check whether the newer superblock is valid. */
638 struct lfs *
639 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
640 {
641 ufs_daddr_t daddr;
642 struct lfs *osb, *nsb;
643
644 /*
645 * Verify the checkpoint of the newer superblock,
646 * if the timestamp/serial number of the two superblocks is
647 * different.
648 */
649
650 osb = NULL;
651 if (debug)
652 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
653 (long long) sb1->lfs_serial);
654
655 if ((sb0->lfs_version == 1 &&
656 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
657 (sb0->lfs_version > 1 &&
658 sb0->lfs_serial != sb1->lfs_serial)) {
659 if (sb0->lfs_version == 1) {
660 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
661 osb = sb1;
662 nsb = sb0;
663 } else {
664 osb = sb0;
665 nsb = sb1;
666 }
667 } else {
668 if (sb0->lfs_serial > sb1->lfs_serial) {
669 osb = sb1;
670 nsb = sb0;
671 } else {
672 osb = sb0;
673 nsb = sb1;
674 }
675 }
676 if (debug) {
677 printf("Attempting to verify newer checkpoint...");
678 fflush(stdout);
679 }
680 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
681
682 if (debug)
683 printf("done.\n");
684 if (daddr == nsb->lfs_offset) {
685 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
686 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
687 sbdirty();
688 } else {
689 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
690 }
691 return (daddr == nsb->lfs_offset ? nsb : osb);
692 }
693 /* Nothing to check */
694 return osb;
695 }
696
697 /* Verify a partial-segment summary; return the number of bytes on disk. */
698 int
699 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
700 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
701 {
702 FINFO *fp;
703 int bc; /* Bytes in partial segment */
704 int nblocks;
705 ufs_daddr_t seg_addr, daddr;
706 ufs_daddr_t *dp, *idp;
707 struct ubuf *bp;
708 int i, j, k, datac, len;
709 long sn;
710 u_int32_t *datap;
711 u_int32_t ccksum;
712
713 sn = dtosn(fs, pseg_addr);
714 seg_addr = sntod(fs, sn);
715
716 /* We've already checked the sumsum, just do the data bounds and sum */
717
718 /* Count the blocks. */
719 nblocks = howmany(sp->ss_ninos, INOPB(fs));
720 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
721 assert(bc >= 0);
722
723 fp = (FINFO *) (sp + 1);
724 for (i = 0; i < sp->ss_nfinfo; i++) {
725 nblocks += fp->fi_nblocks;
726 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
727 << fs->lfs_bshift);
728 assert(bc >= 0);
729 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
730 }
731 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
732 datac = 0;
733
734 dp = (ufs_daddr_t *) sp;
735 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
736 dp--;
737
738 idp = dp;
739 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
740 fp = (FINFO *) (sp + 1);
741 for (i = 0, j = 0;
742 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
743 if (i >= sp->ss_nfinfo && *idp != daddr) {
744 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
745 ": found %d, wanted %d\n",
746 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
747 if (debug)
748 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
749 daddr);
750 break;
751 }
752 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
753 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
754 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
755 brelse(bp);
756
757 ++j;
758 daddr += btofsb(fs, fs->lfs_ibsize);
759 --idp;
760 }
761 if (i < sp->ss_nfinfo) {
762 if (func)
763 func(daddr, fp);
764 for (k = 0; k < fp->fi_nblocks; k++) {
765 len = (k == fp->fi_nblocks - 1 ?
766 fp->fi_lastlength
767 : fs->lfs_bsize);
768 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
769 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
770 brelse(bp);
771 daddr += btofsb(fs, len);
772 }
773 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
774 }
775 }
776
777 if (datac != nblocks) {
778 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
779 (long long) pseg_addr, nblocks, datac);
780 }
781 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
782 /* Check the data checksum */
783 if (ccksum != sp->ss_datasum) {
784 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
785 " mismatch: given 0x%x, computed 0x%x\n",
786 pseg_addr, sp->ss_datasum, ccksum);
787 free(datap);
788 return 0;
789 }
790 free(datap);
791 assert(bc >= 0);
792 return bc;
793 }
794
795 /* print message and exit */
796 void
797 my_vpanic(int fatal, const char *fmt, va_list ap)
798 {
799 (void) vprintf(fmt, ap);
800 exit(8);
801 }
802
803 void
804 call_panic(const char *fmt, ...)
805 {
806 va_list ap;
807
808 va_start(ap, fmt);
809 panic_func(1, fmt, ap);
810 va_end(ap);
811 }
812
813 /* Allocate a new inode. */
814 struct uvnode *
815 lfs_valloc(struct lfs *fs, ino_t ino)
816 {
817 struct ubuf *bp, *cbp;
818 struct ifile *ifp;
819 ino_t new_ino;
820 int error;
821 int new_gen;
822 CLEANERINFO *cip;
823
824 /* Get the head of the freelist. */
825 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
826
827 /*
828 * Remove the inode from the free list and write the new start
829 * of the free list into the superblock.
830 */
831 LFS_IENTRY(ifp, fs, new_ino, bp);
832 if (ifp->if_daddr != LFS_UNUSED_DADDR)
833 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
834 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
835
836 new_gen = ifp->if_version; /* version was updated by vfree */
837 brelse(bp);
838
839 /* Extend IFILE so that the next lfs_valloc will succeed. */
840 if (fs->lfs_freehd == LFS_UNUSED_INUM) {
841 if ((error = extend_ifile(fs)) != 0) {
842 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
843 return NULL;
844 }
845 }
846
847 /* Set superblock modified bit and increment file count. */
848 sbdirty();
849 ++fs->lfs_nfiles;
850
851 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
852 }
853
854 /*
855 * Add a new block to the Ifile, to accommodate future file creations.
856 */
857 int
858 extend_ifile(struct lfs *fs)
859 {
860 struct uvnode *vp;
861 struct inode *ip;
862 IFILE *ifp;
863 IFILE_V1 *ifp_v1;
864 struct ubuf *bp, *cbp;
865 daddr_t i, blkno, max;
866 ino_t oldlast;
867 CLEANERINFO *cip;
868
869 vp = fs->lfs_ivnode;
870 ip = VTOI(vp);
871 blkno = lblkno(fs, ip->i_ffs1_size);
872
873 bp = getblk(vp, blkno, fs->lfs_bsize); /* XXX VOP_BALLOC() */
874 ip->i_ffs1_size += fs->lfs_bsize;
875
876 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
877 fs->lfs_ifpb;
878 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
879 LFS_PUT_HEADFREE(fs, cip, cbp, i);
880 max = i + fs->lfs_ifpb;
881 fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
882
883 if (fs->lfs_version == 1) {
884 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
885 ifp_v1->if_version = 1;
886 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
887 ifp_v1->if_nextfree = ++i;
888 }
889 ifp_v1--;
890 ifp_v1->if_nextfree = oldlast;
891 } else {
892 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
893 ifp->if_version = 1;
894 ifp->if_daddr = LFS_UNUSED_DADDR;
895 ifp->if_nextfree = ++i;
896 }
897 ifp--;
898 ifp->if_nextfree = oldlast;
899 }
900 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
901
902 LFS_BWRITE_LOG(bp);
903
904 return 0;
905 }
906
907