Home | History | Annotate | Line # | Download | only in fsck_lfs
lfs.c revision 1.25
      1 /* $NetBSD: lfs.c,v 1.25 2006/09/01 19:52:48 perseant Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1989, 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  * (c) UNIX System Laboratories, Inc.
     41  * All or some portions of this file are derived from material licensed
     42  * to the University of California by American Telephone and Telegraph
     43  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     44  * the permission of UNIX System Laboratories, Inc.
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  *
     70  *	@(#)ufs_bmap.c	8.8 (Berkeley) 8/11/95
     71  */
     72 
     73 
     74 #include <sys/types.h>
     75 #include <sys/param.h>
     76 #include <sys/time.h>
     77 #include <sys/buf.h>
     78 #include <sys/mount.h>
     79 
     80 #include <ufs/ufs/inode.h>
     81 #include <ufs/ufs/ufsmount.h>
     82 #define vnode uvnode
     83 #include <ufs/lfs/lfs.h>
     84 #undef vnode
     85 
     86 #include <assert.h>
     87 #include <err.h>
     88 #include <errno.h>
     89 #include <stdarg.h>
     90 #include <stdio.h>
     91 #include <stdlib.h>
     92 #include <string.h>
     93 #include <unistd.h>
     94 
     95 #include "bufcache.h"
     96 #include "vnode.h"
     97 #include "lfs_user.h"
     98 #include "segwrite.h"
     99 
    100 #define panic call_panic
    101 
    102 extern u_int32_t cksum(void *, size_t);
    103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    104 extern void pwarn(const char *, ...);
    105 
    106 extern struct uvnodelst vnodelist;
    107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
    108 extern int nvnodes;
    109 
    110 static int
    111 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
    112 
    113 int fsdirty = 0;
    114 void (*panic_func)(int, const char *, va_list) = my_vpanic;
    115 
    116 /*
    117  * LFS buffer and uvnode operations
    118  */
    119 
    120 int
    121 lfs_vop_strategy(struct ubuf * bp)
    122 {
    123 	int count;
    124 
    125 	if (bp->b_flags & B_READ) {
    126 		count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
    127 		    dbtob(bp->b_blkno));
    128 		if (count == bp->b_bcount)
    129 			bp->b_flags |= B_DONE;
    130 	} else {
    131 		count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
    132 		    dbtob(bp->b_blkno));
    133 		if (count == 0) {
    134 			perror("pwrite");
    135 			return -1;
    136 		}
    137 		bp->b_flags &= ~B_DELWRI;
    138 		reassignbuf(bp, bp->b_vp);
    139 	}
    140 	return 0;
    141 }
    142 
    143 int
    144 lfs_vop_bwrite(struct ubuf * bp)
    145 {
    146 	struct lfs *fs;
    147 
    148 	fs = bp->b_vp->v_fs;
    149 	if (!(bp->b_flags & B_DELWRI)) {
    150 		fs->lfs_avail -= btofsb(fs, bp->b_bcount);
    151 	}
    152 	bp->b_flags |= B_DELWRI | B_LOCKED;
    153 	reassignbuf(bp, bp->b_vp);
    154 	brelse(bp);
    155 	return 0;
    156 }
    157 
    158 /*
    159  * ufs_bmaparray does the bmap conversion, and if requested returns the
    160  * array of logical blocks which must be traversed to get to a block.
    161  * Each entry contains the offset into that block that gets you to the
    162  * next block and the disk address of the block (if it is assigned).
    163  */
    164 int
    165 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
    166 {
    167 	struct inode *ip;
    168 	struct ubuf *bp;
    169 	struct indir a[NIADDR + 1], *xap;
    170 	daddr_t daddr;
    171 	daddr_t metalbn;
    172 	int error, num;
    173 
    174 	ip = VTOI(vp);
    175 
    176 	if (bn >= 0 && bn < NDADDR) {
    177 		if (nump != NULL)
    178 			*nump = 0;
    179 		*bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
    180 		if (*bnp == 0)
    181 			*bnp = -1;
    182 		return (0);
    183 	}
    184 	xap = ap == NULL ? a : ap;
    185 	if (!nump)
    186 		nump = &num;
    187 	if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
    188 		return (error);
    189 
    190 	num = *nump;
    191 
    192 	/* Get disk address out of indirect block array */
    193 	daddr = ip->i_ffs1_ib[xap->in_off];
    194 
    195 	for (bp = NULL, ++xap; --num; ++xap) {
    196 		/* Exit the loop if there is no disk address assigned yet and
    197 		 * the indirect block isn't in the cache, or if we were
    198 		 * looking for an indirect block and we've found it. */
    199 
    200 		metalbn = xap->in_lbn;
    201 		if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
    202 			break;
    203 		/*
    204 		 * If we get here, we've either got the block in the cache
    205 		 * or we have a disk address for it, go fetch it.
    206 		 */
    207 		if (bp)
    208 			brelse(bp);
    209 
    210 		xap->in_exists = 1;
    211 		bp = getblk(vp, metalbn, fs->lfs_bsize);
    212 
    213 		if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
    214 			bp->b_blkno = fsbtodb(fs, daddr);
    215 			bp->b_flags |= B_READ;
    216 			VOP_STRATEGY(bp);
    217 		}
    218 		daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
    219 	}
    220 	if (bp)
    221 		brelse(bp);
    222 
    223 	daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
    224 	*bnp = daddr == 0 ? -1 : daddr;
    225 	return (0);
    226 }
    227 
    228 /*
    229  * Create an array of logical block number/offset pairs which represent the
    230  * path of indirect blocks required to access a data block.  The first "pair"
    231  * contains the logical block number of the appropriate single, double or
    232  * triple indirect block and the offset into the inode indirect block array.
    233  * Note, the logical block number of the inode single/double/triple indirect
    234  * block appears twice in the array, once with the offset into the i_ffs1_ib and
    235  * once with the offset into the page itself.
    236  */
    237 int
    238 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
    239 {
    240 	daddr_t metalbn, realbn;
    241 	int64_t blockcnt;
    242 	int lbc;
    243 	int i, numlevels, off;
    244 	int lognindir, indir;
    245 
    246 	metalbn = 0;    /* XXXGCC -Wuninitialized [sh3] */
    247 
    248 	if (nump)
    249 		*nump = 0;
    250 	numlevels = 0;
    251 	realbn = bn;
    252 	if (bn < 0)
    253 		bn = -bn;
    254 
    255 	lognindir = -1;
    256 	for (indir = fs->lfs_nindir; indir; indir >>= 1)
    257 		++lognindir;
    258 
    259 	/* Determine the number of levels of indirection.  After this loop is
    260 	 * done, blockcnt indicates the number of data blocks possible at the
    261 	 * given level of indirection, and NIADDR - i is the number of levels
    262 	 * of indirection needed to locate the requested block. */
    263 
    264 	bn -= NDADDR;
    265 	for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
    266 		if (i == 0)
    267 			return (EFBIG);
    268 
    269 		lbc += lognindir;
    270 		blockcnt = (int64_t) 1 << lbc;
    271 
    272 		if (bn < blockcnt)
    273 			break;
    274 	}
    275 
    276 	/* Calculate the address of the first meta-block. */
    277 	metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
    278 
    279 	/* At each iteration, off is the offset into the bap array which is an
    280 	 * array of disk addresses at the current level of indirection. The
    281 	 * logical block number and the offset in that block are stored into
    282 	 * the argument array. */
    283 	ap->in_lbn = metalbn;
    284 	ap->in_off = off = NIADDR - i;
    285 	ap->in_exists = 0;
    286 	ap++;
    287 	for (++numlevels; i <= NIADDR; i++) {
    288 		/* If searching for a meta-data block, quit when found. */
    289 		if (metalbn == realbn)
    290 			break;
    291 
    292 		lbc -= lognindir;
    293 		blockcnt = (int64_t) 1 << lbc;
    294 		off = (bn >> lbc) & (fs->lfs_nindir - 1);
    295 
    296 		++numlevels;
    297 		ap->in_lbn = metalbn;
    298 		ap->in_off = off;
    299 		ap->in_exists = 0;
    300 		++ap;
    301 
    302 		metalbn -= -1 + (off << lbc);
    303 	}
    304 	if (nump)
    305 		*nump = numlevels;
    306 	return (0);
    307 }
    308 
    309 int
    310 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
    311 {
    312 	return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
    313 }
    314 
    315 /* Search a block for a specific dinode. */
    316 struct ufs1_dinode *
    317 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
    318 {
    319 	struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
    320 	struct ufs1_dinode *ldip, *fin;
    321 
    322 	fin = dip + INOPB(fs);
    323 
    324 	/*
    325 	 * Read the inode block backwards, since later versions of the
    326 	 * inode will supercede earlier ones.  Though it is unlikely, it is
    327 	 * possible that the same inode will appear in the same inode block.
    328 	 */
    329 	for (ldip = fin - 1; ldip >= dip; --ldip)
    330 		if (ldip->di_inumber == ino)
    331 			return (ldip);
    332 	return NULL;
    333 }
    334 
    335 /*
    336  * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
    337  * XXX it currently loses atime information.
    338  */
    339 struct uvnode *
    340 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
    341 {
    342 	struct uvnode *vp;
    343 	struct inode *ip;
    344 	struct ufs1_dinode *dip;
    345 	struct ubuf *bp;
    346 	int i, hash;
    347 
    348 	vp = (struct uvnode *) malloc(sizeof(*vp));
    349 	if (vp == NULL)
    350 		err(1, NULL);
    351 	memset(vp, 0, sizeof(*vp));
    352 	vp->v_fd = fd;
    353 	vp->v_fs = fs;
    354 	vp->v_usecount = 0;
    355 	vp->v_strategy_op = lfs_vop_strategy;
    356 	vp->v_bwrite_op = lfs_vop_bwrite;
    357 	vp->v_bmap_op = lfs_vop_bmap;
    358 	LIST_INIT(&vp->v_cleanblkhd);
    359 	LIST_INIT(&vp->v_dirtyblkhd);
    360 
    361 	ip = (struct inode *) malloc(sizeof(*ip));
    362 	if (ip == NULL)
    363 		err(1, NULL);
    364 	memset(ip, 0, sizeof(*ip));
    365 
    366 	ip->i_din.ffs1_din = (struct ufs1_dinode *)
    367 	    malloc(sizeof(struct ufs1_dinode));
    368 	if (ip->i_din.ffs1_din == NULL)
    369 		err(1, NULL);
    370 	memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
    371 
    372 	/* Initialize the inode -- from lfs_vcreate. */
    373 	ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
    374 	if (ip->inode_ext.lfs == NULL)
    375 		err(1, NULL);
    376 	memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
    377 	vp->v_data = ip;
    378 	/* ip->i_vnode = vp; */
    379 	ip->i_number = ino;
    380 	ip->i_lockf = 0;
    381 	ip->i_diroff = 0;
    382 	ip->i_lfs_effnblks = 0;
    383 	ip->i_flag = 0;
    384 
    385 	/* Load inode block and find inode */
    386 	if (daddr > 0) {
    387 		bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
    388 		bp->b_flags |= B_AGE;
    389 		dip = lfs_ifind(fs, ino, bp);
    390 		if (dip == NULL) {
    391 			brelse(bp);
    392 			free(ip);
    393 			free(vp);
    394 			return NULL;
    395 		}
    396 		memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
    397 		brelse(bp);
    398 	}
    399 	ip->i_number = ino;
    400 	/* ip->i_devvp = fs->lfs_devvp; */
    401 	ip->i_lfs = fs;
    402 
    403 	ip->i_ffs_effnlink = ip->i_ffs1_nlink;
    404 	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
    405 	ip->i_lfs_osize = ip->i_ffs1_size;
    406 #if 0
    407 	if (fs->lfs_version > 1) {
    408 		ip->i_ffs1_atime = ts.tv_sec;
    409 		ip->i_ffs1_atimensec = ts.tv_nsec;
    410 	}
    411 #endif
    412 
    413 	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
    414 	for (i = 0; i < NDADDR; i++)
    415 		if (ip->i_ffs1_db[i] != 0)
    416 			ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
    417 
    418 	++nvnodes;
    419 	hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
    420 	LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
    421 	LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
    422 
    423 	return vp;
    424 }
    425 
    426 static struct uvnode *
    427 lfs_vget(void *vfs, ino_t ino)
    428 {
    429 	struct lfs *fs = (struct lfs *)vfs;
    430 	ufs_daddr_t daddr;
    431 	struct ubuf *bp;
    432 	IFILE *ifp;
    433 
    434 	LFS_IENTRY(ifp, fs, ino, bp);
    435 	daddr = ifp->if_daddr;
    436 	brelse(bp);
    437 	if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
    438 		return NULL;
    439 	return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
    440 }
    441 
    442 /* Check superblock magic number and checksum */
    443 static int
    444 check_sb(struct lfs *fs)
    445 {
    446 	u_int32_t checksum;
    447 
    448 	if (fs->lfs_magic != LFS_MAGIC) {
    449 		printf("Superblock magic number (0x%lx) does not match "
    450 		       "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
    451 		       (unsigned long) LFS_MAGIC);
    452 		return 1;
    453 	}
    454 	/* checksum */
    455 	checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
    456 	if (fs->lfs_cksum != checksum) {
    457 		printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
    458 		    (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
    459 		return 1;
    460 	}
    461 	return 0;
    462 }
    463 
    464 /* Initialize LFS library; load superblocks and choose which to use. */
    465 struct lfs *
    466 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
    467 {
    468 	struct uvnode *devvp;
    469 	struct ubuf *bp;
    470 	int tryalt;
    471 	struct lfs *fs, *altfs;
    472 	int error;
    473 
    474 	vfs_init();
    475 
    476 	devvp = (struct uvnode *) malloc(sizeof(*devvp));
    477 	if (devvp == NULL)
    478 		err(1, NULL);
    479 	memset(devvp, 0, sizeof(*devvp));
    480 	devvp->v_fs = NULL;
    481 	devvp->v_fd = devfd;
    482 	devvp->v_strategy_op = raw_vop_strategy;
    483 	devvp->v_bwrite_op = raw_vop_bwrite;
    484 	devvp->v_bmap_op = raw_vop_bmap;
    485 	LIST_INIT(&devvp->v_cleanblkhd);
    486 	LIST_INIT(&devvp->v_dirtyblkhd);
    487 
    488 	tryalt = 0;
    489 	if (dummy_read) {
    490 		if (sblkno == 0)
    491 			sblkno = btodb(LFS_LABELPAD);
    492 		fs = (struct lfs *) malloc(sizeof(*fs));
    493 		if (fs == NULL)
    494 			err(1, NULL);
    495 		memset(fs, 0, sizeof(*fs));
    496 		fs->lfs_devvp = devvp;
    497 	} else {
    498 		if (sblkno == 0) {
    499 			sblkno = btodb(LFS_LABELPAD);
    500 			tryalt = 1;
    501 		} else if (debug) {
    502 			printf("No -b flag given, not attempting to verify checkpoint\n");
    503 		}
    504 		error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
    505 		fs = (struct lfs *) malloc(sizeof(*fs));
    506 		if (fs == NULL)
    507 			err(1, NULL);
    508 		memset(fs, 0, sizeof(*fs));
    509 		fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
    510 		fs->lfs_devvp = devvp;
    511 		bp->b_flags |= B_INVAL;
    512 		brelse(bp);
    513 
    514 		if (tryalt) {
    515 			error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
    516 		    	LFS_SBPAD, NOCRED, &bp);
    517 			altfs = (struct lfs *) malloc(sizeof(*altfs));
    518 			if (altfs == NULL)
    519 				err(1, NULL);
    520 			memset(altfs, 0, sizeof(*altfs));
    521 			altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
    522 			altfs->lfs_devvp = devvp;
    523 			bp->b_flags |= B_INVAL;
    524 			brelse(bp);
    525 
    526 			if (check_sb(fs) || fs->lfs_idaddr <= 0) {
    527 				if (debug)
    528 					printf("Primary superblock is no good, using first alternate\n");
    529 				free(fs);
    530 				fs = altfs;
    531 			} else {
    532 				/* If both superblocks check out, try verification */
    533 				if (check_sb(altfs)) {
    534 					if (debug)
    535 						printf("First alternate superblock is no good, using primary\n");
    536 					free(altfs);
    537 				} else {
    538 					if (lfs_verify(fs, altfs, devvp, debug) == fs) {
    539 						free(altfs);
    540 					} else {
    541 						free(fs);
    542 						fs = altfs;
    543 					}
    544 				}
    545 			}
    546 		}
    547 		if (check_sb(fs)) {
    548 			free(fs);
    549 			return NULL;
    550 		}
    551 	}
    552 
    553 	/* Compatibility */
    554 	if (fs->lfs_version < 2) {
    555 		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
    556 		fs->lfs_ibsize = fs->lfs_bsize;
    557 		fs->lfs_start = fs->lfs_sboffs[0];
    558 		fs->lfs_tstamp = fs->lfs_otstamp;
    559 		fs->lfs_fsbtodb = 0;
    560 	}
    561 
    562 	if (!dummy_read) {
    563 		fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
    564 		if (fs->lfs_suflags == NULL)
    565 			err(1, NULL);
    566 		fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
    567 		if (fs->lfs_suflags[0] == NULL)
    568 			err(1, NULL);
    569 		fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
    570 		if (fs->lfs_suflags[1] == NULL)
    571 			err(1, NULL);
    572 	}
    573 
    574 	if (idaddr == 0)
    575 		idaddr = fs->lfs_idaddr;
    576 	else
    577 		fs->lfs_idaddr = idaddr;
    578 	/* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
    579 	fs->lfs_ivnode = lfs_raw_vget(fs,
    580 		(dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
    581 		idaddr);
    582 	if (fs->lfs_ivnode == NULL)
    583 		return NULL;
    584 
    585 	register_vget((void *)fs, lfs_vget);
    586 
    587 	return fs;
    588 }
    589 
    590 /*
    591  * Check partial segment validity between fs->lfs_offset and the given goal.
    592  *
    593  * If goal == 0, just keep on going until the segments stop making sense,
    594  * and return the address of the last valid partial segment.
    595  *
    596  * If goal != 0, return the address of the first partial segment that failed,
    597  * or "goal" if we reached it without failure (the partial segment *at* goal
    598  * need not be valid).
    599  */
    600 ufs_daddr_t
    601 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
    602 {
    603 	ufs_daddr_t daddr, odaddr;
    604 	SEGSUM *sp;
    605 	int i, bc, hitclean;
    606 	struct ubuf *bp;
    607 	ufs_daddr_t nodirop_daddr;
    608 	u_int64_t serial;
    609 
    610 	bc = 0;
    611 	hitclean = 0;
    612 	odaddr = -1;
    613 	daddr = osb->lfs_offset;
    614 	nodirop_daddr = daddr;
    615 	serial = osb->lfs_serial;
    616 	while (daddr != goal) {
    617 		/*
    618 		 * Don't mistakenly read a superblock, if there is one here.
    619 		 */
    620 		if (sntod(osb, dtosn(osb, daddr)) == daddr) {
    621 			if (daddr == osb->lfs_start)
    622 				daddr += btofsb(osb, LFS_LABELPAD);
    623 			for (i = 0; i < LFS_MAXNUMSB; i++) {
    624 				if (osb->lfs_sboffs[i] < daddr)
    625 					break;
    626 				if (osb->lfs_sboffs[i] == daddr)
    627 					daddr += btofsb(osb, LFS_SBPAD);
    628 			}
    629 		}
    630 
    631 		/* Read in summary block */
    632 		bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
    633 		sp = (SEGSUM *)bp->b_data;
    634 
    635 		/*
    636 		 * Check for a valid segment summary belonging to our fs.
    637 		 */
    638 		if (sp->ss_magic != SS_MAGIC ||
    639 		    sp->ss_ident != osb->lfs_ident ||
    640 		    sp->ss_serial < serial ||	/* XXX strengthen this */
    641 		    sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
    642 			sizeof(sp->ss_sumsum))) {
    643 			brelse(bp);
    644 			if (debug) {
    645 				if (sp->ss_magic != SS_MAGIC)
    646 					pwarn("pseg at 0x%x: "
    647 					      "wrong magic number\n",
    648 					      (int)daddr);
    649 				else if (sp->ss_ident != osb->lfs_ident)
    650 					pwarn("pseg at 0x%x: "
    651 					      "expected ident %llx, got %llx\n",
    652 					      (int)daddr,
    653 					      (long long)sp->ss_ident,
    654 					      (long long)osb->lfs_ident);
    655 				else if (sp->ss_serial >= serial)
    656 					pwarn("pseg at 0x%x: "
    657 					      "serial %d < %d\n", (int)daddr,
    658 					      (int)sp->ss_serial, (int)serial);
    659 				else
    660 					pwarn("pseg at 0x%x: "
    661 					      "summary checksum wrong\n",
    662 					      (int)daddr);
    663 			}
    664 			break;
    665 		}
    666 		if (debug && sp->ss_serial != serial)
    667 			pwarn("warning, serial=%d ss_serial=%d\n",
    668 				(int)serial, (int)sp->ss_serial);
    669 		++serial;
    670 		bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
    671 		if (bc == 0) {
    672 			brelse(bp);
    673 			break;
    674 		}
    675 		if (debug)
    676 			pwarn("summary good: 0x%x/%d\n", (int)daddr,
    677 			      (int)sp->ss_serial);
    678 		assert (bc > 0);
    679 		odaddr = daddr;
    680 		daddr += btofsb(osb, osb->lfs_sumsize + bc);
    681 		if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
    682 		    dtosn(osb, daddr) != dtosn(osb, daddr +
    683 			btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
    684 			daddr = sp->ss_next;
    685 		}
    686 
    687 		/*
    688 		 * Check for the beginning and ending of a sequence of
    689 		 * dirops.  Writes from the cleaner never involve new
    690 		 * information, and are always checkpoints; so don't try
    691 		 * to roll forward through them.  Likewise, psegs written
    692 		 * by a previous roll-forward attempt are not interesting.
    693 		 */
    694 		if (sp->ss_flags & (SS_CLEAN | SS_RFW))
    695 			hitclean = 1;
    696 		if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
    697 			nodirop_daddr = daddr;
    698 
    699 		brelse(bp);
    700 	}
    701 
    702 	if (goal == 0)
    703 		return nodirop_daddr;
    704 	else
    705 		return daddr;
    706 }
    707 
    708 /* Use try_verify to check whether the newer superblock is valid. */
    709 struct lfs *
    710 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
    711 {
    712 	ufs_daddr_t daddr;
    713 	struct lfs *osb, *nsb;
    714 
    715 	/*
    716 	 * Verify the checkpoint of the newer superblock,
    717 	 * if the timestamp/serial number of the two superblocks is
    718 	 * different.
    719 	 */
    720 
    721 	osb = NULL;
    722 	if (debug)
    723 		pwarn("sb0 %lld, sb1 %lld",
    724 		      (long long) sb0->lfs_serial,
    725 		      (long long) sb1->lfs_serial);
    726 
    727 	if ((sb0->lfs_version == 1 &&
    728 		sb0->lfs_otstamp != sb1->lfs_otstamp) ||
    729 	    (sb0->lfs_version > 1 &&
    730 		sb0->lfs_serial != sb1->lfs_serial)) {
    731 		if (sb0->lfs_version == 1) {
    732 			if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
    733 				osb = sb1;
    734 				nsb = sb0;
    735 			} else {
    736 				osb = sb0;
    737 				nsb = sb1;
    738 			}
    739 		} else {
    740 			if (sb0->lfs_serial > sb1->lfs_serial) {
    741 				osb = sb1;
    742 				nsb = sb0;
    743 			} else {
    744 				osb = sb0;
    745 				nsb = sb1;
    746 			}
    747 		}
    748 		if (debug) {
    749 			printf("Attempting to verify newer checkpoint...");
    750 			fflush(stdout);
    751 		}
    752 		daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
    753 
    754 		if (debug)
    755 			printf("done.\n");
    756 		if (daddr == nsb->lfs_offset) {
    757 			pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
    758 			    (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
    759 			sbdirty();
    760 		} else {
    761 			pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
    762 		}
    763 		return (daddr == nsb->lfs_offset ? nsb : osb);
    764 	}
    765 	/* Nothing to check */
    766 	return osb;
    767 }
    768 
    769 /* Verify a partial-segment summary; return the number of bytes on disk. */
    770 int
    771 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
    772 	      struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
    773 {
    774 	FINFO *fp;
    775 	int bc;			/* Bytes in partial segment */
    776 	int nblocks;
    777 	ufs_daddr_t seg_addr, daddr;
    778 	ufs_daddr_t *dp, *idp;
    779 	struct ubuf *bp;
    780 	int i, j, k, datac, len;
    781 	long sn;
    782 	u_int32_t *datap;
    783 	u_int32_t ccksum;
    784 
    785 	sn = dtosn(fs, pseg_addr);
    786 	seg_addr = sntod(fs, sn);
    787 
    788 	/* We've already checked the sumsum, just do the data bounds and sum */
    789 
    790 	/* Count the blocks. */
    791 	nblocks = howmany(sp->ss_ninos, INOPB(fs));
    792 	bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
    793 	assert(bc >= 0);
    794 
    795 	fp = (FINFO *) (sp + 1);
    796 	for (i = 0; i < sp->ss_nfinfo; i++) {
    797 		nblocks += fp->fi_nblocks;
    798 		bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
    799 					   << fs->lfs_bshift);
    800 		assert(bc >= 0);
    801 		fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
    802 		if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
    803 			return 0;
    804 	}
    805 	datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
    806 	if (datap == NULL)
    807 		err(1, NULL);
    808 	datac = 0;
    809 
    810 	dp = (ufs_daddr_t *) sp;
    811 	dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
    812 	dp--;
    813 
    814 	idp = dp;
    815 	daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
    816 	fp = (FINFO *) (sp + 1);
    817 	for (i = 0, j = 0;
    818 	     i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
    819 		if (i >= sp->ss_nfinfo && *idp != daddr) {
    820 			pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
    821 			      ": found %d, wanted %d\n",
    822 			      pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
    823 			if (debug)
    824 				pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
    825 				      daddr);
    826 			break;
    827 		}
    828 		while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
    829 			bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
    830 			datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
    831 			brelse(bp);
    832 
    833 			++j;
    834 			daddr += btofsb(fs, fs->lfs_ibsize);
    835 			--idp;
    836 		}
    837 		if (i < sp->ss_nfinfo) {
    838 			if (func)
    839 				func(daddr, fp);
    840 			for (k = 0; k < fp->fi_nblocks; k++) {
    841 				len = (k == fp->fi_nblocks - 1 ?
    842 				       fp->fi_lastlength
    843 				       : fs->lfs_bsize);
    844 				bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
    845 				datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
    846 				brelse(bp);
    847 				daddr += btofsb(fs, len);
    848 			}
    849 			fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
    850 		}
    851 	}
    852 
    853 	if (datac != nblocks) {
    854 		pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
    855 		    (long long) pseg_addr, nblocks, datac);
    856 	}
    857 	ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
    858 	/* Check the data checksum */
    859 	if (ccksum != sp->ss_datasum) {
    860 		pwarn("Partial segment at 0x%" PRIx32 " data checksum"
    861 		      " mismatch: given 0x%x, computed 0x%x\n",
    862 		      pseg_addr, sp->ss_datasum, ccksum);
    863 		free(datap);
    864 		return 0;
    865 	}
    866 	free(datap);
    867 	assert(bc >= 0);
    868 	return bc;
    869 }
    870 
    871 /* print message and exit */
    872 void
    873 my_vpanic(int fatal, const char *fmt, va_list ap)
    874 {
    875         (void) vprintf(fmt, ap);
    876 	exit(8);
    877 }
    878 
    879 void
    880 call_panic(const char *fmt, ...)
    881 {
    882 	va_list ap;
    883 
    884 	va_start(ap, fmt);
    885         panic_func(1, fmt, ap);
    886 	va_end(ap);
    887 }
    888 
    889 /* Allocate a new inode. */
    890 struct uvnode *
    891 lfs_valloc(struct lfs *fs, ino_t ino)
    892 {
    893 	struct ubuf *bp, *cbp;
    894 	struct ifile *ifp;
    895 	ino_t new_ino;
    896 	int error;
    897 	int new_gen;
    898 	CLEANERINFO *cip;
    899 
    900 	/* Get the head of the freelist. */
    901 	LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
    902 
    903 	/*
    904 	 * Remove the inode from the free list and write the new start
    905 	 * of the free list into the superblock.
    906 	 */
    907 	LFS_IENTRY(ifp, fs, new_ino, bp);
    908 	if (ifp->if_daddr != LFS_UNUSED_DADDR)
    909 		panic("lfs_valloc: inuse inode %d on the free list", new_ino);
    910 	LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
    911 
    912 	new_gen = ifp->if_version; /* version was updated by vfree */
    913 	brelse(bp);
    914 
    915 	/* Extend IFILE so that the next lfs_valloc will succeed. */
    916 	if (fs->lfs_freehd == LFS_UNUSED_INUM) {
    917 		if ((error = extend_ifile(fs)) != 0) {
    918 			LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
    919 			return NULL;
    920 		}
    921 	}
    922 
    923 	/* Set superblock modified bit and increment file count. */
    924         sbdirty();
    925 	++fs->lfs_nfiles;
    926 
    927         return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
    928 }
    929 
    930 #ifdef IN_FSCK_LFS
    931 void reset_maxino(ino_t);
    932 #endif
    933 
    934 /*
    935  * Add a new block to the Ifile, to accommodate future file creations.
    936  */
    937 int
    938 extend_ifile(struct lfs *fs)
    939 {
    940 	struct uvnode *vp;
    941 	struct inode *ip;
    942 	IFILE *ifp;
    943 	IFILE_V1 *ifp_v1;
    944 	struct ubuf *bp, *cbp;
    945 	daddr_t i, blkno, max;
    946 	ino_t oldlast;
    947 	CLEANERINFO *cip;
    948 
    949 	vp = fs->lfs_ivnode;
    950 	ip = VTOI(vp);
    951 	blkno = lblkno(fs, ip->i_ffs1_size);
    952 
    953 	lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
    954 	ip->i_ffs1_size += fs->lfs_bsize;
    955 	ip->i_flag |= IN_MODIFIED;
    956 
    957 	i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
    958 		fs->lfs_ifpb;
    959 	LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
    960 	LFS_PUT_HEADFREE(fs, cip, cbp, i);
    961 	max = i + fs->lfs_ifpb;
    962 	fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
    963 
    964 	if (fs->lfs_version == 1) {
    965 		for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
    966 			ifp_v1->if_version = 1;
    967 			ifp_v1->if_daddr = LFS_UNUSED_DADDR;
    968 			ifp_v1->if_nextfree = ++i;
    969 		}
    970 		ifp_v1--;
    971 		ifp_v1->if_nextfree = oldlast;
    972 	} else {
    973 		for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
    974 			ifp->if_version = 1;
    975 			ifp->if_daddr = LFS_UNUSED_DADDR;
    976 			ifp->if_nextfree = ++i;
    977 		}
    978 		ifp--;
    979 		ifp->if_nextfree = oldlast;
    980 	}
    981 	LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
    982 
    983 	LFS_BWRITE_LOG(bp);
    984 
    985 #ifdef IN_FSCK_LFS
    986 	reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
    987 		     fs->lfs_cleansz) * fs->lfs_ifpb);
    988 #endif
    989 	return 0;
    990 }
    991 
    992 /*
    993  * Allocate a block, and to inode and filesystem block accounting for it
    994  * and for any indirect blocks the may need to be created in order for
    995  * this block to be created.
    996  *
    997  * Blocks which have never been accounted for (i.e., which "do not exist")
    998  * have disk address 0, which is translated by ufs_bmap to the special value
    999  * UNASSIGNED == -1, as in the historical UFS.
   1000  *
   1001  * Blocks which have been accounted for but which have not yet been written
   1002  * to disk are given the new special disk address UNWRITTEN == -2, so that
   1003  * they can be differentiated from completely new blocks.
   1004  */
   1005 int
   1006 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
   1007 {
   1008 	int offset;
   1009 	daddr_t daddr, idaddr;
   1010 	struct ubuf *ibp, *bp;
   1011 	struct inode *ip;
   1012 	struct lfs *fs;
   1013 	struct indir indirs[NIADDR+2], *idp;
   1014 	daddr_t	lbn, lastblock;
   1015 	int bb, bcount;
   1016 	int error, frags, i, nsize, osize, num;
   1017 
   1018 	ip = VTOI(vp);
   1019 	fs = ip->i_lfs;
   1020 	offset = blkoff(fs, startoffset);
   1021 	lbn = lblkno(fs, startoffset);
   1022 
   1023 	/*
   1024 	 * Three cases: it's a block beyond the end of file, it's a block in
   1025 	 * the file that may or may not have been assigned a disk address or
   1026 	 * we're writing an entire block.
   1027 	 *
   1028 	 * Note, if the daddr is UNWRITTEN, the block already exists in
   1029 	 * the cache (it was read or written earlier).	If so, make sure
   1030 	 * we don't count it as a new block or zero out its contents. If
   1031 	 * it did not, make sure we allocate any necessary indirect
   1032 	 * blocks.
   1033 	 *
   1034 	 * If we are writing a block beyond the end of the file, we need to
   1035 	 * check if the old last block was a fragment.	If it was, we need
   1036 	 * to rewrite it.
   1037 	 */
   1038 
   1039 	if (bpp)
   1040 		*bpp = NULL;
   1041 
   1042 	/* Check for block beyond end of file and fragment extension needed. */
   1043 	lastblock = lblkno(fs, ip->i_ffs1_size);
   1044 	if (lastblock < NDADDR && lastblock < lbn) {
   1045 		osize = blksize(fs, ip, lastblock);
   1046 		if (osize < fs->lfs_bsize && osize > 0) {
   1047 			if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
   1048 						    lastblock,
   1049 						    (bpp ? &bp : NULL))))
   1050 				return (error);
   1051 			ip->i_ffs1_size = ip->i_ffs1_size =
   1052 			    (lastblock + 1) * fs->lfs_bsize;
   1053 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
   1054 			if (bpp)
   1055 				(void) VOP_BWRITE(bp);
   1056 		}
   1057 	}
   1058 
   1059 	/*
   1060 	 * If the block we are writing is a direct block, it's the last
   1061 	 * block in the file, and offset + iosize is less than a full
   1062 	 * block, we can write one or more fragments.  There are two cases:
   1063 	 * the block is brand new and we should allocate it the correct
   1064 	 * size or it already exists and contains some fragments and
   1065 	 * may need to extend it.
   1066 	 */
   1067 	if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
   1068 		osize = blksize(fs, ip, lbn);
   1069 		nsize = fragroundup(fs, offset + iosize);
   1070 		if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
   1071 			/* Brand new block or fragment */
   1072 			frags = numfrags(fs, nsize);
   1073 			bb = fragstofsb(fs, frags);
   1074 			if (bpp) {
   1075 				*bpp = bp = getblk(vp, lbn, nsize);
   1076 				bp->b_blkno = UNWRITTEN;
   1077 			}
   1078 			ip->i_lfs_effnblks += bb;
   1079 			fs->lfs_bfree -= bb;
   1080 			ip->i_ffs1_db[lbn] = UNWRITTEN;
   1081 		} else {
   1082 			if (nsize <= osize) {
   1083 				/* No need to extend */
   1084 				if (bpp && (error = bread(vp, lbn, osize, NOCRED, &bp)))
   1085 					return error;
   1086 			} else {
   1087 				/* Extend existing block */
   1088 				if ((error =
   1089 				     lfs_fragextend(vp, osize, nsize, lbn,
   1090 						    (bpp ? &bp : NULL))))
   1091 					return error;
   1092 			}
   1093 			if (bpp)
   1094 				*bpp = bp;
   1095 		}
   1096 		return 0;
   1097 	}
   1098 
   1099 	error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
   1100 	if (error)
   1101 		return (error);
   1102 
   1103 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
   1104 
   1105 	/*
   1106 	 * Do byte accounting all at once, so we can gracefully fail *before*
   1107 	 * we start assigning blocks.
   1108 	 */
   1109         bb = fsbtodb(fs, 1); /* bb = VFSTOUFS(vp->v_mount)->um_seqinc; */
   1110 	bcount = 0;
   1111 	if (daddr == UNASSIGNED) {
   1112 		bcount = bb;
   1113 	}
   1114 	for (i = 1; i < num; ++i) {
   1115 		if (!indirs[i].in_exists) {
   1116 			bcount += bb;
   1117 		}
   1118 	}
   1119 	fs->lfs_bfree -= bcount;
   1120 	ip->i_lfs_effnblks += bcount;
   1121 
   1122 	if (daddr == UNASSIGNED) {
   1123 		if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
   1124 			ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
   1125 		}
   1126 
   1127 		/*
   1128 		 * Create new indirect blocks if necessary
   1129 		 */
   1130 		if (num > 1) {
   1131 			idaddr = ip->i_ffs1_ib[indirs[0].in_off];
   1132 			for (i = 1; i < num; ++i) {
   1133 				ibp = getblk(vp, indirs[i].in_lbn,
   1134 				    fs->lfs_bsize);
   1135 				if (!indirs[i].in_exists) {
   1136 					memset(ibp->b_data, 0, ibp->b_bufsize);
   1137 					ibp->b_blkno = UNWRITTEN;
   1138 				} else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
   1139 					ibp->b_blkno = fsbtodb(fs, idaddr);
   1140 					ibp->b_flags |= B_READ;
   1141 					VOP_STRATEGY(ibp);
   1142 				}
   1143 				/*
   1144 				 * This block exists, but the next one may not.
   1145 				 * If that is the case mark it UNWRITTEN to
   1146                                  * keep the accounting straight.
   1147 				 */
   1148 				/* XXX ondisk32 */
   1149 				if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
   1150 					((int32_t *)ibp->b_data)[indirs[i].in_off] =
   1151 						UNWRITTEN;
   1152 				/* XXX ondisk32 */
   1153 				idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
   1154 				if ((error = VOP_BWRITE(ibp)))
   1155 					return error;
   1156 			}
   1157 		}
   1158 	}
   1159 
   1160 
   1161 	/*
   1162 	 * Get the existing block from the cache, if requested.
   1163 	 */
   1164 	frags = fsbtofrags(fs, bb);
   1165 	if (bpp)
   1166 		*bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
   1167 
   1168 	/*
   1169 	 * The block we are writing may be a brand new block
   1170 	 * in which case we need to do accounting.
   1171 	 *
   1172 	 * We can tell a truly new block because ufs_bmaparray will say
   1173 	 * it is UNASSIGNED.  Once we allocate it we will assign it the
   1174 	 * disk address UNWRITTEN.
   1175 	 */
   1176 	if (daddr == UNASSIGNED) {
   1177 		if (bpp) {
   1178 			/* Note the new address */
   1179 			bp->b_blkno = UNWRITTEN;
   1180 		}
   1181 
   1182 		switch (num) {
   1183 		    case 0:
   1184 			ip->i_ffs1_db[lbn] = UNWRITTEN;
   1185 			break;
   1186 		    case 1:
   1187 			ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
   1188 			break;
   1189 		    default:
   1190 			idp = &indirs[num - 1];
   1191 			if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
   1192 				  &ibp))
   1193 				panic("lfs_balloc: bread bno %lld",
   1194 				    (long long)idp->in_lbn);
   1195 			/* XXX ondisk32 */
   1196 			((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
   1197 			VOP_BWRITE(ibp);
   1198 		}
   1199 	} else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
   1200 		/*
   1201 		 * Not a brand new block, also not in the cache;
   1202 		 * read it in from disk.
   1203 		 */
   1204 		if (iosize == fs->lfs_bsize)
   1205 			/* Optimization: I/O is unnecessary. */
   1206 			bp->b_blkno = daddr;
   1207 		else {
   1208 			/*
   1209 			 * We need to read the block to preserve the
   1210 			 * existing bytes.
   1211 			 */
   1212 			bp->b_blkno = daddr;
   1213 			bp->b_flags |= B_READ;
   1214 			VOP_STRATEGY(bp);
   1215 			return 0;
   1216 		}
   1217 	}
   1218 
   1219 	return (0);
   1220 }
   1221 
   1222 int
   1223 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
   1224                struct ubuf **bpp)
   1225 {
   1226 	struct inode *ip;
   1227 	struct lfs *fs;
   1228 	long bb;
   1229 	int error;
   1230 	size_t obufsize;
   1231 
   1232 	ip = VTOI(vp);
   1233 	fs = ip->i_lfs;
   1234 	bb = (long)fragstofsb(fs, numfrags(fs, nsize - osize));
   1235 	error = 0;
   1236 
   1237 	/*
   1238 	 * If we are not asked to actually return the block, all we need
   1239 	 * to do is allocate space for it.  UBC will handle dirtying the
   1240 	 * appropriate things and making sure it all goes to disk.
   1241 	 * Don't bother to read in that case.
   1242 	 */
   1243 	if (bpp && (error = bread(vp, lbn, osize, NOCRED, bpp))) {
   1244 		brelse(*bpp);
   1245 		goto out;
   1246 	}
   1247 
   1248 	fs->lfs_bfree -= bb;
   1249 	ip->i_lfs_effnblks += bb;
   1250 	ip->i_flag |= IN_CHANGE | IN_UPDATE;
   1251 
   1252 	if (bpp) {
   1253 		obufsize = (*bpp)->b_bufsize;
   1254 		(*bpp)->b_data = realloc((*bpp)->b_data, nsize);
   1255 		bzero((char *)((*bpp)->b_data) + osize, (u_int)(nsize - osize));
   1256 	}
   1257 
   1258     out:
   1259 	return (error);
   1260 }
   1261