lfs.c revision 1.25 1 /* $NetBSD: lfs.c,v 1.25 2006/09/01 19:52:48 perseant Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs_user.h"
98 #include "segwrite.h"
99
100 #define panic call_panic
101
102 extern u_int32_t cksum(void *, size_t);
103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
104 extern void pwarn(const char *, ...);
105
106 extern struct uvnodelst vnodelist;
107 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
108 extern int nvnodes;
109
110 static int
111 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
112
113 int fsdirty = 0;
114 void (*panic_func)(int, const char *, va_list) = my_vpanic;
115
116 /*
117 * LFS buffer and uvnode operations
118 */
119
120 int
121 lfs_vop_strategy(struct ubuf * bp)
122 {
123 int count;
124
125 if (bp->b_flags & B_READ) {
126 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
127 dbtob(bp->b_blkno));
128 if (count == bp->b_bcount)
129 bp->b_flags |= B_DONE;
130 } else {
131 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
132 dbtob(bp->b_blkno));
133 if (count == 0) {
134 perror("pwrite");
135 return -1;
136 }
137 bp->b_flags &= ~B_DELWRI;
138 reassignbuf(bp, bp->b_vp);
139 }
140 return 0;
141 }
142
143 int
144 lfs_vop_bwrite(struct ubuf * bp)
145 {
146 struct lfs *fs;
147
148 fs = bp->b_vp->v_fs;
149 if (!(bp->b_flags & B_DELWRI)) {
150 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
151 }
152 bp->b_flags |= B_DELWRI | B_LOCKED;
153 reassignbuf(bp, bp->b_vp);
154 brelse(bp);
155 return 0;
156 }
157
158 /*
159 * ufs_bmaparray does the bmap conversion, and if requested returns the
160 * array of logical blocks which must be traversed to get to a block.
161 * Each entry contains the offset into that block that gets you to the
162 * next block and the disk address of the block (if it is assigned).
163 */
164 int
165 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
166 {
167 struct inode *ip;
168 struct ubuf *bp;
169 struct indir a[NIADDR + 1], *xap;
170 daddr_t daddr;
171 daddr_t metalbn;
172 int error, num;
173
174 ip = VTOI(vp);
175
176 if (bn >= 0 && bn < NDADDR) {
177 if (nump != NULL)
178 *nump = 0;
179 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
180 if (*bnp == 0)
181 *bnp = -1;
182 return (0);
183 }
184 xap = ap == NULL ? a : ap;
185 if (!nump)
186 nump = #
187 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
188 return (error);
189
190 num = *nump;
191
192 /* Get disk address out of indirect block array */
193 daddr = ip->i_ffs1_ib[xap->in_off];
194
195 for (bp = NULL, ++xap; --num; ++xap) {
196 /* Exit the loop if there is no disk address assigned yet and
197 * the indirect block isn't in the cache, or if we were
198 * looking for an indirect block and we've found it. */
199
200 metalbn = xap->in_lbn;
201 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
202 break;
203 /*
204 * If we get here, we've either got the block in the cache
205 * or we have a disk address for it, go fetch it.
206 */
207 if (bp)
208 brelse(bp);
209
210 xap->in_exists = 1;
211 bp = getblk(vp, metalbn, fs->lfs_bsize);
212
213 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
214 bp->b_blkno = fsbtodb(fs, daddr);
215 bp->b_flags |= B_READ;
216 VOP_STRATEGY(bp);
217 }
218 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
219 }
220 if (bp)
221 brelse(bp);
222
223 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
224 *bnp = daddr == 0 ? -1 : daddr;
225 return (0);
226 }
227
228 /*
229 * Create an array of logical block number/offset pairs which represent the
230 * path of indirect blocks required to access a data block. The first "pair"
231 * contains the logical block number of the appropriate single, double or
232 * triple indirect block and the offset into the inode indirect block array.
233 * Note, the logical block number of the inode single/double/triple indirect
234 * block appears twice in the array, once with the offset into the i_ffs1_ib and
235 * once with the offset into the page itself.
236 */
237 int
238 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
239 {
240 daddr_t metalbn, realbn;
241 int64_t blockcnt;
242 int lbc;
243 int i, numlevels, off;
244 int lognindir, indir;
245
246 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
247
248 if (nump)
249 *nump = 0;
250 numlevels = 0;
251 realbn = bn;
252 if (bn < 0)
253 bn = -bn;
254
255 lognindir = -1;
256 for (indir = fs->lfs_nindir; indir; indir >>= 1)
257 ++lognindir;
258
259 /* Determine the number of levels of indirection. After this loop is
260 * done, blockcnt indicates the number of data blocks possible at the
261 * given level of indirection, and NIADDR - i is the number of levels
262 * of indirection needed to locate the requested block. */
263
264 bn -= NDADDR;
265 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
266 if (i == 0)
267 return (EFBIG);
268
269 lbc += lognindir;
270 blockcnt = (int64_t) 1 << lbc;
271
272 if (bn < blockcnt)
273 break;
274 }
275
276 /* Calculate the address of the first meta-block. */
277 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
278
279 /* At each iteration, off is the offset into the bap array which is an
280 * array of disk addresses at the current level of indirection. The
281 * logical block number and the offset in that block are stored into
282 * the argument array. */
283 ap->in_lbn = metalbn;
284 ap->in_off = off = NIADDR - i;
285 ap->in_exists = 0;
286 ap++;
287 for (++numlevels; i <= NIADDR; i++) {
288 /* If searching for a meta-data block, quit when found. */
289 if (metalbn == realbn)
290 break;
291
292 lbc -= lognindir;
293 blockcnt = (int64_t) 1 << lbc;
294 off = (bn >> lbc) & (fs->lfs_nindir - 1);
295
296 ++numlevels;
297 ap->in_lbn = metalbn;
298 ap->in_off = off;
299 ap->in_exists = 0;
300 ++ap;
301
302 metalbn -= -1 + (off << lbc);
303 }
304 if (nump)
305 *nump = numlevels;
306 return (0);
307 }
308
309 int
310 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
311 {
312 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
313 }
314
315 /* Search a block for a specific dinode. */
316 struct ufs1_dinode *
317 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
318 {
319 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
320 struct ufs1_dinode *ldip, *fin;
321
322 fin = dip + INOPB(fs);
323
324 /*
325 * Read the inode block backwards, since later versions of the
326 * inode will supercede earlier ones. Though it is unlikely, it is
327 * possible that the same inode will appear in the same inode block.
328 */
329 for (ldip = fin - 1; ldip >= dip; --ldip)
330 if (ldip->di_inumber == ino)
331 return (ldip);
332 return NULL;
333 }
334
335 /*
336 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
337 * XXX it currently loses atime information.
338 */
339 struct uvnode *
340 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
341 {
342 struct uvnode *vp;
343 struct inode *ip;
344 struct ufs1_dinode *dip;
345 struct ubuf *bp;
346 int i, hash;
347
348 vp = (struct uvnode *) malloc(sizeof(*vp));
349 if (vp == NULL)
350 err(1, NULL);
351 memset(vp, 0, sizeof(*vp));
352 vp->v_fd = fd;
353 vp->v_fs = fs;
354 vp->v_usecount = 0;
355 vp->v_strategy_op = lfs_vop_strategy;
356 vp->v_bwrite_op = lfs_vop_bwrite;
357 vp->v_bmap_op = lfs_vop_bmap;
358 LIST_INIT(&vp->v_cleanblkhd);
359 LIST_INIT(&vp->v_dirtyblkhd);
360
361 ip = (struct inode *) malloc(sizeof(*ip));
362 if (ip == NULL)
363 err(1, NULL);
364 memset(ip, 0, sizeof(*ip));
365
366 ip->i_din.ffs1_din = (struct ufs1_dinode *)
367 malloc(sizeof(struct ufs1_dinode));
368 if (ip->i_din.ffs1_din == NULL)
369 err(1, NULL);
370 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
371
372 /* Initialize the inode -- from lfs_vcreate. */
373 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
374 if (ip->inode_ext.lfs == NULL)
375 err(1, NULL);
376 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
377 vp->v_data = ip;
378 /* ip->i_vnode = vp; */
379 ip->i_number = ino;
380 ip->i_lockf = 0;
381 ip->i_diroff = 0;
382 ip->i_lfs_effnblks = 0;
383 ip->i_flag = 0;
384
385 /* Load inode block and find inode */
386 if (daddr > 0) {
387 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
388 bp->b_flags |= B_AGE;
389 dip = lfs_ifind(fs, ino, bp);
390 if (dip == NULL) {
391 brelse(bp);
392 free(ip);
393 free(vp);
394 return NULL;
395 }
396 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
397 brelse(bp);
398 }
399 ip->i_number = ino;
400 /* ip->i_devvp = fs->lfs_devvp; */
401 ip->i_lfs = fs;
402
403 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
404 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
405 ip->i_lfs_osize = ip->i_ffs1_size;
406 #if 0
407 if (fs->lfs_version > 1) {
408 ip->i_ffs1_atime = ts.tv_sec;
409 ip->i_ffs1_atimensec = ts.tv_nsec;
410 }
411 #endif
412
413 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
414 for (i = 0; i < NDADDR; i++)
415 if (ip->i_ffs1_db[i] != 0)
416 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
417
418 ++nvnodes;
419 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
420 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
421 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
422
423 return vp;
424 }
425
426 static struct uvnode *
427 lfs_vget(void *vfs, ino_t ino)
428 {
429 struct lfs *fs = (struct lfs *)vfs;
430 ufs_daddr_t daddr;
431 struct ubuf *bp;
432 IFILE *ifp;
433
434 LFS_IENTRY(ifp, fs, ino, bp);
435 daddr = ifp->if_daddr;
436 brelse(bp);
437 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
438 return NULL;
439 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
440 }
441
442 /* Check superblock magic number and checksum */
443 static int
444 check_sb(struct lfs *fs)
445 {
446 u_int32_t checksum;
447
448 if (fs->lfs_magic != LFS_MAGIC) {
449 printf("Superblock magic number (0x%lx) does not match "
450 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
451 (unsigned long) LFS_MAGIC);
452 return 1;
453 }
454 /* checksum */
455 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
456 if (fs->lfs_cksum != checksum) {
457 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
458 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
459 return 1;
460 }
461 return 0;
462 }
463
464 /* Initialize LFS library; load superblocks and choose which to use. */
465 struct lfs *
466 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
467 {
468 struct uvnode *devvp;
469 struct ubuf *bp;
470 int tryalt;
471 struct lfs *fs, *altfs;
472 int error;
473
474 vfs_init();
475
476 devvp = (struct uvnode *) malloc(sizeof(*devvp));
477 if (devvp == NULL)
478 err(1, NULL);
479 memset(devvp, 0, sizeof(*devvp));
480 devvp->v_fs = NULL;
481 devvp->v_fd = devfd;
482 devvp->v_strategy_op = raw_vop_strategy;
483 devvp->v_bwrite_op = raw_vop_bwrite;
484 devvp->v_bmap_op = raw_vop_bmap;
485 LIST_INIT(&devvp->v_cleanblkhd);
486 LIST_INIT(&devvp->v_dirtyblkhd);
487
488 tryalt = 0;
489 if (dummy_read) {
490 if (sblkno == 0)
491 sblkno = btodb(LFS_LABELPAD);
492 fs = (struct lfs *) malloc(sizeof(*fs));
493 if (fs == NULL)
494 err(1, NULL);
495 memset(fs, 0, sizeof(*fs));
496 fs->lfs_devvp = devvp;
497 } else {
498 if (sblkno == 0) {
499 sblkno = btodb(LFS_LABELPAD);
500 tryalt = 1;
501 } else if (debug) {
502 printf("No -b flag given, not attempting to verify checkpoint\n");
503 }
504 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
505 fs = (struct lfs *) malloc(sizeof(*fs));
506 if (fs == NULL)
507 err(1, NULL);
508 memset(fs, 0, sizeof(*fs));
509 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
510 fs->lfs_devvp = devvp;
511 bp->b_flags |= B_INVAL;
512 brelse(bp);
513
514 if (tryalt) {
515 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
516 LFS_SBPAD, NOCRED, &bp);
517 altfs = (struct lfs *) malloc(sizeof(*altfs));
518 if (altfs == NULL)
519 err(1, NULL);
520 memset(altfs, 0, sizeof(*altfs));
521 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
522 altfs->lfs_devvp = devvp;
523 bp->b_flags |= B_INVAL;
524 brelse(bp);
525
526 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
527 if (debug)
528 printf("Primary superblock is no good, using first alternate\n");
529 free(fs);
530 fs = altfs;
531 } else {
532 /* If both superblocks check out, try verification */
533 if (check_sb(altfs)) {
534 if (debug)
535 printf("First alternate superblock is no good, using primary\n");
536 free(altfs);
537 } else {
538 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
539 free(altfs);
540 } else {
541 free(fs);
542 fs = altfs;
543 }
544 }
545 }
546 }
547 if (check_sb(fs)) {
548 free(fs);
549 return NULL;
550 }
551 }
552
553 /* Compatibility */
554 if (fs->lfs_version < 2) {
555 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
556 fs->lfs_ibsize = fs->lfs_bsize;
557 fs->lfs_start = fs->lfs_sboffs[0];
558 fs->lfs_tstamp = fs->lfs_otstamp;
559 fs->lfs_fsbtodb = 0;
560 }
561
562 if (!dummy_read) {
563 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
564 if (fs->lfs_suflags == NULL)
565 err(1, NULL);
566 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
567 if (fs->lfs_suflags[0] == NULL)
568 err(1, NULL);
569 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
570 if (fs->lfs_suflags[1] == NULL)
571 err(1, NULL);
572 }
573
574 if (idaddr == 0)
575 idaddr = fs->lfs_idaddr;
576 else
577 fs->lfs_idaddr = idaddr;
578 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
579 fs->lfs_ivnode = lfs_raw_vget(fs,
580 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
581 idaddr);
582 if (fs->lfs_ivnode == NULL)
583 return NULL;
584
585 register_vget((void *)fs, lfs_vget);
586
587 return fs;
588 }
589
590 /*
591 * Check partial segment validity between fs->lfs_offset and the given goal.
592 *
593 * If goal == 0, just keep on going until the segments stop making sense,
594 * and return the address of the last valid partial segment.
595 *
596 * If goal != 0, return the address of the first partial segment that failed,
597 * or "goal" if we reached it without failure (the partial segment *at* goal
598 * need not be valid).
599 */
600 ufs_daddr_t
601 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
602 {
603 ufs_daddr_t daddr, odaddr;
604 SEGSUM *sp;
605 int i, bc, hitclean;
606 struct ubuf *bp;
607 ufs_daddr_t nodirop_daddr;
608 u_int64_t serial;
609
610 bc = 0;
611 hitclean = 0;
612 odaddr = -1;
613 daddr = osb->lfs_offset;
614 nodirop_daddr = daddr;
615 serial = osb->lfs_serial;
616 while (daddr != goal) {
617 /*
618 * Don't mistakenly read a superblock, if there is one here.
619 */
620 if (sntod(osb, dtosn(osb, daddr)) == daddr) {
621 if (daddr == osb->lfs_start)
622 daddr += btofsb(osb, LFS_LABELPAD);
623 for (i = 0; i < LFS_MAXNUMSB; i++) {
624 if (osb->lfs_sboffs[i] < daddr)
625 break;
626 if (osb->lfs_sboffs[i] == daddr)
627 daddr += btofsb(osb, LFS_SBPAD);
628 }
629 }
630
631 /* Read in summary block */
632 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
633 sp = (SEGSUM *)bp->b_data;
634
635 /*
636 * Check for a valid segment summary belonging to our fs.
637 */
638 if (sp->ss_magic != SS_MAGIC ||
639 sp->ss_ident != osb->lfs_ident ||
640 sp->ss_serial < serial || /* XXX strengthen this */
641 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
642 sizeof(sp->ss_sumsum))) {
643 brelse(bp);
644 if (debug) {
645 if (sp->ss_magic != SS_MAGIC)
646 pwarn("pseg at 0x%x: "
647 "wrong magic number\n",
648 (int)daddr);
649 else if (sp->ss_ident != osb->lfs_ident)
650 pwarn("pseg at 0x%x: "
651 "expected ident %llx, got %llx\n",
652 (int)daddr,
653 (long long)sp->ss_ident,
654 (long long)osb->lfs_ident);
655 else if (sp->ss_serial >= serial)
656 pwarn("pseg at 0x%x: "
657 "serial %d < %d\n", (int)daddr,
658 (int)sp->ss_serial, (int)serial);
659 else
660 pwarn("pseg at 0x%x: "
661 "summary checksum wrong\n",
662 (int)daddr);
663 }
664 break;
665 }
666 if (debug && sp->ss_serial != serial)
667 pwarn("warning, serial=%d ss_serial=%d\n",
668 (int)serial, (int)sp->ss_serial);
669 ++serial;
670 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
671 if (bc == 0) {
672 brelse(bp);
673 break;
674 }
675 if (debug)
676 pwarn("summary good: 0x%x/%d\n", (int)daddr,
677 (int)sp->ss_serial);
678 assert (bc > 0);
679 odaddr = daddr;
680 daddr += btofsb(osb, osb->lfs_sumsize + bc);
681 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
682 dtosn(osb, daddr) != dtosn(osb, daddr +
683 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
684 daddr = sp->ss_next;
685 }
686
687 /*
688 * Check for the beginning and ending of a sequence of
689 * dirops. Writes from the cleaner never involve new
690 * information, and are always checkpoints; so don't try
691 * to roll forward through them. Likewise, psegs written
692 * by a previous roll-forward attempt are not interesting.
693 */
694 if (sp->ss_flags & (SS_CLEAN | SS_RFW))
695 hitclean = 1;
696 if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
697 nodirop_daddr = daddr;
698
699 brelse(bp);
700 }
701
702 if (goal == 0)
703 return nodirop_daddr;
704 else
705 return daddr;
706 }
707
708 /* Use try_verify to check whether the newer superblock is valid. */
709 struct lfs *
710 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
711 {
712 ufs_daddr_t daddr;
713 struct lfs *osb, *nsb;
714
715 /*
716 * Verify the checkpoint of the newer superblock,
717 * if the timestamp/serial number of the two superblocks is
718 * different.
719 */
720
721 osb = NULL;
722 if (debug)
723 pwarn("sb0 %lld, sb1 %lld",
724 (long long) sb0->lfs_serial,
725 (long long) sb1->lfs_serial);
726
727 if ((sb0->lfs_version == 1 &&
728 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
729 (sb0->lfs_version > 1 &&
730 sb0->lfs_serial != sb1->lfs_serial)) {
731 if (sb0->lfs_version == 1) {
732 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
733 osb = sb1;
734 nsb = sb0;
735 } else {
736 osb = sb0;
737 nsb = sb1;
738 }
739 } else {
740 if (sb0->lfs_serial > sb1->lfs_serial) {
741 osb = sb1;
742 nsb = sb0;
743 } else {
744 osb = sb0;
745 nsb = sb1;
746 }
747 }
748 if (debug) {
749 printf("Attempting to verify newer checkpoint...");
750 fflush(stdout);
751 }
752 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
753
754 if (debug)
755 printf("done.\n");
756 if (daddr == nsb->lfs_offset) {
757 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
758 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
759 sbdirty();
760 } else {
761 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
762 }
763 return (daddr == nsb->lfs_offset ? nsb : osb);
764 }
765 /* Nothing to check */
766 return osb;
767 }
768
769 /* Verify a partial-segment summary; return the number of bytes on disk. */
770 int
771 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
772 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
773 {
774 FINFO *fp;
775 int bc; /* Bytes in partial segment */
776 int nblocks;
777 ufs_daddr_t seg_addr, daddr;
778 ufs_daddr_t *dp, *idp;
779 struct ubuf *bp;
780 int i, j, k, datac, len;
781 long sn;
782 u_int32_t *datap;
783 u_int32_t ccksum;
784
785 sn = dtosn(fs, pseg_addr);
786 seg_addr = sntod(fs, sn);
787
788 /* We've already checked the sumsum, just do the data bounds and sum */
789
790 /* Count the blocks. */
791 nblocks = howmany(sp->ss_ninos, INOPB(fs));
792 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
793 assert(bc >= 0);
794
795 fp = (FINFO *) (sp + 1);
796 for (i = 0; i < sp->ss_nfinfo; i++) {
797 nblocks += fp->fi_nblocks;
798 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
799 << fs->lfs_bshift);
800 assert(bc >= 0);
801 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
802 if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
803 return 0;
804 }
805 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
806 if (datap == NULL)
807 err(1, NULL);
808 datac = 0;
809
810 dp = (ufs_daddr_t *) sp;
811 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
812 dp--;
813
814 idp = dp;
815 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
816 fp = (FINFO *) (sp + 1);
817 for (i = 0, j = 0;
818 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
819 if (i >= sp->ss_nfinfo && *idp != daddr) {
820 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
821 ": found %d, wanted %d\n",
822 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
823 if (debug)
824 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
825 daddr);
826 break;
827 }
828 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
829 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
830 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
831 brelse(bp);
832
833 ++j;
834 daddr += btofsb(fs, fs->lfs_ibsize);
835 --idp;
836 }
837 if (i < sp->ss_nfinfo) {
838 if (func)
839 func(daddr, fp);
840 for (k = 0; k < fp->fi_nblocks; k++) {
841 len = (k == fp->fi_nblocks - 1 ?
842 fp->fi_lastlength
843 : fs->lfs_bsize);
844 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
845 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
846 brelse(bp);
847 daddr += btofsb(fs, len);
848 }
849 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
850 }
851 }
852
853 if (datac != nblocks) {
854 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
855 (long long) pseg_addr, nblocks, datac);
856 }
857 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
858 /* Check the data checksum */
859 if (ccksum != sp->ss_datasum) {
860 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
861 " mismatch: given 0x%x, computed 0x%x\n",
862 pseg_addr, sp->ss_datasum, ccksum);
863 free(datap);
864 return 0;
865 }
866 free(datap);
867 assert(bc >= 0);
868 return bc;
869 }
870
871 /* print message and exit */
872 void
873 my_vpanic(int fatal, const char *fmt, va_list ap)
874 {
875 (void) vprintf(fmt, ap);
876 exit(8);
877 }
878
879 void
880 call_panic(const char *fmt, ...)
881 {
882 va_list ap;
883
884 va_start(ap, fmt);
885 panic_func(1, fmt, ap);
886 va_end(ap);
887 }
888
889 /* Allocate a new inode. */
890 struct uvnode *
891 lfs_valloc(struct lfs *fs, ino_t ino)
892 {
893 struct ubuf *bp, *cbp;
894 struct ifile *ifp;
895 ino_t new_ino;
896 int error;
897 int new_gen;
898 CLEANERINFO *cip;
899
900 /* Get the head of the freelist. */
901 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
902
903 /*
904 * Remove the inode from the free list and write the new start
905 * of the free list into the superblock.
906 */
907 LFS_IENTRY(ifp, fs, new_ino, bp);
908 if (ifp->if_daddr != LFS_UNUSED_DADDR)
909 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
910 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
911
912 new_gen = ifp->if_version; /* version was updated by vfree */
913 brelse(bp);
914
915 /* Extend IFILE so that the next lfs_valloc will succeed. */
916 if (fs->lfs_freehd == LFS_UNUSED_INUM) {
917 if ((error = extend_ifile(fs)) != 0) {
918 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
919 return NULL;
920 }
921 }
922
923 /* Set superblock modified bit and increment file count. */
924 sbdirty();
925 ++fs->lfs_nfiles;
926
927 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
928 }
929
930 #ifdef IN_FSCK_LFS
931 void reset_maxino(ino_t);
932 #endif
933
934 /*
935 * Add a new block to the Ifile, to accommodate future file creations.
936 */
937 int
938 extend_ifile(struct lfs *fs)
939 {
940 struct uvnode *vp;
941 struct inode *ip;
942 IFILE *ifp;
943 IFILE_V1 *ifp_v1;
944 struct ubuf *bp, *cbp;
945 daddr_t i, blkno, max;
946 ino_t oldlast;
947 CLEANERINFO *cip;
948
949 vp = fs->lfs_ivnode;
950 ip = VTOI(vp);
951 blkno = lblkno(fs, ip->i_ffs1_size);
952
953 lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
954 ip->i_ffs1_size += fs->lfs_bsize;
955 ip->i_flag |= IN_MODIFIED;
956
957 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
958 fs->lfs_ifpb;
959 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
960 LFS_PUT_HEADFREE(fs, cip, cbp, i);
961 max = i + fs->lfs_ifpb;
962 fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
963
964 if (fs->lfs_version == 1) {
965 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
966 ifp_v1->if_version = 1;
967 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
968 ifp_v1->if_nextfree = ++i;
969 }
970 ifp_v1--;
971 ifp_v1->if_nextfree = oldlast;
972 } else {
973 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
974 ifp->if_version = 1;
975 ifp->if_daddr = LFS_UNUSED_DADDR;
976 ifp->if_nextfree = ++i;
977 }
978 ifp--;
979 ifp->if_nextfree = oldlast;
980 }
981 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
982
983 LFS_BWRITE_LOG(bp);
984
985 #ifdef IN_FSCK_LFS
986 reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
987 fs->lfs_cleansz) * fs->lfs_ifpb);
988 #endif
989 return 0;
990 }
991
992 /*
993 * Allocate a block, and to inode and filesystem block accounting for it
994 * and for any indirect blocks the may need to be created in order for
995 * this block to be created.
996 *
997 * Blocks which have never been accounted for (i.e., which "do not exist")
998 * have disk address 0, which is translated by ufs_bmap to the special value
999 * UNASSIGNED == -1, as in the historical UFS.
1000 *
1001 * Blocks which have been accounted for but which have not yet been written
1002 * to disk are given the new special disk address UNWRITTEN == -2, so that
1003 * they can be differentiated from completely new blocks.
1004 */
1005 int
1006 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
1007 {
1008 int offset;
1009 daddr_t daddr, idaddr;
1010 struct ubuf *ibp, *bp;
1011 struct inode *ip;
1012 struct lfs *fs;
1013 struct indir indirs[NIADDR+2], *idp;
1014 daddr_t lbn, lastblock;
1015 int bb, bcount;
1016 int error, frags, i, nsize, osize, num;
1017
1018 ip = VTOI(vp);
1019 fs = ip->i_lfs;
1020 offset = blkoff(fs, startoffset);
1021 lbn = lblkno(fs, startoffset);
1022
1023 /*
1024 * Three cases: it's a block beyond the end of file, it's a block in
1025 * the file that may or may not have been assigned a disk address or
1026 * we're writing an entire block.
1027 *
1028 * Note, if the daddr is UNWRITTEN, the block already exists in
1029 * the cache (it was read or written earlier). If so, make sure
1030 * we don't count it as a new block or zero out its contents. If
1031 * it did not, make sure we allocate any necessary indirect
1032 * blocks.
1033 *
1034 * If we are writing a block beyond the end of the file, we need to
1035 * check if the old last block was a fragment. If it was, we need
1036 * to rewrite it.
1037 */
1038
1039 if (bpp)
1040 *bpp = NULL;
1041
1042 /* Check for block beyond end of file and fragment extension needed. */
1043 lastblock = lblkno(fs, ip->i_ffs1_size);
1044 if (lastblock < NDADDR && lastblock < lbn) {
1045 osize = blksize(fs, ip, lastblock);
1046 if (osize < fs->lfs_bsize && osize > 0) {
1047 if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1048 lastblock,
1049 (bpp ? &bp : NULL))))
1050 return (error);
1051 ip->i_ffs1_size = ip->i_ffs1_size =
1052 (lastblock + 1) * fs->lfs_bsize;
1053 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1054 if (bpp)
1055 (void) VOP_BWRITE(bp);
1056 }
1057 }
1058
1059 /*
1060 * If the block we are writing is a direct block, it's the last
1061 * block in the file, and offset + iosize is less than a full
1062 * block, we can write one or more fragments. There are two cases:
1063 * the block is brand new and we should allocate it the correct
1064 * size or it already exists and contains some fragments and
1065 * may need to extend it.
1066 */
1067 if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1068 osize = blksize(fs, ip, lbn);
1069 nsize = fragroundup(fs, offset + iosize);
1070 if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1071 /* Brand new block or fragment */
1072 frags = numfrags(fs, nsize);
1073 bb = fragstofsb(fs, frags);
1074 if (bpp) {
1075 *bpp = bp = getblk(vp, lbn, nsize);
1076 bp->b_blkno = UNWRITTEN;
1077 }
1078 ip->i_lfs_effnblks += bb;
1079 fs->lfs_bfree -= bb;
1080 ip->i_ffs1_db[lbn] = UNWRITTEN;
1081 } else {
1082 if (nsize <= osize) {
1083 /* No need to extend */
1084 if (bpp && (error = bread(vp, lbn, osize, NOCRED, &bp)))
1085 return error;
1086 } else {
1087 /* Extend existing block */
1088 if ((error =
1089 lfs_fragextend(vp, osize, nsize, lbn,
1090 (bpp ? &bp : NULL))))
1091 return error;
1092 }
1093 if (bpp)
1094 *bpp = bp;
1095 }
1096 return 0;
1097 }
1098
1099 error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1100 if (error)
1101 return (error);
1102
1103 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1104
1105 /*
1106 * Do byte accounting all at once, so we can gracefully fail *before*
1107 * we start assigning blocks.
1108 */
1109 bb = fsbtodb(fs, 1); /* bb = VFSTOUFS(vp->v_mount)->um_seqinc; */
1110 bcount = 0;
1111 if (daddr == UNASSIGNED) {
1112 bcount = bb;
1113 }
1114 for (i = 1; i < num; ++i) {
1115 if (!indirs[i].in_exists) {
1116 bcount += bb;
1117 }
1118 }
1119 fs->lfs_bfree -= bcount;
1120 ip->i_lfs_effnblks += bcount;
1121
1122 if (daddr == UNASSIGNED) {
1123 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1124 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1125 }
1126
1127 /*
1128 * Create new indirect blocks if necessary
1129 */
1130 if (num > 1) {
1131 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1132 for (i = 1; i < num; ++i) {
1133 ibp = getblk(vp, indirs[i].in_lbn,
1134 fs->lfs_bsize);
1135 if (!indirs[i].in_exists) {
1136 memset(ibp->b_data, 0, ibp->b_bufsize);
1137 ibp->b_blkno = UNWRITTEN;
1138 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1139 ibp->b_blkno = fsbtodb(fs, idaddr);
1140 ibp->b_flags |= B_READ;
1141 VOP_STRATEGY(ibp);
1142 }
1143 /*
1144 * This block exists, but the next one may not.
1145 * If that is the case mark it UNWRITTEN to
1146 * keep the accounting straight.
1147 */
1148 /* XXX ondisk32 */
1149 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1150 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1151 UNWRITTEN;
1152 /* XXX ondisk32 */
1153 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1154 if ((error = VOP_BWRITE(ibp)))
1155 return error;
1156 }
1157 }
1158 }
1159
1160
1161 /*
1162 * Get the existing block from the cache, if requested.
1163 */
1164 frags = fsbtofrags(fs, bb);
1165 if (bpp)
1166 *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1167
1168 /*
1169 * The block we are writing may be a brand new block
1170 * in which case we need to do accounting.
1171 *
1172 * We can tell a truly new block because ufs_bmaparray will say
1173 * it is UNASSIGNED. Once we allocate it we will assign it the
1174 * disk address UNWRITTEN.
1175 */
1176 if (daddr == UNASSIGNED) {
1177 if (bpp) {
1178 /* Note the new address */
1179 bp->b_blkno = UNWRITTEN;
1180 }
1181
1182 switch (num) {
1183 case 0:
1184 ip->i_ffs1_db[lbn] = UNWRITTEN;
1185 break;
1186 case 1:
1187 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1188 break;
1189 default:
1190 idp = &indirs[num - 1];
1191 if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1192 &ibp))
1193 panic("lfs_balloc: bread bno %lld",
1194 (long long)idp->in_lbn);
1195 /* XXX ondisk32 */
1196 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1197 VOP_BWRITE(ibp);
1198 }
1199 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1200 /*
1201 * Not a brand new block, also not in the cache;
1202 * read it in from disk.
1203 */
1204 if (iosize == fs->lfs_bsize)
1205 /* Optimization: I/O is unnecessary. */
1206 bp->b_blkno = daddr;
1207 else {
1208 /*
1209 * We need to read the block to preserve the
1210 * existing bytes.
1211 */
1212 bp->b_blkno = daddr;
1213 bp->b_flags |= B_READ;
1214 VOP_STRATEGY(bp);
1215 return 0;
1216 }
1217 }
1218
1219 return (0);
1220 }
1221
1222 int
1223 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1224 struct ubuf **bpp)
1225 {
1226 struct inode *ip;
1227 struct lfs *fs;
1228 long bb;
1229 int error;
1230 size_t obufsize;
1231
1232 ip = VTOI(vp);
1233 fs = ip->i_lfs;
1234 bb = (long)fragstofsb(fs, numfrags(fs, nsize - osize));
1235 error = 0;
1236
1237 /*
1238 * If we are not asked to actually return the block, all we need
1239 * to do is allocate space for it. UBC will handle dirtying the
1240 * appropriate things and making sure it all goes to disk.
1241 * Don't bother to read in that case.
1242 */
1243 if (bpp && (error = bread(vp, lbn, osize, NOCRED, bpp))) {
1244 brelse(*bpp);
1245 goto out;
1246 }
1247
1248 fs->lfs_bfree -= bb;
1249 ip->i_lfs_effnblks += bb;
1250 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1251
1252 if (bpp) {
1253 obufsize = (*bpp)->b_bufsize;
1254 (*bpp)->b_data = realloc((*bpp)->b_data, nsize);
1255 bzero((char *)((*bpp)->b_data) + osize, (u_int)(nsize - osize));
1256 }
1257
1258 out:
1259 return (error);
1260 }
1261