lfs.c revision 1.26 1 /* $NetBSD: lfs.c,v 1.26 2006/11/09 19:36:36 christos Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94 #include <util.h>
95
96 #include "bufcache.h"
97 #include "vnode.h"
98 #include "lfs_user.h"
99 #include "segwrite.h"
100
101 #define panic call_panic
102
103 extern u_int32_t cksum(void *, size_t);
104 extern u_int32_t lfs_sb_cksum(struct dlfs *);
105 extern void pwarn(const char *, ...);
106
107 extern struct uvnodelst vnodelist;
108 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
109 extern int nvnodes;
110
111 static int
112 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
113
114 int fsdirty = 0;
115 void (*panic_func)(int, const char *, va_list) = my_vpanic;
116
117 /*
118 * LFS buffer and uvnode operations
119 */
120
121 int
122 lfs_vop_strategy(struct ubuf * bp)
123 {
124 int count;
125
126 if (bp->b_flags & B_READ) {
127 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
128 dbtob(bp->b_blkno));
129 if (count == bp->b_bcount)
130 bp->b_flags |= B_DONE;
131 } else {
132 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
133 dbtob(bp->b_blkno));
134 if (count == 0) {
135 perror("pwrite");
136 return -1;
137 }
138 bp->b_flags &= ~B_DELWRI;
139 reassignbuf(bp, bp->b_vp);
140 }
141 return 0;
142 }
143
144 int
145 lfs_vop_bwrite(struct ubuf * bp)
146 {
147 struct lfs *fs;
148
149 fs = bp->b_vp->v_fs;
150 if (!(bp->b_flags & B_DELWRI)) {
151 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
152 }
153 bp->b_flags |= B_DELWRI | B_LOCKED;
154 reassignbuf(bp, bp->b_vp);
155 brelse(bp);
156 return 0;
157 }
158
159 /*
160 * ufs_bmaparray does the bmap conversion, and if requested returns the
161 * array of logical blocks which must be traversed to get to a block.
162 * Each entry contains the offset into that block that gets you to the
163 * next block and the disk address of the block (if it is assigned).
164 */
165 int
166 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
167 {
168 struct inode *ip;
169 struct ubuf *bp;
170 struct indir a[NIADDR + 1], *xap;
171 daddr_t daddr;
172 daddr_t metalbn;
173 int error, num;
174
175 ip = VTOI(vp);
176
177 if (bn >= 0 && bn < NDADDR) {
178 if (nump != NULL)
179 *nump = 0;
180 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
181 if (*bnp == 0)
182 *bnp = -1;
183 return (0);
184 }
185 xap = ap == NULL ? a : ap;
186 if (!nump)
187 nump = #
188 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
189 return (error);
190
191 num = *nump;
192
193 /* Get disk address out of indirect block array */
194 daddr = ip->i_ffs1_ib[xap->in_off];
195
196 for (bp = NULL, ++xap; --num; ++xap) {
197 /* Exit the loop if there is no disk address assigned yet and
198 * the indirect block isn't in the cache, or if we were
199 * looking for an indirect block and we've found it. */
200
201 metalbn = xap->in_lbn;
202 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
203 break;
204 /*
205 * If we get here, we've either got the block in the cache
206 * or we have a disk address for it, go fetch it.
207 */
208 if (bp)
209 brelse(bp);
210
211 xap->in_exists = 1;
212 bp = getblk(vp, metalbn, fs->lfs_bsize);
213
214 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
215 bp->b_blkno = fsbtodb(fs, daddr);
216 bp->b_flags |= B_READ;
217 VOP_STRATEGY(bp);
218 }
219 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
220 }
221 if (bp)
222 brelse(bp);
223
224 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
225 *bnp = daddr == 0 ? -1 : daddr;
226 return (0);
227 }
228
229 /*
230 * Create an array of logical block number/offset pairs which represent the
231 * path of indirect blocks required to access a data block. The first "pair"
232 * contains the logical block number of the appropriate single, double or
233 * triple indirect block and the offset into the inode indirect block array.
234 * Note, the logical block number of the inode single/double/triple indirect
235 * block appears twice in the array, once with the offset into the i_ffs1_ib and
236 * once with the offset into the page itself.
237 */
238 int
239 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
240 {
241 daddr_t metalbn, realbn;
242 int64_t blockcnt;
243 int lbc;
244 int i, numlevels, off;
245 int lognindir, indir;
246
247 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
248
249 if (nump)
250 *nump = 0;
251 numlevels = 0;
252 realbn = bn;
253 if (bn < 0)
254 bn = -bn;
255
256 lognindir = -1;
257 for (indir = fs->lfs_nindir; indir; indir >>= 1)
258 ++lognindir;
259
260 /* Determine the number of levels of indirection. After this loop is
261 * done, blockcnt indicates the number of data blocks possible at the
262 * given level of indirection, and NIADDR - i is the number of levels
263 * of indirection needed to locate the requested block. */
264
265 bn -= NDADDR;
266 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
267 if (i == 0)
268 return (EFBIG);
269
270 lbc += lognindir;
271 blockcnt = (int64_t) 1 << lbc;
272
273 if (bn < blockcnt)
274 break;
275 }
276
277 /* Calculate the address of the first meta-block. */
278 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + NIADDR - i);
279
280 /* At each iteration, off is the offset into the bap array which is an
281 * array of disk addresses at the current level of indirection. The
282 * logical block number and the offset in that block are stored into
283 * the argument array. */
284 ap->in_lbn = metalbn;
285 ap->in_off = off = NIADDR - i;
286 ap->in_exists = 0;
287 ap++;
288 for (++numlevels; i <= NIADDR; i++) {
289 /* If searching for a meta-data block, quit when found. */
290 if (metalbn == realbn)
291 break;
292
293 lbc -= lognindir;
294 blockcnt = (int64_t) 1 << lbc;
295 off = (bn >> lbc) & (fs->lfs_nindir - 1);
296
297 ++numlevels;
298 ap->in_lbn = metalbn;
299 ap->in_off = off;
300 ap->in_exists = 0;
301 ++ap;
302
303 metalbn -= -1 + (off << lbc);
304 }
305 if (nump)
306 *nump = numlevels;
307 return (0);
308 }
309
310 int
311 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
312 {
313 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
314 }
315
316 /* Search a block for a specific dinode. */
317 struct ufs1_dinode *
318 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
319 {
320 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
321 struct ufs1_dinode *ldip, *fin;
322
323 fin = dip + INOPB(fs);
324
325 /*
326 * Read the inode block backwards, since later versions of the
327 * inode will supercede earlier ones. Though it is unlikely, it is
328 * possible that the same inode will appear in the same inode block.
329 */
330 for (ldip = fin - 1; ldip >= dip; --ldip)
331 if (ldip->di_inumber == ino)
332 return (ldip);
333 return NULL;
334 }
335
336 /*
337 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
338 * XXX it currently loses atime information.
339 */
340 struct uvnode *
341 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
342 {
343 struct uvnode *vp;
344 struct inode *ip;
345 struct ufs1_dinode *dip;
346 struct ubuf *bp;
347 int i, hash;
348
349 vp = ecalloc(1, sizeof(*vp));
350 vp->v_fd = fd;
351 vp->v_fs = fs;
352 vp->v_usecount = 0;
353 vp->v_strategy_op = lfs_vop_strategy;
354 vp->v_bwrite_op = lfs_vop_bwrite;
355 vp->v_bmap_op = lfs_vop_bmap;
356 LIST_INIT(&vp->v_cleanblkhd);
357 LIST_INIT(&vp->v_dirtyblkhd);
358
359 ip = ecalloc(1, sizeof(*ip));
360
361 ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
362
363 /* Initialize the inode -- from lfs_vcreate. */
364 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
365 vp->v_data = ip;
366 /* ip->i_vnode = vp; */
367 ip->i_number = ino;
368 ip->i_lockf = 0;
369 ip->i_diroff = 0;
370 ip->i_lfs_effnblks = 0;
371 ip->i_flag = 0;
372
373 /* Load inode block and find inode */
374 if (daddr > 0) {
375 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
376 bp->b_flags |= B_AGE;
377 dip = lfs_ifind(fs, ino, bp);
378 if (dip == NULL) {
379 brelse(bp);
380 free(ip);
381 free(vp);
382 return NULL;
383 }
384 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
385 brelse(bp);
386 }
387 ip->i_number = ino;
388 /* ip->i_devvp = fs->lfs_devvp; */
389 ip->i_lfs = fs;
390
391 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
392 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
393 ip->i_lfs_osize = ip->i_ffs1_size;
394 #if 0
395 if (fs->lfs_version > 1) {
396 ip->i_ffs1_atime = ts.tv_sec;
397 ip->i_ffs1_atimensec = ts.tv_nsec;
398 }
399 #endif
400
401 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
402 for (i = 0; i < NDADDR; i++)
403 if (ip->i_ffs1_db[i] != 0)
404 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
405
406 ++nvnodes;
407 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
408 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
409 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
410
411 return vp;
412 }
413
414 static struct uvnode *
415 lfs_vget(void *vfs, ino_t ino)
416 {
417 struct lfs *fs = (struct lfs *)vfs;
418 ufs_daddr_t daddr;
419 struct ubuf *bp;
420 IFILE *ifp;
421
422 LFS_IENTRY(ifp, fs, ino, bp);
423 daddr = ifp->if_daddr;
424 brelse(bp);
425 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
426 return NULL;
427 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
428 }
429
430 /* Check superblock magic number and checksum */
431 static int
432 check_sb(struct lfs *fs)
433 {
434 u_int32_t checksum;
435
436 if (fs->lfs_magic != LFS_MAGIC) {
437 printf("Superblock magic number (0x%lx) does not match "
438 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
439 (unsigned long) LFS_MAGIC);
440 return 1;
441 }
442 /* checksum */
443 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
444 if (fs->lfs_cksum != checksum) {
445 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
446 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
447 return 1;
448 }
449 return 0;
450 }
451
452 /* Initialize LFS library; load superblocks and choose which to use. */
453 struct lfs *
454 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
455 {
456 struct uvnode *devvp;
457 struct ubuf *bp;
458 int tryalt;
459 struct lfs *fs, *altfs;
460 int error;
461
462 vfs_init();
463
464 devvp = ecalloc(1, sizeof(*devvp));
465 devvp->v_fs = NULL;
466 devvp->v_fd = devfd;
467 devvp->v_strategy_op = raw_vop_strategy;
468 devvp->v_bwrite_op = raw_vop_bwrite;
469 devvp->v_bmap_op = raw_vop_bmap;
470 LIST_INIT(&devvp->v_cleanblkhd);
471 LIST_INIT(&devvp->v_dirtyblkhd);
472
473 tryalt = 0;
474 if (dummy_read) {
475 if (sblkno == 0)
476 sblkno = btodb(LFS_LABELPAD);
477 fs = ecalloc(1, sizeof(*fs));
478 fs->lfs_devvp = devvp;
479 } else {
480 if (sblkno == 0) {
481 sblkno = btodb(LFS_LABELPAD);
482 tryalt = 1;
483 } else if (debug) {
484 printf("No -b flag given, not attempting to verify checkpoint\n");
485 }
486 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
487 fs = ecalloc(1, sizeof(*fs));
488 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
489 fs->lfs_devvp = devvp;
490 bp->b_flags |= B_INVAL;
491 brelse(bp);
492
493 if (tryalt) {
494 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
495 LFS_SBPAD, NOCRED, &bp);
496 altfs = ecalloc(1, sizeof(*altfs));
497 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
498 altfs->lfs_devvp = devvp;
499 bp->b_flags |= B_INVAL;
500 brelse(bp);
501
502 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
503 if (debug)
504 printf("Primary superblock is no good, using first alternate\n");
505 free(fs);
506 fs = altfs;
507 } else {
508 /* If both superblocks check out, try verification */
509 if (check_sb(altfs)) {
510 if (debug)
511 printf("First alternate superblock is no good, using primary\n");
512 free(altfs);
513 } else {
514 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
515 free(altfs);
516 } else {
517 free(fs);
518 fs = altfs;
519 }
520 }
521 }
522 }
523 if (check_sb(fs)) {
524 free(fs);
525 return NULL;
526 }
527 }
528
529 /* Compatibility */
530 if (fs->lfs_version < 2) {
531 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
532 fs->lfs_ibsize = fs->lfs_bsize;
533 fs->lfs_start = fs->lfs_sboffs[0];
534 fs->lfs_tstamp = fs->lfs_otstamp;
535 fs->lfs_fsbtodb = 0;
536 }
537
538 if (!dummy_read) {
539 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
540 fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
541 fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542 }
543
544 if (idaddr == 0)
545 idaddr = fs->lfs_idaddr;
546 else
547 fs->lfs_idaddr = idaddr;
548 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
549 fs->lfs_ivnode = lfs_raw_vget(fs,
550 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
551 idaddr);
552 if (fs->lfs_ivnode == NULL)
553 return NULL;
554
555 register_vget((void *)fs, lfs_vget);
556
557 return fs;
558 }
559
560 /*
561 * Check partial segment validity between fs->lfs_offset and the given goal.
562 *
563 * If goal == 0, just keep on going until the segments stop making sense,
564 * and return the address of the last valid partial segment.
565 *
566 * If goal != 0, return the address of the first partial segment that failed,
567 * or "goal" if we reached it without failure (the partial segment *at* goal
568 * need not be valid).
569 */
570 ufs_daddr_t
571 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
572 {
573 ufs_daddr_t daddr, odaddr;
574 SEGSUM *sp;
575 int i, bc, hitclean;
576 struct ubuf *bp;
577 ufs_daddr_t nodirop_daddr;
578 u_int64_t serial;
579
580 bc = 0;
581 hitclean = 0;
582 odaddr = -1;
583 daddr = osb->lfs_offset;
584 nodirop_daddr = daddr;
585 serial = osb->lfs_serial;
586 while (daddr != goal) {
587 /*
588 * Don't mistakenly read a superblock, if there is one here.
589 */
590 if (sntod(osb, dtosn(osb, daddr)) == daddr) {
591 if (daddr == osb->lfs_start)
592 daddr += btofsb(osb, LFS_LABELPAD);
593 for (i = 0; i < LFS_MAXNUMSB; i++) {
594 if (osb->lfs_sboffs[i] < daddr)
595 break;
596 if (osb->lfs_sboffs[i] == daddr)
597 daddr += btofsb(osb, LFS_SBPAD);
598 }
599 }
600
601 /* Read in summary block */
602 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
603 sp = (SEGSUM *)bp->b_data;
604
605 /*
606 * Check for a valid segment summary belonging to our fs.
607 */
608 if (sp->ss_magic != SS_MAGIC ||
609 sp->ss_ident != osb->lfs_ident ||
610 sp->ss_serial < serial || /* XXX strengthen this */
611 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
612 sizeof(sp->ss_sumsum))) {
613 brelse(bp);
614 if (debug) {
615 if (sp->ss_magic != SS_MAGIC)
616 pwarn("pseg at 0x%x: "
617 "wrong magic number\n",
618 (int)daddr);
619 else if (sp->ss_ident != osb->lfs_ident)
620 pwarn("pseg at 0x%x: "
621 "expected ident %llx, got %llx\n",
622 (int)daddr,
623 (long long)sp->ss_ident,
624 (long long)osb->lfs_ident);
625 else if (sp->ss_serial >= serial)
626 pwarn("pseg at 0x%x: "
627 "serial %d < %d\n", (int)daddr,
628 (int)sp->ss_serial, (int)serial);
629 else
630 pwarn("pseg at 0x%x: "
631 "summary checksum wrong\n",
632 (int)daddr);
633 }
634 break;
635 }
636 if (debug && sp->ss_serial != serial)
637 pwarn("warning, serial=%d ss_serial=%d\n",
638 (int)serial, (int)sp->ss_serial);
639 ++serial;
640 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
641 if (bc == 0) {
642 brelse(bp);
643 break;
644 }
645 if (debug)
646 pwarn("summary good: 0x%x/%d\n", (int)daddr,
647 (int)sp->ss_serial);
648 assert (bc > 0);
649 odaddr = daddr;
650 daddr += btofsb(osb, osb->lfs_sumsize + bc);
651 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
652 dtosn(osb, daddr) != dtosn(osb, daddr +
653 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
654 daddr = sp->ss_next;
655 }
656
657 /*
658 * Check for the beginning and ending of a sequence of
659 * dirops. Writes from the cleaner never involve new
660 * information, and are always checkpoints; so don't try
661 * to roll forward through them. Likewise, psegs written
662 * by a previous roll-forward attempt are not interesting.
663 */
664 if (sp->ss_flags & (SS_CLEAN | SS_RFW))
665 hitclean = 1;
666 if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
667 nodirop_daddr = daddr;
668
669 brelse(bp);
670 }
671
672 if (goal == 0)
673 return nodirop_daddr;
674 else
675 return daddr;
676 }
677
678 /* Use try_verify to check whether the newer superblock is valid. */
679 struct lfs *
680 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
681 {
682 ufs_daddr_t daddr;
683 struct lfs *osb, *nsb;
684
685 /*
686 * Verify the checkpoint of the newer superblock,
687 * if the timestamp/serial number of the two superblocks is
688 * different.
689 */
690
691 osb = NULL;
692 if (debug)
693 pwarn("sb0 %lld, sb1 %lld",
694 (long long) sb0->lfs_serial,
695 (long long) sb1->lfs_serial);
696
697 if ((sb0->lfs_version == 1 &&
698 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
699 (sb0->lfs_version > 1 &&
700 sb0->lfs_serial != sb1->lfs_serial)) {
701 if (sb0->lfs_version == 1) {
702 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
703 osb = sb1;
704 nsb = sb0;
705 } else {
706 osb = sb0;
707 nsb = sb1;
708 }
709 } else {
710 if (sb0->lfs_serial > sb1->lfs_serial) {
711 osb = sb1;
712 nsb = sb0;
713 } else {
714 osb = sb0;
715 nsb = sb1;
716 }
717 }
718 if (debug) {
719 printf("Attempting to verify newer checkpoint...");
720 fflush(stdout);
721 }
722 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
723
724 if (debug)
725 printf("done.\n");
726 if (daddr == nsb->lfs_offset) {
727 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
728 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
729 sbdirty();
730 } else {
731 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
732 }
733 return (daddr == nsb->lfs_offset ? nsb : osb);
734 }
735 /* Nothing to check */
736 return osb;
737 }
738
739 /* Verify a partial-segment summary; return the number of bytes on disk. */
740 int
741 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
742 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
743 {
744 FINFO *fp;
745 int bc; /* Bytes in partial segment */
746 int nblocks;
747 ufs_daddr_t seg_addr, daddr;
748 ufs_daddr_t *dp, *idp;
749 struct ubuf *bp;
750 int i, j, k, datac, len;
751 long sn;
752 u_int32_t *datap;
753 u_int32_t ccksum;
754
755 sn = dtosn(fs, pseg_addr);
756 seg_addr = sntod(fs, sn);
757
758 /* We've already checked the sumsum, just do the data bounds and sum */
759
760 /* Count the blocks. */
761 nblocks = howmany(sp->ss_ninos, INOPB(fs));
762 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
763 assert(bc >= 0);
764
765 fp = (FINFO *) (sp + 1);
766 for (i = 0; i < sp->ss_nfinfo; i++) {
767 nblocks += fp->fi_nblocks;
768 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
769 << fs->lfs_bshift);
770 assert(bc >= 0);
771 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
772 if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
773 return 0;
774 }
775 datap = emalloc(nblocks * sizeof(*datap));
776 datac = 0;
777
778 dp = (ufs_daddr_t *) sp;
779 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
780 dp--;
781
782 idp = dp;
783 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
784 fp = (FINFO *) (sp + 1);
785 for (i = 0, j = 0;
786 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
787 if (i >= sp->ss_nfinfo && *idp != daddr) {
788 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
789 ": found %d, wanted %d\n",
790 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
791 if (debug)
792 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
793 daddr);
794 break;
795 }
796 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
797 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
798 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
799 brelse(bp);
800
801 ++j;
802 daddr += btofsb(fs, fs->lfs_ibsize);
803 --idp;
804 }
805 if (i < sp->ss_nfinfo) {
806 if (func)
807 func(daddr, fp);
808 for (k = 0; k < fp->fi_nblocks; k++) {
809 len = (k == fp->fi_nblocks - 1 ?
810 fp->fi_lastlength
811 : fs->lfs_bsize);
812 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
813 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
814 brelse(bp);
815 daddr += btofsb(fs, len);
816 }
817 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
818 }
819 }
820
821 if (datac != nblocks) {
822 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
823 (long long) pseg_addr, nblocks, datac);
824 }
825 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
826 /* Check the data checksum */
827 if (ccksum != sp->ss_datasum) {
828 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
829 " mismatch: given 0x%x, computed 0x%x\n",
830 pseg_addr, sp->ss_datasum, ccksum);
831 free(datap);
832 return 0;
833 }
834 free(datap);
835 assert(bc >= 0);
836 return bc;
837 }
838
839 /* print message and exit */
840 void
841 my_vpanic(int fatal, const char *fmt, va_list ap)
842 {
843 (void) vprintf(fmt, ap);
844 exit(8);
845 }
846
847 void
848 call_panic(const char *fmt, ...)
849 {
850 va_list ap;
851
852 va_start(ap, fmt);
853 panic_func(1, fmt, ap);
854 va_end(ap);
855 }
856
857 /* Allocate a new inode. */
858 struct uvnode *
859 lfs_valloc(struct lfs *fs, ino_t ino)
860 {
861 struct ubuf *bp, *cbp;
862 struct ifile *ifp;
863 ino_t new_ino;
864 int error;
865 int new_gen;
866 CLEANERINFO *cip;
867
868 /* Get the head of the freelist. */
869 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
870
871 /*
872 * Remove the inode from the free list and write the new start
873 * of the free list into the superblock.
874 */
875 LFS_IENTRY(ifp, fs, new_ino, bp);
876 if (ifp->if_daddr != LFS_UNUSED_DADDR)
877 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
878 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
879
880 new_gen = ifp->if_version; /* version was updated by vfree */
881 brelse(bp);
882
883 /* Extend IFILE so that the next lfs_valloc will succeed. */
884 if (fs->lfs_freehd == LFS_UNUSED_INUM) {
885 if ((error = extend_ifile(fs)) != 0) {
886 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
887 return NULL;
888 }
889 }
890
891 /* Set superblock modified bit and increment file count. */
892 sbdirty();
893 ++fs->lfs_nfiles;
894
895 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
896 }
897
898 #ifdef IN_FSCK_LFS
899 void reset_maxino(ino_t);
900 #endif
901
902 /*
903 * Add a new block to the Ifile, to accommodate future file creations.
904 */
905 int
906 extend_ifile(struct lfs *fs)
907 {
908 struct uvnode *vp;
909 struct inode *ip;
910 IFILE *ifp;
911 IFILE_V1 *ifp_v1;
912 struct ubuf *bp, *cbp;
913 daddr_t i, blkno, max;
914 ino_t oldlast;
915 CLEANERINFO *cip;
916
917 vp = fs->lfs_ivnode;
918 ip = VTOI(vp);
919 blkno = lblkno(fs, ip->i_ffs1_size);
920
921 lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
922 ip->i_ffs1_size += fs->lfs_bsize;
923 ip->i_flag |= IN_MODIFIED;
924
925 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
926 fs->lfs_ifpb;
927 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
928 LFS_PUT_HEADFREE(fs, cip, cbp, i);
929 max = i + fs->lfs_ifpb;
930 fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
931
932 if (fs->lfs_version == 1) {
933 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
934 ifp_v1->if_version = 1;
935 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
936 ifp_v1->if_nextfree = ++i;
937 }
938 ifp_v1--;
939 ifp_v1->if_nextfree = oldlast;
940 } else {
941 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
942 ifp->if_version = 1;
943 ifp->if_daddr = LFS_UNUSED_DADDR;
944 ifp->if_nextfree = ++i;
945 }
946 ifp--;
947 ifp->if_nextfree = oldlast;
948 }
949 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
950
951 LFS_BWRITE_LOG(bp);
952
953 #ifdef IN_FSCK_LFS
954 reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
955 fs->lfs_cleansz) * fs->lfs_ifpb);
956 #endif
957 return 0;
958 }
959
960 /*
961 * Allocate a block, and to inode and filesystem block accounting for it
962 * and for any indirect blocks the may need to be created in order for
963 * this block to be created.
964 *
965 * Blocks which have never been accounted for (i.e., which "do not exist")
966 * have disk address 0, which is translated by ufs_bmap to the special value
967 * UNASSIGNED == -1, as in the historical UFS.
968 *
969 * Blocks which have been accounted for but which have not yet been written
970 * to disk are given the new special disk address UNWRITTEN == -2, so that
971 * they can be differentiated from completely new blocks.
972 */
973 int
974 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
975 {
976 int offset;
977 daddr_t daddr, idaddr;
978 struct ubuf *ibp, *bp;
979 struct inode *ip;
980 struct lfs *fs;
981 struct indir indirs[NIADDR+2], *idp;
982 daddr_t lbn, lastblock;
983 int bb, bcount;
984 int error, frags, i, nsize, osize, num;
985
986 ip = VTOI(vp);
987 fs = ip->i_lfs;
988 offset = blkoff(fs, startoffset);
989 lbn = lblkno(fs, startoffset);
990
991 /*
992 * Three cases: it's a block beyond the end of file, it's a block in
993 * the file that may or may not have been assigned a disk address or
994 * we're writing an entire block.
995 *
996 * Note, if the daddr is UNWRITTEN, the block already exists in
997 * the cache (it was read or written earlier). If so, make sure
998 * we don't count it as a new block or zero out its contents. If
999 * it did not, make sure we allocate any necessary indirect
1000 * blocks.
1001 *
1002 * If we are writing a block beyond the end of the file, we need to
1003 * check if the old last block was a fragment. If it was, we need
1004 * to rewrite it.
1005 */
1006
1007 if (bpp)
1008 *bpp = NULL;
1009
1010 /* Check for block beyond end of file and fragment extension needed. */
1011 lastblock = lblkno(fs, ip->i_ffs1_size);
1012 if (lastblock < NDADDR && lastblock < lbn) {
1013 osize = blksize(fs, ip, lastblock);
1014 if (osize < fs->lfs_bsize && osize > 0) {
1015 if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1016 lastblock,
1017 (bpp ? &bp : NULL))))
1018 return (error);
1019 ip->i_ffs1_size = ip->i_ffs1_size =
1020 (lastblock + 1) * fs->lfs_bsize;
1021 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1022 if (bpp)
1023 (void) VOP_BWRITE(bp);
1024 }
1025 }
1026
1027 /*
1028 * If the block we are writing is a direct block, it's the last
1029 * block in the file, and offset + iosize is less than a full
1030 * block, we can write one or more fragments. There are two cases:
1031 * the block is brand new and we should allocate it the correct
1032 * size or it already exists and contains some fragments and
1033 * may need to extend it.
1034 */
1035 if (lbn < NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1036 osize = blksize(fs, ip, lbn);
1037 nsize = fragroundup(fs, offset + iosize);
1038 if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1039 /* Brand new block or fragment */
1040 frags = numfrags(fs, nsize);
1041 bb = fragstofsb(fs, frags);
1042 if (bpp) {
1043 *bpp = bp = getblk(vp, lbn, nsize);
1044 bp->b_blkno = UNWRITTEN;
1045 }
1046 ip->i_lfs_effnblks += bb;
1047 fs->lfs_bfree -= bb;
1048 ip->i_ffs1_db[lbn] = UNWRITTEN;
1049 } else {
1050 if (nsize <= osize) {
1051 /* No need to extend */
1052 if (bpp && (error = bread(vp, lbn, osize, NOCRED, &bp)))
1053 return error;
1054 } else {
1055 /* Extend existing block */
1056 if ((error =
1057 lfs_fragextend(vp, osize, nsize, lbn,
1058 (bpp ? &bp : NULL))))
1059 return error;
1060 }
1061 if (bpp)
1062 *bpp = bp;
1063 }
1064 return 0;
1065 }
1066
1067 error = ufs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1068 if (error)
1069 return (error);
1070
1071 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1072
1073 /*
1074 * Do byte accounting all at once, so we can gracefully fail *before*
1075 * we start assigning blocks.
1076 */
1077 bb = fsbtodb(fs, 1); /* bb = VFSTOUFS(vp->v_mount)->um_seqinc; */
1078 bcount = 0;
1079 if (daddr == UNASSIGNED) {
1080 bcount = bb;
1081 }
1082 for (i = 1; i < num; ++i) {
1083 if (!indirs[i].in_exists) {
1084 bcount += bb;
1085 }
1086 }
1087 fs->lfs_bfree -= bcount;
1088 ip->i_lfs_effnblks += bcount;
1089
1090 if (daddr == UNASSIGNED) {
1091 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1092 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1093 }
1094
1095 /*
1096 * Create new indirect blocks if necessary
1097 */
1098 if (num > 1) {
1099 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1100 for (i = 1; i < num; ++i) {
1101 ibp = getblk(vp, indirs[i].in_lbn,
1102 fs->lfs_bsize);
1103 if (!indirs[i].in_exists) {
1104 memset(ibp->b_data, 0, ibp->b_bufsize);
1105 ibp->b_blkno = UNWRITTEN;
1106 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1107 ibp->b_blkno = fsbtodb(fs, idaddr);
1108 ibp->b_flags |= B_READ;
1109 VOP_STRATEGY(ibp);
1110 }
1111 /*
1112 * This block exists, but the next one may not.
1113 * If that is the case mark it UNWRITTEN to
1114 * keep the accounting straight.
1115 */
1116 /* XXX ondisk32 */
1117 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1118 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1119 UNWRITTEN;
1120 /* XXX ondisk32 */
1121 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1122 if ((error = VOP_BWRITE(ibp)))
1123 return error;
1124 }
1125 }
1126 }
1127
1128
1129 /*
1130 * Get the existing block from the cache, if requested.
1131 */
1132 frags = fsbtofrags(fs, bb);
1133 if (bpp)
1134 *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1135
1136 /*
1137 * The block we are writing may be a brand new block
1138 * in which case we need to do accounting.
1139 *
1140 * We can tell a truly new block because ufs_bmaparray will say
1141 * it is UNASSIGNED. Once we allocate it we will assign it the
1142 * disk address UNWRITTEN.
1143 */
1144 if (daddr == UNASSIGNED) {
1145 if (bpp) {
1146 /* Note the new address */
1147 bp->b_blkno = UNWRITTEN;
1148 }
1149
1150 switch (num) {
1151 case 0:
1152 ip->i_ffs1_db[lbn] = UNWRITTEN;
1153 break;
1154 case 1:
1155 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1156 break;
1157 default:
1158 idp = &indirs[num - 1];
1159 if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1160 &ibp))
1161 panic("lfs_balloc: bread bno %lld",
1162 (long long)idp->in_lbn);
1163 /* XXX ondisk32 */
1164 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1165 VOP_BWRITE(ibp);
1166 }
1167 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1168 /*
1169 * Not a brand new block, also not in the cache;
1170 * read it in from disk.
1171 */
1172 if (iosize == fs->lfs_bsize)
1173 /* Optimization: I/O is unnecessary. */
1174 bp->b_blkno = daddr;
1175 else {
1176 /*
1177 * We need to read the block to preserve the
1178 * existing bytes.
1179 */
1180 bp->b_blkno = daddr;
1181 bp->b_flags |= B_READ;
1182 VOP_STRATEGY(bp);
1183 return 0;
1184 }
1185 }
1186
1187 return (0);
1188 }
1189
1190 int
1191 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1192 struct ubuf **bpp)
1193 {
1194 struct inode *ip;
1195 struct lfs *fs;
1196 long bb;
1197 int error;
1198 size_t obufsize;
1199
1200 ip = VTOI(vp);
1201 fs = ip->i_lfs;
1202 bb = (long)fragstofsb(fs, numfrags(fs, nsize - osize));
1203 error = 0;
1204
1205 /*
1206 * If we are not asked to actually return the block, all we need
1207 * to do is allocate space for it. UBC will handle dirtying the
1208 * appropriate things and making sure it all goes to disk.
1209 * Don't bother to read in that case.
1210 */
1211 if (bpp && (error = bread(vp, lbn, osize, NOCRED, bpp))) {
1212 brelse(*bpp);
1213 goto out;
1214 }
1215
1216 fs->lfs_bfree -= bb;
1217 ip->i_lfs_effnblks += bb;
1218 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1219
1220 if (bpp) {
1221 obufsize = (*bpp)->b_bufsize;
1222 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1223 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1224 }
1225
1226 out:
1227 return (error);
1228 }
1229