lfs.c revision 1.37 1 /* $NetBSD: lfs.c,v 1.37 2013/06/06 00:52:50 dholland Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1989, 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 */
65
66
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/time.h>
70 #include <sys/buf.h>
71 #include <sys/mount.h>
72
73 #include <ufs/lfs/ulfs_inode.h>
74 #include <ufs/lfs/ulfsmount.h>
75 #define vnode uvnode
76 #include <ufs/lfs/lfs.h>
77 #undef vnode
78
79 #include <assert.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <stdarg.h>
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <unistd.h>
87 #include <util.h>
88
89 #include "bufcache.h"
90 #include "vnode.h"
91 #include "lfs_user.h"
92 #include "segwrite.h"
93 #include "kernelops.h"
94
95 #define panic call_panic
96
97 extern u_int32_t cksum(void *, size_t);
98 extern u_int32_t lfs_sb_cksum(struct dlfs *);
99 extern void pwarn(const char *, ...);
100
101 extern struct uvnodelst vnodelist;
102 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 extern int nvnodes;
104
105 long dev_bsize = DEV_BSIZE;
106
107 static int
108 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 bp->b_blkno * dev_bsize);
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 bp->b_blkno * dev_bsize);
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp, 0);
152 return 0;
153 }
154
155 /*
156 * ulfs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[ULFS_NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < ULFS_NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp, 0);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, fs->lfs_bsize);
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = fsbtodb(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp, 0);
219
220 daddr = fsbtodb(fs, (ulfs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244
245 if (nump)
246 *nump = 0;
247 numlevels = 0;
248 realbn = bn;
249 if (bn < 0)
250 bn = -bn;
251
252 lognindir = -1;
253 for (indir = fs->lfs_nindir; indir; indir >>= 1)
254 ++lognindir;
255
256 /* Determine the number of levels of indirection. After this loop is
257 * done, blockcnt indicates the number of data blocks possible at the
258 * given level of indirection, and ULFS_NIADDR - i is the number of levels
259 * of indirection needed to locate the requested block. */
260
261 bn -= ULFS_NDADDR;
262 for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
263 if (i == 0)
264 return (EFBIG);
265
266 lbc += lognindir;
267 blockcnt = (int64_t) 1 << lbc;
268
269 if (bn < blockcnt)
270 break;
271 }
272
273 /* Calculate the address of the first meta-block. */
274 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
275
276 /* At each iteration, off is the offset into the bap array which is an
277 * array of disk addresses at the current level of indirection. The
278 * logical block number and the offset in that block are stored into
279 * the argument array. */
280 ap->in_lbn = metalbn;
281 ap->in_off = off = ULFS_NIADDR - i;
282 ap->in_exists = 0;
283 ap++;
284 for (++numlevels; i <= ULFS_NIADDR; i++) {
285 /* If searching for a meta-data block, quit when found. */
286 if (metalbn == realbn)
287 break;
288
289 lbc -= lognindir;
290 blockcnt = (int64_t) 1 << lbc;
291 off = (bn >> lbc) & (fs->lfs_nindir - 1);
292
293 ++numlevels;
294 ap->in_lbn = metalbn;
295 ap->in_off = off;
296 ap->in_exists = 0;
297 ++ap;
298
299 metalbn -= -1 + (off << lbc);
300 }
301 if (nump)
302 *nump = numlevels;
303 return (0);
304 }
305
306 int
307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 {
309 return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 }
311
312 /* Search a block for a specific dinode. */
313 struct ulfs1_dinode *
314 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 {
316 struct ulfs1_dinode *dip = (struct ulfs1_dinode *) bp->b_data;
317 struct ulfs1_dinode *ldip, *fin;
318
319 fin = dip + INOPB(fs);
320
321 /*
322 * Read the inode block backwards, since later versions of the
323 * inode will supercede earlier ones. Though it is unlikely, it is
324 * possible that the same inode will appear in the same inode block.
325 */
326 for (ldip = fin - 1; ldip >= dip; --ldip)
327 if (ldip->di_inumber == ino)
328 return (ldip);
329 return NULL;
330 }
331
332 /*
333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 * XXX it currently loses atime information.
335 */
336 struct uvnode *
337 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
338 {
339 struct uvnode *vp;
340 struct inode *ip;
341 struct ulfs1_dinode *dip;
342 struct ubuf *bp;
343 int i, hash;
344
345 vp = ecalloc(1, sizeof(*vp));
346 vp->v_fd = fd;
347 vp->v_fs = fs;
348 vp->v_usecount = 0;
349 vp->v_strategy_op = lfs_vop_strategy;
350 vp->v_bwrite_op = lfs_vop_bwrite;
351 vp->v_bmap_op = lfs_vop_bmap;
352 LIST_INIT(&vp->v_cleanblkhd);
353 LIST_INIT(&vp->v_dirtyblkhd);
354
355 ip = ecalloc(1, sizeof(*ip));
356
357 ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358
359 /* Initialize the inode -- from lfs_vcreate. */
360 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361 vp->v_data = ip;
362 /* ip->i_vnode = vp; */
363 ip->i_number = ino;
364 ip->i_lockf = 0;
365 ip->i_lfs_effnblks = 0;
366 ip->i_flag = 0;
367
368 /* Load inode block and find inode */
369 if (daddr > 0) {
370 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
371 NULL, 0, &bp);
372 bp->b_flags |= B_AGE;
373 dip = lfs_ifind(fs, ino, bp);
374 if (dip == NULL) {
375 brelse(bp, 0);
376 free(ip);
377 free(vp);
378 return NULL;
379 }
380 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
381 brelse(bp, 0);
382 }
383 ip->i_number = ino;
384 /* ip->i_devvp = fs->lfs_devvp; */
385 ip->i_lfs = fs;
386
387 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
388 ip->i_lfs_osize = ip->i_ffs1_size;
389 #if 0
390 if (fs->lfs_version > 1) {
391 ip->i_ffs1_atime = ts.tv_sec;
392 ip->i_ffs1_atimensec = ts.tv_nsec;
393 }
394 #endif
395
396 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
397 for (i = 0; i < ULFS_NDADDR; i++)
398 if (ip->i_ffs1_db[i] != 0)
399 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
400
401 ++nvnodes;
402 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
403 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
404 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
405
406 return vp;
407 }
408
409 static struct uvnode *
410 lfs_vget(void *vfs, ino_t ino)
411 {
412 struct lfs *fs = (struct lfs *)vfs;
413 ulfs_daddr_t daddr;
414 struct ubuf *bp;
415 IFILE *ifp;
416
417 LFS_IENTRY(ifp, fs, ino, bp);
418 daddr = ifp->if_daddr;
419 brelse(bp, 0);
420 if (daddr <= 0 || dtosn(fs, daddr) >= fs->lfs_nseg)
421 return NULL;
422 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
423 }
424
425 /* Check superblock magic number and checksum */
426 static int
427 check_sb(struct lfs *fs)
428 {
429 u_int32_t checksum;
430
431 if (fs->lfs_magic != LFS_MAGIC) {
432 printf("Superblock magic number (0x%lx) does not match "
433 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
434 (unsigned long) LFS_MAGIC);
435 return 1;
436 }
437 /* checksum */
438 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
439 if (fs->lfs_cksum != checksum) {
440 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
441 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
442 return 1;
443 }
444 return 0;
445 }
446
447 /* Initialize LFS library; load superblocks and choose which to use. */
448 struct lfs *
449 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
450 {
451 struct uvnode *devvp;
452 struct ubuf *bp;
453 int tryalt;
454 struct lfs *fs, *altfs;
455 int error;
456
457 vfs_init();
458
459 devvp = ecalloc(1, sizeof(*devvp));
460 devvp->v_fs = NULL;
461 devvp->v_fd = devfd;
462 devvp->v_strategy_op = raw_vop_strategy;
463 devvp->v_bwrite_op = raw_vop_bwrite;
464 devvp->v_bmap_op = raw_vop_bmap;
465 LIST_INIT(&devvp->v_cleanblkhd);
466 LIST_INIT(&devvp->v_dirtyblkhd);
467
468 tryalt = 0;
469 if (dummy_read) {
470 if (sblkno == 0)
471 sblkno = LFS_LABELPAD / dev_bsize;
472 fs = ecalloc(1, sizeof(*fs));
473 fs->lfs_devvp = devvp;
474 } else {
475 if (sblkno == 0) {
476 sblkno = LFS_LABELPAD / dev_bsize;
477 tryalt = 1;
478 } else if (debug) {
479 printf("No -b flag given, not attempting to verify checkpoint\n");
480 }
481
482 dev_bsize = DEV_BSIZE;
483
484 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, 0, &bp);
485 fs = ecalloc(1, sizeof(*fs));
486 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
487 fs->lfs_devvp = devvp;
488 bp->b_flags |= B_INVAL;
489 brelse(bp, 0);
490
491 dev_bsize = fs->lfs_fsize >> fs->lfs_fsbtodb;
492
493 if (tryalt) {
494 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
495 LFS_SBPAD, NOCRED, 0, &bp);
496 altfs = ecalloc(1, sizeof(*altfs));
497 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
498 altfs->lfs_devvp = devvp;
499 bp->b_flags |= B_INVAL;
500 brelse(bp, 0);
501
502 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
503 if (debug)
504 printf("Primary superblock is no good, using first alternate\n");
505 free(fs);
506 fs = altfs;
507 } else {
508 /* If both superblocks check out, try verification */
509 if (check_sb(altfs)) {
510 if (debug)
511 printf("First alternate superblock is no good, using primary\n");
512 free(altfs);
513 } else {
514 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
515 free(altfs);
516 } else {
517 free(fs);
518 fs = altfs;
519 }
520 }
521 }
522 }
523 if (check_sb(fs)) {
524 free(fs);
525 return NULL;
526 }
527 }
528
529 /* Compatibility */
530 if (fs->lfs_version < 2) {
531 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
532 fs->lfs_ibsize = fs->lfs_bsize;
533 fs->lfs_start = fs->lfs_sboffs[0];
534 fs->lfs_tstamp = fs->lfs_otstamp;
535 fs->lfs_fsbtodb = 0;
536 }
537
538 if (!dummy_read) {
539 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
540 fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
541 fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
542 }
543
544 if (idaddr == 0)
545 idaddr = fs->lfs_idaddr;
546 else
547 fs->lfs_idaddr = idaddr;
548 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
549 fs->lfs_ivnode = lfs_raw_vget(fs,
550 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
551 idaddr);
552 if (fs->lfs_ivnode == NULL)
553 return NULL;
554
555 register_vget((void *)fs, lfs_vget);
556
557 return fs;
558 }
559
560 /*
561 * Check partial segment validity between fs->lfs_offset and the given goal.
562 *
563 * If goal == 0, just keep on going until the segments stop making sense,
564 * and return the address of the last valid partial segment.
565 *
566 * If goal != 0, return the address of the first partial segment that failed,
567 * or "goal" if we reached it without failure (the partial segment *at* goal
568 * need not be valid).
569 */
570 ulfs_daddr_t
571 try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
572 {
573 ulfs_daddr_t daddr, odaddr;
574 SEGSUM *sp;
575 int i, bc, hitclean;
576 struct ubuf *bp;
577 ulfs_daddr_t nodirop_daddr;
578 u_int64_t serial;
579
580 bc = 0;
581 hitclean = 0;
582 odaddr = -1;
583 daddr = osb->lfs_offset;
584 nodirop_daddr = daddr;
585 serial = osb->lfs_serial;
586 while (daddr != goal) {
587 /*
588 * Don't mistakenly read a superblock, if there is one here.
589 */
590 if (sntod(osb, dtosn(osb, daddr)) == daddr) {
591 if (daddr == osb->lfs_start)
592 daddr += btofsb(osb, LFS_LABELPAD);
593 for (i = 0; i < LFS_MAXNUMSB; i++) {
594 if (osb->lfs_sboffs[i] < daddr)
595 break;
596 if (osb->lfs_sboffs[i] == daddr)
597 daddr += btofsb(osb, LFS_SBPAD);
598 }
599 }
600
601 /* Read in summary block */
602 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize,
603 NULL, 0, &bp);
604 sp = (SEGSUM *)bp->b_data;
605
606 /*
607 * Check for a valid segment summary belonging to our fs.
608 */
609 if (sp->ss_magic != SS_MAGIC ||
610 sp->ss_ident != osb->lfs_ident ||
611 sp->ss_serial < serial || /* XXX strengthen this */
612 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
613 sizeof(sp->ss_sumsum))) {
614 brelse(bp, 0);
615 if (debug) {
616 if (sp->ss_magic != SS_MAGIC)
617 pwarn("pseg at 0x%x: "
618 "wrong magic number\n",
619 (int)daddr);
620 else if (sp->ss_ident != osb->lfs_ident)
621 pwarn("pseg at 0x%x: "
622 "expected ident %llx, got %llx\n",
623 (int)daddr,
624 (long long)sp->ss_ident,
625 (long long)osb->lfs_ident);
626 else if (sp->ss_serial >= serial)
627 pwarn("pseg at 0x%x: "
628 "serial %d < %d\n", (int)daddr,
629 (int)sp->ss_serial, (int)serial);
630 else
631 pwarn("pseg at 0x%x: "
632 "summary checksum wrong\n",
633 (int)daddr);
634 }
635 break;
636 }
637 if (debug && sp->ss_serial != serial)
638 pwarn("warning, serial=%d ss_serial=%d\n",
639 (int)serial, (int)sp->ss_serial);
640 ++serial;
641 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
642 if (bc == 0) {
643 brelse(bp, 0);
644 break;
645 }
646 if (debug)
647 pwarn("summary good: 0x%x/%d\n", (int)daddr,
648 (int)sp->ss_serial);
649 assert (bc > 0);
650 odaddr = daddr;
651 daddr += btofsb(osb, osb->lfs_sumsize + bc);
652 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
653 dtosn(osb, daddr) != dtosn(osb, daddr +
654 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
655 daddr = sp->ss_next;
656 }
657
658 /*
659 * Check for the beginning and ending of a sequence of
660 * dirops. Writes from the cleaner never involve new
661 * information, and are always checkpoints; so don't try
662 * to roll forward through them. Likewise, psegs written
663 * by a previous roll-forward attempt are not interesting.
664 */
665 if (sp->ss_flags & (SS_CLEAN | SS_RFW))
666 hitclean = 1;
667 if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
668 nodirop_daddr = daddr;
669
670 brelse(bp, 0);
671 }
672
673 if (goal == 0)
674 return nodirop_daddr;
675 else
676 return daddr;
677 }
678
679 /* Use try_verify to check whether the newer superblock is valid. */
680 struct lfs *
681 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
682 {
683 ulfs_daddr_t daddr;
684 struct lfs *osb, *nsb;
685
686 /*
687 * Verify the checkpoint of the newer superblock,
688 * if the timestamp/serial number of the two superblocks is
689 * different.
690 */
691
692 osb = NULL;
693 if (debug)
694 pwarn("sb0 %lld, sb1 %lld",
695 (long long) sb0->lfs_serial,
696 (long long) sb1->lfs_serial);
697
698 if ((sb0->lfs_version == 1 &&
699 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
700 (sb0->lfs_version > 1 &&
701 sb0->lfs_serial != sb1->lfs_serial)) {
702 if (sb0->lfs_version == 1) {
703 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
704 osb = sb1;
705 nsb = sb0;
706 } else {
707 osb = sb0;
708 nsb = sb1;
709 }
710 } else {
711 if (sb0->lfs_serial > sb1->lfs_serial) {
712 osb = sb1;
713 nsb = sb0;
714 } else {
715 osb = sb0;
716 nsb = sb1;
717 }
718 }
719 if (debug) {
720 printf("Attempting to verify newer checkpoint...");
721 fflush(stdout);
722 }
723 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
724
725 if (debug)
726 printf("done.\n");
727 if (daddr == nsb->lfs_offset) {
728 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
729 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
730 sbdirty();
731 } else {
732 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
733 }
734 return (daddr == nsb->lfs_offset ? nsb : osb);
735 }
736 /* Nothing to check */
737 return osb;
738 }
739
740 /* Verify a partial-segment summary; return the number of bytes on disk. */
741 int
742 check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
743 struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
744 {
745 FINFO *fp;
746 int bc; /* Bytes in partial segment */
747 int nblocks;
748 ulfs_daddr_t seg_addr, daddr;
749 ulfs_daddr_t *dp, *idp;
750 struct ubuf *bp;
751 int i, j, k, datac, len;
752 long sn;
753 u_int32_t *datap;
754 u_int32_t ccksum;
755
756 sn = dtosn(fs, pseg_addr);
757 seg_addr = sntod(fs, sn);
758
759 /* We've already checked the sumsum, just do the data bounds and sum */
760
761 /* Count the blocks. */
762 nblocks = howmany(sp->ss_ninos, INOPB(fs));
763 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
764 assert(bc >= 0);
765
766 fp = (FINFO *) (sp + 1);
767 for (i = 0; i < sp->ss_nfinfo; i++) {
768 nblocks += fp->fi_nblocks;
769 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
770 << fs->lfs_bshift);
771 assert(bc >= 0);
772 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
773 if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
774 return 0;
775 }
776 datap = emalloc(nblocks * sizeof(*datap));
777 datac = 0;
778
779 dp = (ulfs_daddr_t *) sp;
780 dp += fs->lfs_sumsize / sizeof(ulfs_daddr_t);
781 dp--;
782
783 idp = dp;
784 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
785 fp = (FINFO *) (sp + 1);
786 for (i = 0, j = 0;
787 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
788 if (i >= sp->ss_nfinfo && *idp != daddr) {
789 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
790 ": found %d, wanted %d\n",
791 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
792 if (debug)
793 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
794 daddr);
795 break;
796 }
797 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
798 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
799 NOCRED, 0, &bp);
800 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
801 brelse(bp, 0);
802
803 ++j;
804 daddr += btofsb(fs, fs->lfs_ibsize);
805 --idp;
806 }
807 if (i < sp->ss_nfinfo) {
808 if (func)
809 func(daddr, fp);
810 for (k = 0; k < fp->fi_nblocks; k++) {
811 len = (k == fp->fi_nblocks - 1 ?
812 fp->fi_lastlength
813 : fs->lfs_bsize);
814 bread(devvp, fsbtodb(fs, daddr), len,
815 NOCRED, 0, &bp);
816 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
817 brelse(bp, 0);
818 daddr += btofsb(fs, len);
819 }
820 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
821 }
822 }
823
824 if (datac != nblocks) {
825 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
826 (long long) pseg_addr, nblocks, datac);
827 }
828 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
829 /* Check the data checksum */
830 if (ccksum != sp->ss_datasum) {
831 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
832 " mismatch: given 0x%x, computed 0x%x\n",
833 pseg_addr, sp->ss_datasum, ccksum);
834 free(datap);
835 return 0;
836 }
837 free(datap);
838 assert(bc >= 0);
839 return bc;
840 }
841
842 /* print message and exit */
843 void
844 my_vpanic(int fatal, const char *fmt, va_list ap)
845 {
846 (void) vprintf(fmt, ap);
847 exit(8);
848 }
849
850 void
851 call_panic(const char *fmt, ...)
852 {
853 va_list ap;
854
855 va_start(ap, fmt);
856 panic_func(1, fmt, ap);
857 va_end(ap);
858 }
859
860 /* Allocate a new inode. */
861 struct uvnode *
862 lfs_valloc(struct lfs *fs, ino_t ino)
863 {
864 struct ubuf *bp, *cbp;
865 struct ifile *ifp;
866 ino_t new_ino;
867 int error;
868 int new_gen;
869 CLEANERINFO *cip;
870
871 /* Get the head of the freelist. */
872 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
873
874 /*
875 * Remove the inode from the free list and write the new start
876 * of the free list into the superblock.
877 */
878 LFS_IENTRY(ifp, fs, new_ino, bp);
879 if (ifp->if_daddr != LFS_UNUSED_DADDR)
880 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
881 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
882
883 new_gen = ifp->if_version; /* version was updated by vfree */
884 brelse(bp, 0);
885
886 /* Extend IFILE so that the next lfs_valloc will succeed. */
887 if (fs->lfs_freehd == LFS_UNUSED_INUM) {
888 if ((error = extend_ifile(fs)) != 0) {
889 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
890 return NULL;
891 }
892 }
893
894 /* Set superblock modified bit and increment file count. */
895 sbdirty();
896 ++fs->lfs_nfiles;
897
898 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
899 }
900
901 #ifdef IN_FSCK_LFS
902 void reset_maxino(ino_t);
903 #endif
904
905 /*
906 * Add a new block to the Ifile, to accommodate future file creations.
907 */
908 int
909 extend_ifile(struct lfs *fs)
910 {
911 struct uvnode *vp;
912 struct inode *ip;
913 IFILE *ifp;
914 IFILE_V1 *ifp_v1;
915 struct ubuf *bp, *cbp;
916 daddr_t i, blkno, max;
917 ino_t oldlast;
918 CLEANERINFO *cip;
919
920 vp = fs->lfs_ivnode;
921 ip = VTOI(vp);
922 blkno = lblkno(fs, ip->i_ffs1_size);
923
924 lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
925 ip->i_ffs1_size += fs->lfs_bsize;
926 ip->i_flag |= IN_MODIFIED;
927
928 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
929 fs->lfs_ifpb;
930 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
931 LFS_PUT_HEADFREE(fs, cip, cbp, i);
932 max = i + fs->lfs_ifpb;
933 fs->lfs_bfree -= btofsb(fs, fs->lfs_bsize);
934
935 if (fs->lfs_version == 1) {
936 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
937 ifp_v1->if_version = 1;
938 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
939 ifp_v1->if_nextfree = ++i;
940 }
941 ifp_v1--;
942 ifp_v1->if_nextfree = oldlast;
943 } else {
944 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
945 ifp->if_version = 1;
946 ifp->if_daddr = LFS_UNUSED_DADDR;
947 ifp->if_nextfree = ++i;
948 }
949 ifp--;
950 ifp->if_nextfree = oldlast;
951 }
952 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
953
954 LFS_BWRITE_LOG(bp);
955
956 #ifdef IN_FSCK_LFS
957 reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
958 fs->lfs_cleansz) * fs->lfs_ifpb);
959 #endif
960 return 0;
961 }
962
963 /*
964 * Allocate a block, and to inode and filesystem block accounting for it
965 * and for any indirect blocks the may need to be created in order for
966 * this block to be created.
967 *
968 * Blocks which have never been accounted for (i.e., which "do not exist")
969 * have disk address 0, which is translated by ulfs_bmap to the special value
970 * UNASSIGNED == -1, as in the historical ULFS.
971 *
972 * Blocks which have been accounted for but which have not yet been written
973 * to disk are given the new special disk address UNWRITTEN == -2, so that
974 * they can be differentiated from completely new blocks.
975 */
976 int
977 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
978 {
979 int offset;
980 daddr_t daddr, idaddr;
981 struct ubuf *ibp, *bp;
982 struct inode *ip;
983 struct lfs *fs;
984 struct indir indirs[ULFS_NIADDR+2], *idp;
985 daddr_t lbn, lastblock;
986 int bcount;
987 int error, frags, i, nsize, osize, num;
988
989 ip = VTOI(vp);
990 fs = ip->i_lfs;
991 offset = blkoff(fs, startoffset);
992 lbn = lblkno(fs, startoffset);
993
994 /*
995 * Three cases: it's a block beyond the end of file, it's a block in
996 * the file that may or may not have been assigned a disk address or
997 * we're writing an entire block.
998 *
999 * Note, if the daddr is UNWRITTEN, the block already exists in
1000 * the cache (it was read or written earlier). If so, make sure
1001 * we don't count it as a new block or zero out its contents. If
1002 * it did not, make sure we allocate any necessary indirect
1003 * blocks.
1004 *
1005 * If we are writing a block beyond the end of the file, we need to
1006 * check if the old last block was a fragment. If it was, we need
1007 * to rewrite it.
1008 */
1009
1010 if (bpp)
1011 *bpp = NULL;
1012
1013 /* Check for block beyond end of file and fragment extension needed. */
1014 lastblock = lblkno(fs, ip->i_ffs1_size);
1015 if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1016 osize = blksize(fs, ip, lastblock);
1017 if (osize < fs->lfs_bsize && osize > 0) {
1018 if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1019 lastblock,
1020 (bpp ? &bp : NULL))))
1021 return (error);
1022 ip->i_ffs1_size = (lastblock + 1) * fs->lfs_bsize;
1023 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1024 if (bpp)
1025 (void) VOP_BWRITE(bp);
1026 }
1027 }
1028
1029 /*
1030 * If the block we are writing is a direct block, it's the last
1031 * block in the file, and offset + iosize is less than a full
1032 * block, we can write one or more fragments. There are two cases:
1033 * the block is brand new and we should allocate it the correct
1034 * size or it already exists and contains some fragments and
1035 * may need to extend it.
1036 */
1037 if (lbn < ULFS_NDADDR && lblkno(fs, ip->i_ffs1_size) <= lbn) {
1038 osize = blksize(fs, ip, lbn);
1039 nsize = fragroundup(fs, offset + iosize);
1040 if (lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1041 /* Brand new block or fragment */
1042 frags = numfrags(fs, nsize);
1043 if (bpp) {
1044 *bpp = bp = getblk(vp, lbn, nsize);
1045 bp->b_blkno = UNWRITTEN;
1046 }
1047 ip->i_lfs_effnblks += frags;
1048 fs->lfs_bfree -= frags;
1049 ip->i_ffs1_db[lbn] = UNWRITTEN;
1050 } else {
1051 if (nsize <= osize) {
1052 /* No need to extend */
1053 if (bpp && (error = bread(vp, lbn, osize,
1054 NOCRED, 0, &bp)))
1055 return error;
1056 } else {
1057 /* Extend existing block */
1058 if ((error =
1059 lfs_fragextend(vp, osize, nsize, lbn,
1060 (bpp ? &bp : NULL))))
1061 return error;
1062 }
1063 if (bpp)
1064 *bpp = bp;
1065 }
1066 return 0;
1067 }
1068
1069 error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1070 if (error)
1071 return (error);
1072
1073 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1074
1075 /*
1076 * Do byte accounting all at once, so we can gracefully fail *before*
1077 * we start assigning blocks.
1078 */
1079 frags = fsbtodb(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1080 bcount = 0;
1081 if (daddr == UNASSIGNED) {
1082 bcount = frags;
1083 }
1084 for (i = 1; i < num; ++i) {
1085 if (!indirs[i].in_exists) {
1086 bcount += frags;
1087 }
1088 }
1089 fs->lfs_bfree -= bcount;
1090 ip->i_lfs_effnblks += bcount;
1091
1092 if (daddr == UNASSIGNED) {
1093 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1094 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1095 }
1096
1097 /*
1098 * Create new indirect blocks if necessary
1099 */
1100 if (num > 1) {
1101 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1102 for (i = 1; i < num; ++i) {
1103 ibp = getblk(vp, indirs[i].in_lbn,
1104 fs->lfs_bsize);
1105 if (!indirs[i].in_exists) {
1106 memset(ibp->b_data, 0, ibp->b_bufsize);
1107 ibp->b_blkno = UNWRITTEN;
1108 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1109 ibp->b_blkno = fsbtodb(fs, idaddr);
1110 ibp->b_flags |= B_READ;
1111 VOP_STRATEGY(ibp);
1112 }
1113 /*
1114 * This block exists, but the next one may not.
1115 * If that is the case mark it UNWRITTEN to
1116 * keep the accounting straight.
1117 */
1118 /* XXX ondisk32 */
1119 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1120 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1121 UNWRITTEN;
1122 /* XXX ondisk32 */
1123 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1124 if ((error = VOP_BWRITE(ibp)))
1125 return error;
1126 }
1127 }
1128 }
1129
1130
1131 /*
1132 * Get the existing block from the cache, if requested.
1133 */
1134 if (bpp)
1135 *bpp = bp = getblk(vp, lbn, blksize(fs, ip, lbn));
1136
1137 /*
1138 * The block we are writing may be a brand new block
1139 * in which case we need to do accounting.
1140 *
1141 * We can tell a truly new block because ulfs_bmaparray will say
1142 * it is UNASSIGNED. Once we allocate it we will assign it the
1143 * disk address UNWRITTEN.
1144 */
1145 if (daddr == UNASSIGNED) {
1146 if (bpp) {
1147 /* Note the new address */
1148 bp->b_blkno = UNWRITTEN;
1149 }
1150
1151 switch (num) {
1152 case 0:
1153 ip->i_ffs1_db[lbn] = UNWRITTEN;
1154 break;
1155 case 1:
1156 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1157 break;
1158 default:
1159 idp = &indirs[num - 1];
1160 if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1161 0, &ibp))
1162 panic("lfs_balloc: bread bno %lld",
1163 (long long)idp->in_lbn);
1164 /* XXX ondisk32 */
1165 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1166 VOP_BWRITE(ibp);
1167 }
1168 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1169 /*
1170 * Not a brand new block, also not in the cache;
1171 * read it in from disk.
1172 */
1173 if (iosize == fs->lfs_bsize)
1174 /* Optimization: I/O is unnecessary. */
1175 bp->b_blkno = daddr;
1176 else {
1177 /*
1178 * We need to read the block to preserve the
1179 * existing bytes.
1180 */
1181 bp->b_blkno = daddr;
1182 bp->b_flags |= B_READ;
1183 VOP_STRATEGY(bp);
1184 return 0;
1185 }
1186 }
1187
1188 return (0);
1189 }
1190
1191 int
1192 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1193 struct ubuf **bpp)
1194 {
1195 struct inode *ip;
1196 struct lfs *fs;
1197 int frags;
1198 int error;
1199 size_t obufsize;
1200
1201 ip = VTOI(vp);
1202 fs = ip->i_lfs;
1203 frags = (long)numfrags(fs, nsize - osize);
1204 error = 0;
1205
1206 /*
1207 * If we are not asked to actually return the block, all we need
1208 * to do is allocate space for it. UBC will handle dirtying the
1209 * appropriate things and making sure it all goes to disk.
1210 * Don't bother to read in that case.
1211 */
1212 if (bpp && (error = bread(vp, lbn, osize, NOCRED, 0, bpp))) {
1213 brelse(*bpp, 0);
1214 goto out;
1215 }
1216
1217 fs->lfs_bfree -= frags;
1218 ip->i_lfs_effnblks += frags;
1219 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1220
1221 if (bpp) {
1222 obufsize = (*bpp)->b_bufsize;
1223 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1224 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1225 }
1226
1227 out:
1228 return (error);
1229 }
1230