lfs.c revision 1.4 1 /* $NetBSD: lfs.c,v 1.4 2003/07/12 11:47:05 yamt Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. All advertising materials mentioning features or use of this software
55 * must display the following acknowledgement:
56 * This product includes software developed by the University of
57 * California, Berkeley and its contributors.
58 * 4. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
75 */
76
77
78 #include <sys/types.h>
79 #include <sys/param.h>
80 #include <sys/time.h>
81 #include <sys/buf.h>
82 #include <sys/mount.h>
83
84 #include <ufs/ufs/inode.h>
85 #include <ufs/ufs/ufsmount.h>
86 #define vnode uvnode
87 #include <ufs/lfs/lfs.h>
88 #undef vnode
89
90 #include <assert.h>
91 #include <err.h>
92 #include <errno.h>
93 #include <stdarg.h>
94 #include <stdio.h>
95 #include <stdlib.h>
96 #include <string.h>
97 #include <unistd.h>
98
99 #include "bufcache.h"
100 #include "vnode.h"
101 #include "lfs.h"
102 #include "segwrite.h"
103
104 #define panic call_panic
105
106 extern u_int32_t cksum(void *, size_t);
107 extern u_int32_t lfs_sb_cksum(struct dlfs *);
108
109 extern struct uvnodelst vnodelist;
110 extern struct uvnodelst getvnodelist;
111 extern int nvnodes;
112
113 int fsdirty = 0;
114 void (*panic_func)(int, const char *, va_list) = my_vpanic;
115
116 /*
117 * LFS buffer and uvnode operations
118 */
119
120 int
121 lfs_vop_strategy(struct ubuf * bp)
122 {
123 int count;
124
125 if (bp->b_flags & B_READ) {
126 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
127 dbtob(bp->b_blkno));
128 if (count == bp->b_bcount)
129 bp->b_flags |= B_DONE;
130 } else {
131 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
132 dbtob(bp->b_blkno));
133 if (count == 0) {
134 perror("pwrite");
135 return -1;
136 }
137 bp->b_flags &= ~B_DELWRI;
138 reassignbuf(bp, bp->b_vp);
139 }
140 return 0;
141 }
142
143 int
144 lfs_vop_bwrite(struct ubuf * bp)
145 {
146 struct lfs *fs;
147
148 fs = bp->b_vp->v_fs;
149 if (!(bp->b_flags & B_DELWRI)) {
150 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
151 }
152 bp->b_flags |= B_DELWRI | B_LOCKED;
153 reassignbuf(bp, bp->b_vp);
154 brelse(bp);
155 return 0;
156 }
157
158 /*
159 * ufs_bmaparray does the bmap conversion, and if requested returns the
160 * array of logical blocks which must be traversed to get to a block.
161 * Each entry contains the offset into that block that gets you to the
162 * next block and the disk address of the block (if it is assigned).
163 */
164 int
165 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
166 {
167 struct inode *ip;
168 struct ubuf *bp;
169 struct indir a[NIADDR + 1], *xap;
170 daddr_t daddr;
171 daddr_t metalbn;
172 int error, num;
173
174 ip = VTOI(vp);
175
176 if (bn >= 0 && bn < NDADDR) {
177 if (nump != NULL)
178 *nump = 0;
179 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
180 if (*bnp == 0)
181 *bnp = -1;
182 return (0);
183 }
184 xap = ap == NULL ? a : ap;
185 if (!nump)
186 nump = #
187 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
188 return (error);
189
190 num = *nump;
191
192 /* Get disk address out of indirect block array */
193 daddr = ip->i_ffs1_ib[xap->in_off];
194
195 for (bp = NULL, ++xap; --num; ++xap) {
196 /* Exit the loop if there is no disk address assigned yet and
197 * the indirect block isn't in the cache, or if we were
198 * looking for an indirect block and we've found it. */
199
200 metalbn = xap->in_lbn;
201 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
202 break;
203 /*
204 * If we get here, we've either got the block in the cache
205 * or we have a disk address for it, go fetch it.
206 */
207 if (bp)
208 brelse(bp);
209
210 xap->in_exists = 1;
211 bp = getblk(vp, metalbn, fs->lfs_bsize);
212
213 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
214 bp->b_blkno = fsbtodb(fs, daddr);
215 bp->b_flags |= B_READ;
216 VOP_STRATEGY(bp);
217 }
218 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
219 }
220 if (bp)
221 brelse(bp);
222
223 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
224 *bnp = daddr == 0 ? -1 : daddr;
225 return (0);
226 }
227
228 /*
229 * Create an array of logical block number/offset pairs which represent the
230 * path of indirect blocks required to access a data block. The first "pair"
231 * contains the logical block number of the appropriate single, double or
232 * triple indirect block and the offset into the inode indirect block array.
233 * Note, the logical block number of the inode single/double/triple indirect
234 * block appears twice in the array, once with the offset into the i_ffs1_ib and
235 * once with the offset into the page itself.
236 */
237 int
238 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
239 {
240 daddr_t metalbn, realbn;
241 int64_t blockcnt;
242 int lbc;
243 int i, numlevels, off;
244 int lognindir, indir;
245
246 if (nump)
247 *nump = 0;
248 numlevels = 0;
249 realbn = bn;
250 if (bn < 0)
251 bn = -bn;
252
253 lognindir = -1;
254 for (indir = fs->lfs_nindir; indir; indir >>= 1)
255 ++lognindir;
256
257 /* Determine the number of levels of indirection. After this loop is
258 * done, blockcnt indicates the number of data blocks possible at the
259 * given level of indirection, and NIADDR - i is the number of levels
260 * of indirection needed to locate the requested block. */
261
262 bn -= NDADDR;
263 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
264 if (i == 0)
265 return (EFBIG);
266
267 lbc += lognindir;
268 blockcnt = (int64_t) 1 << lbc;
269
270 if (bn < blockcnt)
271 break;
272 }
273
274 /* Calculate the address of the first meta-block. */
275 if (realbn >= 0)
276 metalbn = -(realbn - bn + NIADDR - i);
277 else
278 metalbn = -(-realbn - bn + NIADDR - i);
279
280 /* At each iteration, off is the offset into the bap array which is an
281 * array of disk addresses at the current level of indirection. The
282 * logical block number and the offset in that block are stored into
283 * the argument array. */
284 ap->in_lbn = metalbn;
285 ap->in_off = off = NIADDR - i;
286 ap->in_exists = 0;
287 ap++;
288 for (++numlevels; i <= NIADDR; i++) {
289 /* If searching for a meta-data block, quit when found. */
290 if (metalbn == realbn)
291 break;
292
293 lbc -= lognindir;
294 blockcnt = (int64_t) 1 << lbc;
295 off = (bn >> lbc) & (fs->lfs_nindir - 1);
296
297 ++numlevels;
298 ap->in_lbn = metalbn;
299 ap->in_off = off;
300 ap->in_exists = 0;
301 ++ap;
302
303 metalbn -= -1 + (off << lbc);
304 }
305 if (nump)
306 *nump = numlevels;
307 return (0);
308 }
309
310 int
311 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
312 {
313 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
314 }
315
316 /* Search a block for a specific dinode. */
317 struct ufs1_dinode *
318 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
319 {
320 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
321 struct ufs1_dinode *ldip, *fin;
322
323 fin = dip + INOPB(fs);
324
325 /*
326 * Read the inode block backwards, since later versions of the
327 * inode will supercede earlier ones. Though it is unlikely, it is
328 * possible that the same inode will appear in the same inode block.
329 */
330 for (ldip = fin - 1; ldip >= dip; --ldip)
331 if (ldip->di_inumber == ino)
332 return (ldip);
333 return NULL;
334 }
335
336 /*
337 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
338 * XXX it currently loses atime information.
339 */
340 struct uvnode *
341 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
342 {
343 struct uvnode *vp;
344 struct inode *ip;
345 struct ufs1_dinode *dip;
346 struct ubuf *bp;
347 int i;
348
349 vp = (struct uvnode *) malloc(sizeof(*vp));
350 memset(vp, 0, sizeof(*vp));
351 vp->v_fd = fd;
352 vp->v_fs = fs;
353 vp->v_usecount = 0;
354 vp->v_strategy_op = lfs_vop_strategy;
355 vp->v_bwrite_op = lfs_vop_bwrite;
356 vp->v_bmap_op = lfs_vop_bmap;
357
358 ++nvnodes;
359 LIST_INSERT_HEAD(&getvnodelist, vp, v_getvnodes);
360 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
361
362 vp->v_data = ip = (struct inode *) malloc(sizeof(*ip));
363 memset(ip, 0, sizeof(*ip));
364
365 ip->i_din.ffs1_din = (struct ufs1_dinode *)
366 malloc(sizeof(struct ufs1_dinode));
367 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
368
369 /* Initialize the inode -- from lfs_vcreate. */
370 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
371 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
372 vp->v_data = ip;
373 /* ip->i_vnode = vp; */
374 ip->i_number = ino;
375 ip->i_lockf = 0;
376 ip->i_diroff = 0;
377 ip->i_lfs_effnblks = 0;
378 ip->i_flag = 0;
379
380 /* Load inode block and find inode */
381 bread(fs->lfs_unlockvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
382 bp->b_flags |= B_AGE;
383 dip = lfs_ifind(fs, ino, bp);
384 if (dip == NULL) {
385 brelse(bp);
386 free(vp);
387 return NULL;
388 }
389 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
390 brelse(bp);
391 ip->i_number = ino;
392 /* ip->i_devvp = fs->lfs_unlockvp; */
393 ip->i_lfs = fs;
394
395 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
396 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
397 ip->i_lfs_osize = ip->i_ffs1_size;
398 #if 0
399 if (fs->lfs_version > 1) {
400 ip->i_ffs1_atime = ts.tv_sec;
401 ip->i_ffs1_atimensec = ts.tv_nsec;
402 }
403 #endif
404
405 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
406 for (i = 0; i < NDADDR; i++)
407 if (ip->i_ffs1_db[i] != 0)
408 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
409
410 return vp;
411 }
412
413 static struct uvnode *
414 lfs_vget(void *vfs, ino_t ino)
415 {
416 struct lfs *fs = (struct lfs *)vfs;
417 ufs_daddr_t daddr;
418 struct ubuf *bp;
419 IFILE *ifp;
420
421 LFS_IENTRY(ifp, fs, ino, bp);
422 daddr = ifp->if_daddr;
423 brelse(bp);
424 if (daddr == 0)
425 return NULL;
426 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
427 }
428
429 /* Check superblock magic number and checksum */
430 static int
431 check_sb(struct lfs *fs)
432 {
433 u_int32_t checksum;
434
435 if (fs->lfs_magic != LFS_MAGIC) {
436 printf("Superblock magic number (0x%lx) does not match "
437 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
438 (unsigned long) LFS_MAGIC);
439 return 1;
440 }
441 /* checksum */
442 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
443 if (fs->lfs_cksum != checksum) {
444 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
445 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
446 return 1;
447 }
448 return 0;
449 }
450
451 /* Initialize LFS library; load superblocks and choose which to use. */
452 struct lfs *
453 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int debug)
454 {
455 struct uvnode *devvp;
456 struct ubuf *bp;
457 int tryalt;
458 struct lfs *fs, *altfs;
459 int error;
460
461 vfs_init();
462
463 devvp = (struct uvnode *) malloc(sizeof(*devvp));
464 devvp->v_fs = NULL;
465 devvp->v_fd = devfd;
466 devvp->v_strategy_op = raw_vop_strategy;
467 devvp->v_bwrite_op = raw_vop_bwrite;
468 devvp->v_bmap_op = raw_vop_bmap;
469
470 tryalt = 0;
471 if (sblkno == 0) {
472 sblkno = btodb(LFS_LABELPAD);
473 tryalt = 1;
474 } else if (debug) {
475 printf("No -b flag given, not attempting to verify checkpoint\n");
476 }
477 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
478 fs = (struct lfs *) malloc(sizeof(*fs));
479 memset(fs, 0, sizeof(*fs));
480 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
481 fs->lfs_unlockvp = devvp;
482 bp->b_flags |= B_INVAL;
483 brelse(bp);
484
485 if (tryalt) {
486 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
487 LFS_SBPAD, NOCRED, &bp);
488 altfs = (struct lfs *) malloc(sizeof(*altfs));
489 memset(altfs, 0, sizeof(*altfs));
490 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
491 altfs->lfs_unlockvp = devvp;
492 bp->b_flags |= B_INVAL;
493 brelse(bp);
494
495 if (check_sb(fs)) {
496 if (debug)
497 printf("Primary superblock is no good, using first alternate\n");
498 free(fs);
499 fs = altfs;
500 } else {
501 /* If both superblocks check out, try verification */
502 if (check_sb(altfs)) {
503 if (debug)
504 printf("First alternate superblock is no good, using primary\n");
505 free(altfs);
506 } else {
507 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
508 free(altfs);
509 } else {
510 free(fs);
511 fs = altfs;
512 }
513 }
514 }
515 }
516 if (check_sb(fs)) {
517 free(fs);
518 return NULL;
519 }
520 /* Compatibility */
521 if (fs->lfs_version < 2) {
522 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
523 fs->lfs_ibsize = fs->lfs_bsize;
524 fs->lfs_start = fs->lfs_sboffs[0];
525 fs->lfs_tstamp = fs->lfs_otstamp;
526 fs->lfs_fsbtodb = 0;
527 }
528 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
529 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
530 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
531
532 if (idaddr == 0)
533 idaddr = fs->lfs_idaddr;
534 fs->lfs_ivnode = lfs_raw_vget(fs, fs->lfs_ifile, devvp->v_fd, idaddr);
535
536 register_vget((void *)fs, lfs_vget);
537
538 return fs;
539 }
540
541 /*
542 * Check partial segment validity between fs->lfs_offset and the given goal.
543 * If goal == 0, just keep on going until the segments stop making sense.
544 * Return the address of the first partial segment that failed.
545 */
546 ufs_daddr_t
547 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
548 {
549 ufs_daddr_t daddr, odaddr;
550 SEGSUM *sp;
551 int bc, flag;
552 struct ubuf *bp;
553 ufs_daddr_t nodirop_daddr;
554 u_int64_t serial;
555
556 daddr = osb->lfs_offset;
557 nodirop_daddr = daddr;
558 serial = osb->lfs_serial;
559 while (daddr != goal) {
560 flag = 0;
561 oncemore:
562 /* Read in summary block */
563 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
564 sp = (SEGSUM *)bp->b_data;
565
566 /*
567 * Could be a superblock instead of a segment summary.
568 * XXX should use gseguse, but right now we need to do more
569 * setup before we can...fix this
570 */
571 if (sp->ss_magic != SS_MAGIC ||
572 sp->ss_ident != osb->lfs_ident ||
573 sp->ss_serial < serial ||
574 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
575 sizeof(sp->ss_sumsum))) {
576 brelse(bp);
577 if (flag == 0) {
578 flag = 1;
579 daddr += btofsb(osb, LFS_SBPAD);
580 goto oncemore;
581 }
582 break;
583 }
584 ++serial;
585 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
586 if (bc == 0) {
587 brelse(bp);
588 break;
589 }
590 assert (bc > 0);
591 odaddr = daddr;
592 daddr += btofsb(osb, osb->lfs_sumsize + bc);
593 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
594 dtosn(osb, daddr) != dtosn(osb, daddr +
595 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
596 daddr = sp->ss_next;
597 }
598 if (!(sp->ss_flags & SS_CONT))
599 nodirop_daddr = daddr;
600 brelse(bp);
601 }
602
603 if (goal == 0)
604 return nodirop_daddr;
605 else
606 return daddr;
607 }
608
609 /* Use try_verify to check whether the newer superblock is valid. */
610 struct lfs *
611 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
612 {
613 ufs_daddr_t daddr;
614 struct lfs *osb, *nsb;
615
616 /*
617 * Verify the checkpoint of the newer superblock,
618 * if the timestamp/serial number of the two superblocks is
619 * different.
620 */
621
622 if (debug)
623 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
624 (long long) sb1->lfs_serial);
625
626 if ((sb0->lfs_version == 1 &&
627 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
628 (sb0->lfs_version > 1 &&
629 sb0->lfs_serial != sb1->lfs_serial)) {
630 if (sb0->lfs_version == 1) {
631 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
632 osb = sb1;
633 nsb = sb0;
634 } else {
635 osb = sb0;
636 nsb = sb1;
637 }
638 } else {
639 if (sb0->lfs_serial > sb1->lfs_serial) {
640 osb = sb1;
641 nsb = sb0;
642 } else {
643 osb = sb0;
644 nsb = sb1;
645 }
646 }
647 if (debug) {
648 printf("Attempting to verify newer checkpoint...");
649 fflush(stdout);
650 }
651 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
652
653 if (debug)
654 printf("done.\n");
655 if (daddr == nsb->lfs_offset) {
656 warnx("** Newer checkpoint verified, recovered %lld seconds of data\n",
657 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
658 sbdirty();
659 } else {
660 warnx("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
661 }
662 return (daddr == nsb->lfs_offset ? nsb : osb);
663 }
664 /* Nothing to check */
665 return osb;
666 }
667
668 /* Verify a partial-segment summary; return the number of bytes on disk. */
669 int
670 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
671 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
672 {
673 FINFO *fp;
674 int bc; /* Bytes in partial segment */
675 int nblocks;
676 ufs_daddr_t seg_addr, daddr;
677 ufs_daddr_t *dp, *idp;
678 struct ubuf *bp;
679 int i, j, k, datac, len;
680 long sn;
681 u_int32_t *datap;
682 u_int32_t ccksum;
683
684 sn = dtosn(fs, pseg_addr);
685 seg_addr = sntod(fs, sn);
686
687 /* We've already checked the sumsum, just do the data bounds and sum */
688
689 /* Count the blocks. */
690 nblocks = howmany(sp->ss_ninos, INOPB(fs));
691 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
692 assert(bc >= 0);
693
694 fp = (FINFO *) (sp + 1);
695 for (i = 0; i < sp->ss_nfinfo; i++) {
696 nblocks += fp->fi_nblocks;
697 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
698 << fs->lfs_bshift);
699 assert(bc >= 0);
700 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
701 }
702 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
703 datac = 0;
704
705 dp = (ufs_daddr_t *) sp;
706 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
707 dp--;
708
709 idp = dp;
710 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
711 fp = (FINFO *) (sp + 1);
712 for (i = 0, j = 0;
713 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
714 if (i >= sp->ss_nfinfo && *idp != daddr) {
715 warnx("Not enough inode blocks in pseg at 0x%" PRIx32
716 ": found %d, wanted %d\n",
717 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
718 if (debug)
719 warnx("*idp=%x, daddr=%" PRIx32 "\n", *idp,
720 daddr);
721 break;
722 }
723 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
724 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
725 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
726 brelse(bp);
727
728 ++j;
729 daddr += btofsb(fs, fs->lfs_ibsize);
730 --idp;
731 }
732 if (i < sp->ss_nfinfo) {
733 if (func)
734 func(daddr, fp);
735 for (k = 0; k < fp->fi_nblocks; k++) {
736 len = (k == fp->fi_nblocks - 1 ?
737 fp->fi_lastlength
738 : fs->lfs_bsize);
739 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
740 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
741 brelse(bp);
742 daddr += btofsb(fs, len);
743 }
744 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
745 }
746 }
747
748 if (datac != nblocks) {
749 warnx("Partial segment at 0x%llx expected %d blocks counted %d\n",
750 (long long) pseg_addr, nblocks, datac);
751 }
752 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
753 /* Check the data checksum */
754 if (ccksum != sp->ss_datasum) {
755 warnx("Partial segment at 0x%" PRIx32 " data checksum"
756 " mismatch: given 0x%x, computed 0x%x\n",
757 pseg_addr, sp->ss_datasum, ccksum);
758 free(datap);
759 return 0;
760 }
761 free(datap);
762 assert(bc >= 0);
763 return bc;
764 }
765
766 /* print message and exit */
767 void
768 my_vpanic(int fatal, const char *fmt, va_list ap)
769 {
770 (void) vprintf(fmt, ap);
771 exit(8);
772 }
773
774 void
775 call_panic(const char *fmt, ...)
776 {
777 va_list ap;
778
779 va_start(ap, fmt);
780 panic_func(1, fmt, ap);
781 va_end(ap);
782 }
783