lfs.c revision 1.43 1 /* $NetBSD: lfs.c,v 1.43 2014/07/13 02:44:21 dholland Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1989, 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 */
65
66
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/time.h>
70 #include <sys/buf.h>
71 #include <sys/mount.h>
72
73 #define vnode uvnode
74 #include <ufs/lfs/lfs.h>
75 #include <ufs/lfs/lfs_inode.h>
76 #undef vnode
77
78 #include <assert.h>
79 #include <err.h>
80 #include <errno.h>
81 #include <stdarg.h>
82 #include <stdio.h>
83 #include <stdlib.h>
84 #include <string.h>
85 #include <unistd.h>
86 #include <util.h>
87
88 #include "bufcache.h"
89 #include "vnode.h"
90 #include "lfs_user.h"
91 #include "segwrite.h"
92 #include "kernelops.h"
93
94 #define panic call_panic
95
96 extern u_int32_t cksum(void *, size_t);
97 extern u_int32_t lfs_sb_cksum(struct dlfs *);
98 extern void pwarn(const char *, ...);
99
100 extern struct uvnodelst vnodelist;
101 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
102 extern int nvnodes;
103
104 long dev_bsize = DEV_BSIZE;
105
106 static int
107 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
108
109 int fsdirty = 0;
110 void (*panic_func)(int, const char *, va_list) = my_vpanic;
111
112 /*
113 * LFS buffer and uvnode operations
114 */
115
116 int
117 lfs_vop_strategy(struct ubuf * bp)
118 {
119 int count;
120
121 if (bp->b_flags & B_READ) {
122 count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
123 bp->b_blkno * dev_bsize);
124 if (count == bp->b_bcount)
125 bp->b_flags |= B_DONE;
126 } else {
127 count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
128 bp->b_blkno * dev_bsize);
129 if (count == 0) {
130 perror("pwrite");
131 return -1;
132 }
133 bp->b_flags &= ~B_DELWRI;
134 reassignbuf(bp, bp->b_vp);
135 }
136 return 0;
137 }
138
139 int
140 lfs_vop_bwrite(struct ubuf * bp)
141 {
142 struct lfs *fs;
143
144 fs = bp->b_vp->v_fs;
145 if (!(bp->b_flags & B_DELWRI)) {
146 fs->lfs_avail -= lfs_btofsb(fs, bp->b_bcount);
147 }
148 bp->b_flags |= B_DELWRI | B_LOCKED;
149 reassignbuf(bp, bp->b_vp);
150 brelse(bp, 0);
151 return 0;
152 }
153
154 /*
155 * ulfs_bmaparray does the bmap conversion, and if requested returns the
156 * array of logical blocks which must be traversed to get to a block.
157 * Each entry contains the offset into that block that gets you to the
158 * next block and the disk address of the block (if it is assigned).
159 */
160 int
161 ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
162 {
163 struct inode *ip;
164 struct ubuf *bp;
165 struct indir a[ULFS_NIADDR + 1], *xap;
166 daddr_t daddr;
167 daddr_t metalbn;
168 int error, num;
169
170 ip = VTOI(vp);
171
172 if (bn >= 0 && bn < ULFS_NDADDR) {
173 if (nump != NULL)
174 *nump = 0;
175 *bnp = LFS_FSBTODB(fs, ip->i_ffs1_db[bn]);
176 if (*bnp == 0)
177 *bnp = -1;
178 return (0);
179 }
180 xap = ap == NULL ? a : ap;
181 if (!nump)
182 nump = #
183 if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
184 return (error);
185
186 num = *nump;
187
188 /* Get disk address out of indirect block array */
189 daddr = ip->i_ffs1_ib[xap->in_off];
190
191 for (bp = NULL, ++xap; --num; ++xap) {
192 /* Exit the loop if there is no disk address assigned yet and
193 * the indirect block isn't in the cache, or if we were
194 * looking for an indirect block and we've found it. */
195
196 metalbn = xap->in_lbn;
197 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
198 break;
199 /*
200 * If we get here, we've either got the block in the cache
201 * or we have a disk address for it, go fetch it.
202 */
203 if (bp)
204 brelse(bp, 0);
205
206 xap->in_exists = 1;
207 bp = getblk(vp, metalbn, fs->lfs_bsize);
208
209 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
210 bp->b_blkno = LFS_FSBTODB(fs, daddr);
211 bp->b_flags |= B_READ;
212 VOP_STRATEGY(bp);
213 }
214 daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
215 }
216 if (bp)
217 brelse(bp, 0);
218
219 daddr = LFS_FSBTODB(fs, (ulfs_daddr_t) daddr);
220 *bnp = daddr == 0 ? -1 : daddr;
221 return (0);
222 }
223
224 /*
225 * Create an array of logical block number/offset pairs which represent the
226 * path of indirect blocks required to access a data block. The first "pair"
227 * contains the logical block number of the appropriate single, double or
228 * triple indirect block and the offset into the inode indirect block array.
229 * Note, the logical block number of the inode single/double/triple indirect
230 * block appears twice in the array, once with the offset into the i_ffs1_ib and
231 * once with the offset into the page itself.
232 */
233 int
234 ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
235 {
236 daddr_t metalbn, realbn;
237 int64_t blockcnt;
238 int lbc;
239 int i, numlevels, off;
240 int lognindir, indir;
241
242 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
243
244 if (nump)
245 *nump = 0;
246 numlevels = 0;
247 realbn = bn;
248 if (bn < 0)
249 bn = -bn;
250
251 lognindir = -1;
252 for (indir = fs->lfs_nindir; indir; indir >>= 1)
253 ++lognindir;
254
255 /* Determine the number of levels of indirection. After this loop is
256 * done, blockcnt indicates the number of data blocks possible at the
257 * given level of indirection, and ULFS_NIADDR - i is the number of levels
258 * of indirection needed to locate the requested block. */
259
260 bn -= ULFS_NDADDR;
261 for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
262 if (i == 0)
263 return (EFBIG);
264
265 lbc += lognindir;
266 blockcnt = (int64_t) 1 << lbc;
267
268 if (bn < blockcnt)
269 break;
270 }
271
272 /* Calculate the address of the first meta-block. */
273 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
274
275 /* At each iteration, off is the offset into the bap array which is an
276 * array of disk addresses at the current level of indirection. The
277 * logical block number and the offset in that block are stored into
278 * the argument array. */
279 ap->in_lbn = metalbn;
280 ap->in_off = off = ULFS_NIADDR - i;
281 ap->in_exists = 0;
282 ap++;
283 for (++numlevels; i <= ULFS_NIADDR; i++) {
284 /* If searching for a meta-data block, quit when found. */
285 if (metalbn == realbn)
286 break;
287
288 lbc -= lognindir;
289 blockcnt = (int64_t) 1 << lbc;
290 off = (bn >> lbc) & (fs->lfs_nindir - 1);
291
292 ++numlevels;
293 ap->in_lbn = metalbn;
294 ap->in_off = off;
295 ap->in_exists = 0;
296 ++ap;
297
298 metalbn -= -1 + (off << lbc);
299 }
300 if (nump)
301 *nump = numlevels;
302 return (0);
303 }
304
305 int
306 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
307 {
308 return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
309 }
310
311 /* Search a block for a specific dinode. */
312 struct ulfs1_dinode *
313 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
314 {
315 struct ulfs1_dinode *dip = (struct ulfs1_dinode *) bp->b_data;
316 struct ulfs1_dinode *ldip, *fin;
317
318 fin = dip + LFS_INOPB(fs);
319
320 /*
321 * Read the inode block backwards, since later versions of the
322 * inode will supercede earlier ones. Though it is unlikely, it is
323 * possible that the same inode will appear in the same inode block.
324 */
325 for (ldip = fin - 1; ldip >= dip; --ldip)
326 if (ldip->di_inumber == ino)
327 return (ldip);
328 return NULL;
329 }
330
331 /*
332 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
333 * XXX it currently loses atime information.
334 */
335 struct uvnode *
336 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
337 {
338 struct uvnode *vp;
339 struct inode *ip;
340 struct ulfs1_dinode *dip;
341 struct ubuf *bp;
342 int i, hash;
343
344 vp = ecalloc(1, sizeof(*vp));
345 vp->v_fd = fd;
346 vp->v_fs = fs;
347 vp->v_usecount = 0;
348 vp->v_strategy_op = lfs_vop_strategy;
349 vp->v_bwrite_op = lfs_vop_bwrite;
350 vp->v_bmap_op = lfs_vop_bmap;
351 LIST_INIT(&vp->v_cleanblkhd);
352 LIST_INIT(&vp->v_dirtyblkhd);
353
354 ip = ecalloc(1, sizeof(*ip));
355
356 ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
357
358 /* Initialize the inode -- from lfs_vcreate. */
359 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
360 vp->v_data = ip;
361 /* ip->i_vnode = vp; */
362 ip->i_number = ino;
363 ip->i_lockf = 0;
364 ip->i_lfs_effnblks = 0;
365 ip->i_flag = 0;
366
367 /* Load inode block and find inode */
368 if (daddr > 0) {
369 bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), fs->lfs_ibsize,
370 NULL, 0, &bp);
371 bp->b_flags |= B_AGE;
372 dip = lfs_ifind(fs, ino, bp);
373 if (dip == NULL) {
374 brelse(bp, 0);
375 free(ip);
376 free(vp);
377 return NULL;
378 }
379 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
380 brelse(bp, 0);
381 }
382 ip->i_number = ino;
383 /* ip->i_devvp = fs->lfs_devvp; */
384 ip->i_lfs = fs;
385
386 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
387 ip->i_lfs_osize = ip->i_ffs1_size;
388 #if 0
389 if (fs->lfs_version > 1) {
390 ip->i_ffs1_atime = ts.tv_sec;
391 ip->i_ffs1_atimensec = ts.tv_nsec;
392 }
393 #endif
394
395 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
396 for (i = 0; i < ULFS_NDADDR; i++)
397 if (ip->i_ffs1_db[i] != 0)
398 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
399
400 ++nvnodes;
401 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
402 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
403 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
404
405 return vp;
406 }
407
408 static struct uvnode *
409 lfs_vget(void *vfs, ino_t ino)
410 {
411 struct lfs *fs = (struct lfs *)vfs;
412 ulfs_daddr_t daddr;
413 struct ubuf *bp;
414 IFILE *ifp;
415
416 LFS_IENTRY(ifp, fs, ino, bp);
417 daddr = ifp->if_daddr;
418 brelse(bp, 0);
419 if (daddr <= 0 || lfs_dtosn(fs, daddr) >= fs->lfs_nseg)
420 return NULL;
421 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
422 }
423
424 /* Check superblock magic number and checksum */
425 static int
426 check_sb(struct lfs *fs)
427 {
428 u_int32_t checksum;
429
430 if (fs->lfs_magic != LFS_MAGIC) {
431 printf("Superblock magic number (0x%lx) does not match "
432 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
433 (unsigned long) LFS_MAGIC);
434 return 1;
435 }
436 /* checksum */
437 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
438 if (fs->lfs_cksum != checksum) {
439 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
440 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
441 return 1;
442 }
443 return 0;
444 }
445
446 /* Initialize LFS library; load superblocks and choose which to use. */
447 struct lfs *
448 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
449 {
450 struct uvnode *devvp;
451 struct ubuf *bp;
452 int tryalt;
453 struct lfs *fs, *altfs;
454
455 vfs_init();
456
457 devvp = ecalloc(1, sizeof(*devvp));
458 devvp->v_fs = NULL;
459 devvp->v_fd = devfd;
460 devvp->v_strategy_op = raw_vop_strategy;
461 devvp->v_bwrite_op = raw_vop_bwrite;
462 devvp->v_bmap_op = raw_vop_bmap;
463 LIST_INIT(&devvp->v_cleanblkhd);
464 LIST_INIT(&devvp->v_dirtyblkhd);
465
466 tryalt = 0;
467 if (dummy_read) {
468 if (sblkno == 0)
469 sblkno = LFS_LABELPAD / dev_bsize;
470 fs = ecalloc(1, sizeof(*fs));
471 fs->lfs_devvp = devvp;
472 } else {
473 if (sblkno == 0) {
474 sblkno = LFS_LABELPAD / dev_bsize;
475 tryalt = 1;
476 } else if (debug) {
477 printf("No -b flag given, not attempting to verify checkpoint\n");
478 }
479
480 dev_bsize = DEV_BSIZE;
481
482 (void)bread(devvp, sblkno, LFS_SBPAD, NOCRED, 0, &bp);
483 fs = ecalloc(1, sizeof(*fs));
484 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
485 fs->lfs_devvp = devvp;
486 bp->b_flags |= B_INVAL;
487 brelse(bp, 0);
488
489 dev_bsize = fs->lfs_fsize >> fs->lfs_fsbtodb;
490
491 if (tryalt) {
492 (void)bread(devvp, LFS_FSBTODB(fs, fs->lfs_sboffs[1]),
493 LFS_SBPAD, NOCRED, 0, &bp);
494 altfs = ecalloc(1, sizeof(*altfs));
495 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
496 altfs->lfs_devvp = devvp;
497 bp->b_flags |= B_INVAL;
498 brelse(bp, 0);
499
500 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
501 if (debug)
502 printf("Primary superblock is no good, using first alternate\n");
503 free(fs);
504 fs = altfs;
505 } else {
506 /* If both superblocks check out, try verification */
507 if (check_sb(altfs)) {
508 if (debug)
509 printf("First alternate superblock is no good, using primary\n");
510 free(altfs);
511 } else {
512 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
513 free(altfs);
514 } else {
515 free(fs);
516 fs = altfs;
517 }
518 }
519 }
520 }
521 if (check_sb(fs)) {
522 free(fs);
523 return NULL;
524 }
525 }
526
527 /* Compatibility */
528 if (fs->lfs_version < 2) {
529 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
530 fs->lfs_ibsize = fs->lfs_bsize;
531 fs->lfs_start = fs->lfs_sboffs[0];
532 fs->lfs_tstamp = fs->lfs_otstamp;
533 fs->lfs_fsbtodb = 0;
534 }
535
536 if (!dummy_read) {
537 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
538 fs->lfs_suflags[0] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
539 fs->lfs_suflags[1] = emalloc(fs->lfs_nseg * sizeof(u_int32_t));
540 }
541
542 if (idaddr == 0)
543 idaddr = fs->lfs_idaddr;
544 else
545 fs->lfs_idaddr = idaddr;
546 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
547 fs->lfs_ivnode = lfs_raw_vget(fs,
548 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
549 idaddr);
550 if (fs->lfs_ivnode == NULL)
551 return NULL;
552
553 register_vget((void *)fs, lfs_vget);
554
555 return fs;
556 }
557
558 /*
559 * Check partial segment validity between fs->lfs_offset and the given goal.
560 *
561 * If goal == 0, just keep on going until the segments stop making sense,
562 * and return the address of the last valid partial segment.
563 *
564 * If goal != 0, return the address of the first partial segment that failed,
565 * or "goal" if we reached it without failure (the partial segment *at* goal
566 * need not be valid).
567 */
568 ulfs_daddr_t
569 try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
570 {
571 ulfs_daddr_t daddr, odaddr;
572 SEGSUM *sp;
573 int i, bc, hitclean;
574 struct ubuf *bp;
575 ulfs_daddr_t nodirop_daddr;
576 u_int64_t serial;
577
578 bc = 0;
579 hitclean = 0;
580 odaddr = -1;
581 daddr = osb->lfs_offset;
582 nodirop_daddr = daddr;
583 serial = osb->lfs_serial;
584 while (daddr != goal) {
585 /*
586 * Don't mistakenly read a superblock, if there is one here.
587 */
588 if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
589 if (daddr == osb->lfs_start)
590 daddr += lfs_btofsb(osb, LFS_LABELPAD);
591 for (i = 0; i < LFS_MAXNUMSB; i++) {
592 if (osb->lfs_sboffs[i] < daddr)
593 break;
594 if (osb->lfs_sboffs[i] == daddr)
595 daddr += lfs_btofsb(osb, LFS_SBPAD);
596 }
597 }
598
599 /* Read in summary block */
600 bread(devvp, LFS_FSBTODB(osb, daddr), osb->lfs_sumsize,
601 NULL, 0, &bp);
602 sp = (SEGSUM *)bp->b_data;
603
604 /*
605 * Check for a valid segment summary belonging to our fs.
606 */
607 if (sp->ss_magic != SS_MAGIC ||
608 sp->ss_ident != osb->lfs_ident ||
609 sp->ss_serial < serial || /* XXX strengthen this */
610 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
611 sizeof(sp->ss_sumsum))) {
612 brelse(bp, 0);
613 if (debug) {
614 if (sp->ss_magic != SS_MAGIC)
615 pwarn("pseg at 0x%x: "
616 "wrong magic number\n",
617 (int)daddr);
618 else if (sp->ss_ident != osb->lfs_ident)
619 pwarn("pseg at 0x%x: "
620 "expected ident %llx, got %llx\n",
621 (int)daddr,
622 (long long)sp->ss_ident,
623 (long long)osb->lfs_ident);
624 else if (sp->ss_serial >= serial)
625 pwarn("pseg at 0x%x: "
626 "serial %d < %d\n", (int)daddr,
627 (int)sp->ss_serial, (int)serial);
628 else
629 pwarn("pseg at 0x%x: "
630 "summary checksum wrong\n",
631 (int)daddr);
632 }
633 break;
634 }
635 if (debug && sp->ss_serial != serial)
636 pwarn("warning, serial=%d ss_serial=%d\n",
637 (int)serial, (int)sp->ss_serial);
638 ++serial;
639 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
640 if (bc == 0) {
641 brelse(bp, 0);
642 break;
643 }
644 if (debug)
645 pwarn("summary good: 0x%x/%d\n", (int)daddr,
646 (int)sp->ss_serial);
647 assert (bc > 0);
648 odaddr = daddr;
649 daddr += lfs_btofsb(osb, osb->lfs_sumsize + bc);
650 if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
651 lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
652 lfs_btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize) - 1)) {
653 daddr = sp->ss_next;
654 }
655
656 /*
657 * Check for the beginning and ending of a sequence of
658 * dirops. Writes from the cleaner never involve new
659 * information, and are always checkpoints; so don't try
660 * to roll forward through them. Likewise, psegs written
661 * by a previous roll-forward attempt are not interesting.
662 */
663 if (sp->ss_flags & (SS_CLEAN | SS_RFW))
664 hitclean = 1;
665 if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
666 nodirop_daddr = daddr;
667
668 brelse(bp, 0);
669 }
670
671 if (goal == 0)
672 return nodirop_daddr;
673 else
674 return daddr;
675 }
676
677 /* Use try_verify to check whether the newer superblock is valid. */
678 struct lfs *
679 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
680 {
681 ulfs_daddr_t daddr;
682 struct lfs *osb, *nsb;
683
684 /*
685 * Verify the checkpoint of the newer superblock,
686 * if the timestamp/serial number of the two superblocks is
687 * different.
688 */
689
690 osb = NULL;
691 if (debug)
692 pwarn("sb0 %lld, sb1 %lld",
693 (long long) sb0->lfs_serial,
694 (long long) sb1->lfs_serial);
695
696 if ((sb0->lfs_version == 1 &&
697 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
698 (sb0->lfs_version > 1 &&
699 sb0->lfs_serial != sb1->lfs_serial)) {
700 if (sb0->lfs_version == 1) {
701 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
702 osb = sb1;
703 nsb = sb0;
704 } else {
705 osb = sb0;
706 nsb = sb1;
707 }
708 } else {
709 if (sb0->lfs_serial > sb1->lfs_serial) {
710 osb = sb1;
711 nsb = sb0;
712 } else {
713 osb = sb0;
714 nsb = sb1;
715 }
716 }
717 if (debug) {
718 printf("Attempting to verify newer checkpoint...");
719 fflush(stdout);
720 }
721 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
722
723 if (debug)
724 printf("done.\n");
725 if (daddr == nsb->lfs_offset) {
726 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
727 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
728 sbdirty();
729 } else {
730 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
731 }
732 return (daddr == nsb->lfs_offset ? nsb : osb);
733 }
734 /* Nothing to check */
735 return osb;
736 }
737
738 /* Verify a partial-segment summary; return the number of bytes on disk. */
739 int
740 check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
741 struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
742 {
743 FINFO *fp;
744 int bc; /* Bytes in partial segment */
745 int nblocks;
746 ulfs_daddr_t daddr;
747 ulfs_daddr_t *dp, *idp;
748 struct ubuf *bp;
749 int i, j, k, datac, len;
750 u_int32_t *datap;
751 u_int32_t ccksum;
752
753 /* We've already checked the sumsum, just do the data bounds and sum */
754
755 /* Count the blocks. */
756 nblocks = howmany(sp->ss_ninos, LFS_INOPB(fs));
757 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
758 assert(bc >= 0);
759
760 fp = (FINFO *) (sp + 1);
761 for (i = 0; i < sp->ss_nfinfo; i++) {
762 nblocks += fp->fi_nblocks;
763 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
764 << fs->lfs_bshift);
765 assert(bc >= 0);
766 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
767 if (((char *)fp) - (char *)sp > fs->lfs_sumsize)
768 return 0;
769 }
770 datap = emalloc(nblocks * sizeof(*datap));
771 datac = 0;
772
773 dp = (ulfs_daddr_t *) sp;
774 dp += fs->lfs_sumsize / sizeof(ulfs_daddr_t);
775 dp--;
776
777 idp = dp;
778 daddr = pseg_addr + lfs_btofsb(fs, fs->lfs_sumsize);
779 fp = (FINFO *) (sp + 1);
780 for (i = 0, j = 0;
781 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, LFS_INOPB(fs)); i++) {
782 if (i >= sp->ss_nfinfo && *idp != daddr) {
783 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
784 ": found %d, wanted %d\n",
785 pseg_addr, j, howmany(sp->ss_ninos, LFS_INOPB(fs)));
786 if (debug)
787 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
788 daddr);
789 break;
790 }
791 while (j < howmany(sp->ss_ninos, LFS_INOPB(fs)) && *idp == daddr) {
792 bread(devvp, LFS_FSBTODB(fs, daddr), fs->lfs_ibsize,
793 NOCRED, 0, &bp);
794 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
795 brelse(bp, 0);
796
797 ++j;
798 daddr += lfs_btofsb(fs, fs->lfs_ibsize);
799 --idp;
800 }
801 if (i < sp->ss_nfinfo) {
802 if (func)
803 func(daddr, fp);
804 for (k = 0; k < fp->fi_nblocks; k++) {
805 len = (k == fp->fi_nblocks - 1 ?
806 fp->fi_lastlength
807 : fs->lfs_bsize);
808 bread(devvp, LFS_FSBTODB(fs, daddr), len,
809 NOCRED, 0, &bp);
810 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
811 brelse(bp, 0);
812 daddr += lfs_btofsb(fs, len);
813 }
814 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
815 }
816 }
817
818 if (datac != nblocks) {
819 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
820 (long long) pseg_addr, nblocks, datac);
821 }
822 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
823 /* Check the data checksum */
824 if (ccksum != sp->ss_datasum) {
825 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
826 " mismatch: given 0x%x, computed 0x%x\n",
827 pseg_addr, sp->ss_datasum, ccksum);
828 free(datap);
829 return 0;
830 }
831 free(datap);
832 assert(bc >= 0);
833 return bc;
834 }
835
836 /* print message and exit */
837 void
838 my_vpanic(int fatal, const char *fmt, va_list ap)
839 {
840 (void) vprintf(fmt, ap);
841 exit(8);
842 }
843
844 void
845 call_panic(const char *fmt, ...)
846 {
847 va_list ap;
848
849 va_start(ap, fmt);
850 panic_func(1, fmt, ap);
851 va_end(ap);
852 }
853
854 /* Allocate a new inode. */
855 struct uvnode *
856 lfs_valloc(struct lfs *fs, ino_t ino)
857 {
858 struct ubuf *bp, *cbp;
859 struct ifile *ifp;
860 ino_t new_ino;
861 int error;
862 CLEANERINFO *cip;
863
864 /* Get the head of the freelist. */
865 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
866
867 /*
868 * Remove the inode from the free list and write the new start
869 * of the free list into the superblock.
870 */
871 LFS_IENTRY(ifp, fs, new_ino, bp);
872 if (ifp->if_daddr != LFS_UNUSED_DADDR)
873 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
874 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
875
876 brelse(bp, 0);
877
878 /* Extend IFILE so that the next lfs_valloc will succeed. */
879 if (fs->lfs_freehd == LFS_UNUSED_INUM) {
880 if ((error = extend_ifile(fs)) != 0) {
881 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
882 return NULL;
883 }
884 }
885
886 /* Set superblock modified bit and increment file count. */
887 sbdirty();
888 ++fs->lfs_nfiles;
889
890 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
891 }
892
893 #ifdef IN_FSCK_LFS
894 void reset_maxino(ino_t);
895 #endif
896
897 /*
898 * Add a new block to the Ifile, to accommodate future file creations.
899 */
900 int
901 extend_ifile(struct lfs *fs)
902 {
903 struct uvnode *vp;
904 struct inode *ip;
905 IFILE *ifp;
906 IFILE_V1 *ifp_v1;
907 struct ubuf *bp, *cbp;
908 daddr_t i, blkno, max;
909 ino_t oldlast;
910 CLEANERINFO *cip;
911
912 vp = fs->lfs_ivnode;
913 ip = VTOI(vp);
914 blkno = lfs_lblkno(fs, ip->i_ffs1_size);
915
916 lfs_balloc(vp, ip->i_ffs1_size, fs->lfs_bsize, &bp);
917 ip->i_ffs1_size += fs->lfs_bsize;
918 ip->i_flag |= IN_MODIFIED;
919
920 i = (blkno - fs->lfs_segtabsz - fs->lfs_cleansz) *
921 fs->lfs_ifpb;
922 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
923 LFS_PUT_HEADFREE(fs, cip, cbp, i);
924 max = i + fs->lfs_ifpb;
925 fs->lfs_bfree -= lfs_btofsb(fs, fs->lfs_bsize);
926
927 if (fs->lfs_version == 1) {
928 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
929 ifp_v1->if_version = 1;
930 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
931 ifp_v1->if_nextfree = ++i;
932 }
933 ifp_v1--;
934 ifp_v1->if_nextfree = oldlast;
935 } else {
936 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
937 ifp->if_version = 1;
938 ifp->if_daddr = LFS_UNUSED_DADDR;
939 ifp->if_nextfree = ++i;
940 }
941 ifp--;
942 ifp->if_nextfree = oldlast;
943 }
944 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
945
946 LFS_BWRITE_LOG(bp);
947
948 #ifdef IN_FSCK_LFS
949 reset_maxino(((ip->i_ffs1_size >> fs->lfs_bshift) - fs->lfs_segtabsz -
950 fs->lfs_cleansz) * fs->lfs_ifpb);
951 #endif
952 return 0;
953 }
954
955 /*
956 * Allocate a block, and to inode and filesystem block accounting for it
957 * and for any indirect blocks the may need to be created in order for
958 * this block to be created.
959 *
960 * Blocks which have never been accounted for (i.e., which "do not exist")
961 * have disk address 0, which is translated by ulfs_bmap to the special value
962 * UNASSIGNED == -1, as in the historical ULFS.
963 *
964 * Blocks which have been accounted for but which have not yet been written
965 * to disk are given the new special disk address UNWRITTEN == -2, so that
966 * they can be differentiated from completely new blocks.
967 */
968 int
969 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
970 {
971 int offset;
972 daddr_t daddr, idaddr;
973 struct ubuf *ibp, *bp;
974 struct inode *ip;
975 struct lfs *fs;
976 struct indir indirs[ULFS_NIADDR+2], *idp;
977 daddr_t lbn, lastblock;
978 int bcount;
979 int error, frags, i, nsize, osize, num;
980
981 ip = VTOI(vp);
982 fs = ip->i_lfs;
983 offset = lfs_blkoff(fs, startoffset);
984 lbn = lfs_lblkno(fs, startoffset);
985
986 /*
987 * Three cases: it's a block beyond the end of file, it's a block in
988 * the file that may or may not have been assigned a disk address or
989 * we're writing an entire block.
990 *
991 * Note, if the daddr is UNWRITTEN, the block already exists in
992 * the cache (it was read or written earlier). If so, make sure
993 * we don't count it as a new block or zero out its contents. If
994 * it did not, make sure we allocate any necessary indirect
995 * blocks.
996 *
997 * If we are writing a block beyond the end of the file, we need to
998 * check if the old last block was a fragment. If it was, we need
999 * to rewrite it.
1000 */
1001
1002 if (bpp)
1003 *bpp = NULL;
1004
1005 /* Check for block beyond end of file and fragment extension needed. */
1006 lastblock = lfs_lblkno(fs, ip->i_ffs1_size);
1007 if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1008 osize = lfs_blksize(fs, ip, lastblock);
1009 if (osize < fs->lfs_bsize && osize > 0) {
1010 if ((error = lfs_fragextend(vp, osize, fs->lfs_bsize,
1011 lastblock,
1012 (bpp ? &bp : NULL))))
1013 return (error);
1014 ip->i_ffs1_size = (lastblock + 1) * fs->lfs_bsize;
1015 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1016 if (bpp)
1017 (void) VOP_BWRITE(bp);
1018 }
1019 }
1020
1021 /*
1022 * If the block we are writing is a direct block, it's the last
1023 * block in the file, and offset + iosize is less than a full
1024 * block, we can write one or more fragments. There are two cases:
1025 * the block is brand new and we should allocate it the correct
1026 * size or it already exists and contains some fragments and
1027 * may need to extend it.
1028 */
1029 if (lbn < ULFS_NDADDR && lfs_lblkno(fs, ip->i_ffs1_size) <= lbn) {
1030 osize = lfs_blksize(fs, ip, lbn);
1031 nsize = lfs_fragroundup(fs, offset + iosize);
1032 if (lfs_lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1033 /* Brand new block or fragment */
1034 frags = lfs_numfrags(fs, nsize);
1035 if (bpp) {
1036 *bpp = bp = getblk(vp, lbn, nsize);
1037 bp->b_blkno = UNWRITTEN;
1038 }
1039 ip->i_lfs_effnblks += frags;
1040 fs->lfs_bfree -= frags;
1041 ip->i_ffs1_db[lbn] = UNWRITTEN;
1042 } else {
1043 if (nsize <= osize) {
1044 /* No need to extend */
1045 if (bpp && (error = bread(vp, lbn, osize,
1046 NOCRED, 0, &bp)))
1047 return error;
1048 } else {
1049 /* Extend existing block */
1050 if ((error =
1051 lfs_fragextend(vp, osize, nsize, lbn,
1052 (bpp ? &bp : NULL))))
1053 return error;
1054 }
1055 if (bpp)
1056 *bpp = bp;
1057 }
1058 return 0;
1059 }
1060
1061 error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1062 if (error)
1063 return (error);
1064
1065 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1066
1067 /*
1068 * Do byte accounting all at once, so we can gracefully fail *before*
1069 * we start assigning blocks.
1070 */
1071 frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1072 bcount = 0;
1073 if (daddr == UNASSIGNED) {
1074 bcount = frags;
1075 }
1076 for (i = 1; i < num; ++i) {
1077 if (!indirs[i].in_exists) {
1078 bcount += frags;
1079 }
1080 }
1081 fs->lfs_bfree -= bcount;
1082 ip->i_lfs_effnblks += bcount;
1083
1084 if (daddr == UNASSIGNED) {
1085 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1086 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1087 }
1088
1089 /*
1090 * Create new indirect blocks if necessary
1091 */
1092 if (num > 1) {
1093 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1094 for (i = 1; i < num; ++i) {
1095 ibp = getblk(vp, indirs[i].in_lbn,
1096 fs->lfs_bsize);
1097 if (!indirs[i].in_exists) {
1098 memset(ibp->b_data, 0, ibp->b_bufsize);
1099 ibp->b_blkno = UNWRITTEN;
1100 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1101 ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
1102 ibp->b_flags |= B_READ;
1103 VOP_STRATEGY(ibp);
1104 }
1105 /*
1106 * This block exists, but the next one may not.
1107 * If that is the case mark it UNWRITTEN to
1108 * keep the accounting straight.
1109 */
1110 /* XXX ondisk32 */
1111 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1112 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1113 UNWRITTEN;
1114 /* XXX ondisk32 */
1115 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1116 if ((error = VOP_BWRITE(ibp)))
1117 return error;
1118 }
1119 }
1120 }
1121
1122
1123 /*
1124 * Get the existing block from the cache, if requested.
1125 */
1126 if (bpp)
1127 *bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
1128
1129 /*
1130 * The block we are writing may be a brand new block
1131 * in which case we need to do accounting.
1132 *
1133 * We can tell a truly new block because ulfs_bmaparray will say
1134 * it is UNASSIGNED. Once we allocate it we will assign it the
1135 * disk address UNWRITTEN.
1136 */
1137 if (daddr == UNASSIGNED) {
1138 if (bpp) {
1139 /* Note the new address */
1140 bp->b_blkno = UNWRITTEN;
1141 }
1142
1143 switch (num) {
1144 case 0:
1145 ip->i_ffs1_db[lbn] = UNWRITTEN;
1146 break;
1147 case 1:
1148 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1149 break;
1150 default:
1151 idp = &indirs[num - 1];
1152 if (bread(vp, idp->in_lbn, fs->lfs_bsize, NOCRED,
1153 0, &ibp))
1154 panic("lfs_balloc: bread bno %lld",
1155 (long long)idp->in_lbn);
1156 /* XXX ondisk32 */
1157 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1158 VOP_BWRITE(ibp);
1159 }
1160 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1161 /*
1162 * Not a brand new block, also not in the cache;
1163 * read it in from disk.
1164 */
1165 if (iosize == fs->lfs_bsize)
1166 /* Optimization: I/O is unnecessary. */
1167 bp->b_blkno = daddr;
1168 else {
1169 /*
1170 * We need to read the block to preserve the
1171 * existing bytes.
1172 */
1173 bp->b_blkno = daddr;
1174 bp->b_flags |= B_READ;
1175 VOP_STRATEGY(bp);
1176 return 0;
1177 }
1178 }
1179
1180 return (0);
1181 }
1182
1183 int
1184 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1185 struct ubuf **bpp)
1186 {
1187 struct inode *ip;
1188 struct lfs *fs;
1189 int frags;
1190 int error;
1191
1192 ip = VTOI(vp);
1193 fs = ip->i_lfs;
1194 frags = (long)lfs_numfrags(fs, nsize - osize);
1195 error = 0;
1196
1197 /*
1198 * If we are not asked to actually return the block, all we need
1199 * to do is allocate space for it. UBC will handle dirtying the
1200 * appropriate things and making sure it all goes to disk.
1201 * Don't bother to read in that case.
1202 */
1203 if (bpp && (error = bread(vp, lbn, osize, NOCRED, 0, bpp))) {
1204 brelse(*bpp, 0);
1205 goto out;
1206 }
1207
1208 fs->lfs_bfree -= frags;
1209 ip->i_lfs_effnblks += frags;
1210 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1211
1212 if (bpp) {
1213 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1214 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1215 }
1216
1217 out:
1218 return (error);
1219 }
1220