lfs.c revision 1.52 1 /* $NetBSD: lfs.c,v 1.52 2015/08/02 18:18:09 dholland Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1989, 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 */
65
66
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/time.h>
70 #include <sys/buf.h>
71 #include <sys/mount.h>
72
73 #define vnode uvnode
74 #include <ufs/lfs/lfs.h>
75 #include <ufs/lfs/lfs_inode.h>
76 #include <ufs/lfs/lfs_accessors.h>
77 #undef vnode
78
79 #include <assert.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <stdarg.h>
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <unistd.h>
87 #include <util.h>
88
89 #include "bufcache.h"
90 #include "vnode.h"
91 #include "lfs_user.h"
92 #include "segwrite.h"
93 #include "kernelops.h"
94
95 #define panic call_panic
96
97 extern u_int32_t cksum(void *, size_t);
98 extern u_int32_t lfs_sb_cksum(struct lfs *);
99 extern void pwarn(const char *, ...);
100
101 extern struct uvnodelst vnodelist;
102 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 extern int nvnodes;
104
105 long dev_bsize = DEV_BSIZE;
106
107 static int
108 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 bp->b_blkno * dev_bsize);
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 bp->b_blkno * dev_bsize);
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 lfs_sb_subavail(fs, lfs_btofsb(fs, bp->b_bcount));
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp, 0);
152 return 0;
153 }
154
155 /*
156 * ulfs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[ULFS_NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < ULFS_NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = LFS_FSBTODB(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp, 0);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, lfs_sb_getbsize(fs));
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = LFS_FSBTODB(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp, 0);
219
220 daddr = LFS_FSBTODB(fs, (ulfs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244
245 if (nump)
246 *nump = 0;
247 numlevels = 0;
248 realbn = bn;
249 if (bn < 0)
250 bn = -bn;
251
252 lognindir = -1;
253 for (indir = lfs_sb_getnindir(fs); indir; indir >>= 1)
254 ++lognindir;
255
256 /* Determine the number of levels of indirection. After this loop is
257 * done, blockcnt indicates the number of data blocks possible at the
258 * given level of indirection, and ULFS_NIADDR - i is the number of levels
259 * of indirection needed to locate the requested block. */
260
261 bn -= ULFS_NDADDR;
262 for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
263 if (i == 0)
264 return (EFBIG);
265
266 lbc += lognindir;
267 blockcnt = (int64_t) 1 << lbc;
268
269 if (bn < blockcnt)
270 break;
271 }
272
273 /* Calculate the address of the first meta-block. */
274 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
275
276 /* At each iteration, off is the offset into the bap array which is an
277 * array of disk addresses at the current level of indirection. The
278 * logical block number and the offset in that block are stored into
279 * the argument array. */
280 ap->in_lbn = metalbn;
281 ap->in_off = off = ULFS_NIADDR - i;
282 ap->in_exists = 0;
283 ap++;
284 for (++numlevels; i <= ULFS_NIADDR; i++) {
285 /* If searching for a meta-data block, quit when found. */
286 if (metalbn == realbn)
287 break;
288
289 lbc -= lognindir;
290 blockcnt = (int64_t) 1 << lbc;
291 off = (bn >> lbc) & (lfs_sb_getnindir(fs) - 1);
292
293 ++numlevels;
294 ap->in_lbn = metalbn;
295 ap->in_off = off;
296 ap->in_exists = 0;
297 ++ap;
298
299 metalbn -= -1 + (off << lbc);
300 }
301 if (nump)
302 *nump = numlevels;
303 return (0);
304 }
305
306 int
307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 {
309 return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 }
311
312 /* Search a block for a specific dinode. */
313 struct ulfs1_dinode *
314 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 {
316 struct ulfs1_dinode *dip = (struct ulfs1_dinode *) bp->b_data;
317 struct ulfs1_dinode *ldip, *fin;
318
319 fin = dip + LFS_INOPB(fs);
320
321 /*
322 * Read the inode block backwards, since later versions of the
323 * inode will supercede earlier ones. Though it is unlikely, it is
324 * possible that the same inode will appear in the same inode block.
325 */
326 for (ldip = fin - 1; ldip >= dip; --ldip)
327 if (ldip->di_inumber == ino)
328 return (ldip);
329 return NULL;
330 }
331
332 /*
333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 * XXX it currently loses atime information.
335 */
336 struct uvnode *
337 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
338 {
339 struct uvnode *vp;
340 struct inode *ip;
341 struct ulfs1_dinode *dip;
342 struct ubuf *bp;
343 int i, hash;
344
345 vp = ecalloc(1, sizeof(*vp));
346 vp->v_fd = fd;
347 vp->v_fs = fs;
348 vp->v_usecount = 0;
349 vp->v_strategy_op = lfs_vop_strategy;
350 vp->v_bwrite_op = lfs_vop_bwrite;
351 vp->v_bmap_op = lfs_vop_bmap;
352 LIST_INIT(&vp->v_cleanblkhd);
353 LIST_INIT(&vp->v_dirtyblkhd);
354
355 ip = ecalloc(1, sizeof(*ip));
356
357 ip->i_din.ffs1_din = ecalloc(1, sizeof(*ip->i_din.ffs1_din));
358
359 /* Initialize the inode -- from lfs_vcreate. */
360 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
361 vp->v_data = ip;
362 /* ip->i_vnode = vp; */
363 ip->i_number = ino;
364 ip->i_lockf = 0;
365 ip->i_lfs_effnblks = 0;
366 ip->i_flag = 0;
367
368 /* Load inode block and find inode */
369 if (daddr > 0) {
370 bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
371 0, &bp);
372 bp->b_flags |= B_AGE;
373 dip = lfs_ifind(fs, ino, bp);
374 if (dip == NULL) {
375 brelse(bp, 0);
376 free(ip);
377 free(vp);
378 return NULL;
379 }
380 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
381 brelse(bp, 0);
382 }
383 ip->i_number = ino;
384 /* ip->i_devvp = fs->lfs_devvp; */
385 ip->i_lfs = fs;
386
387 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
388 ip->i_lfs_osize = ip->i_ffs1_size;
389 #if 0
390 if (fs->lfs_version > 1) {
391 ip->i_ffs1_atime = ts.tv_sec;
392 ip->i_ffs1_atimensec = ts.tv_nsec;
393 }
394 #endif
395
396 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
397 for (i = 0; i < ULFS_NDADDR; i++)
398 if (ip->i_ffs1_db[i] != 0)
399 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
400
401 ++nvnodes;
402 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
403 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
404 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
405
406 return vp;
407 }
408
409 static struct uvnode *
410 lfs_vget(void *vfs, ino_t ino)
411 {
412 struct lfs *fs = (struct lfs *)vfs;
413 ulfs_daddr_t daddr;
414 struct ubuf *bp;
415 IFILE *ifp;
416
417 LFS_IENTRY(ifp, fs, ino, bp);
418 daddr = ifp->if_daddr;
419 brelse(bp, 0);
420 if (daddr <= 0 || lfs_dtosn(fs, daddr) >= lfs_sb_getnseg(fs))
421 return NULL;
422 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
423 }
424
425 /* Check superblock magic number and checksum */
426 static int
427 check_sb(struct lfs *fs)
428 {
429 u_int32_t checksum;
430 u_int32_t magic;
431
432 /* we can read the magic out of either the 32-bit or 64-bit dlfs */
433 magic = fs->lfs_dlfs_u.u_32.dlfs_magic;
434
435 if (magic != LFS_MAGIC) {
436 printf("Superblock magic number (0x%lx) does not match "
437 "expected 0x%lx\n", (unsigned long) magic,
438 (unsigned long) LFS_MAGIC);
439 return 1;
440 }
441 /* checksum */
442 checksum = lfs_sb_cksum(fs);
443 if (lfs_sb_getcksum(fs) != checksum) {
444 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
445 (unsigned long) lfs_sb_getcksum(fs), (unsigned long) checksum);
446 return 1;
447 }
448 return 0;
449 }
450
451 /* Initialize LFS library; load superblocks and choose which to use. */
452 struct lfs *
453 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
454 {
455 struct uvnode *devvp;
456 struct ubuf *bp;
457 int tryalt;
458 struct lfs *fs, *altfs;
459
460 vfs_init();
461
462 devvp = ecalloc(1, sizeof(*devvp));
463 devvp->v_fs = NULL;
464 devvp->v_fd = devfd;
465 devvp->v_strategy_op = raw_vop_strategy;
466 devvp->v_bwrite_op = raw_vop_bwrite;
467 devvp->v_bmap_op = raw_vop_bmap;
468 LIST_INIT(&devvp->v_cleanblkhd);
469 LIST_INIT(&devvp->v_dirtyblkhd);
470
471 tryalt = 0;
472 if (dummy_read) {
473 if (sblkno == 0)
474 sblkno = LFS_LABELPAD / dev_bsize;
475 fs = ecalloc(1, sizeof(*fs));
476 fs->lfs_devvp = devvp;
477 } else {
478 if (sblkno == 0) {
479 sblkno = LFS_LABELPAD / dev_bsize;
480 tryalt = 1;
481 } else if (debug) {
482 printf("No -b flag given, not attempting to verify checkpoint\n");
483 }
484
485 dev_bsize = DEV_BSIZE;
486
487 (void)bread(devvp, sblkno, LFS_SBPAD, 0, &bp);
488 fs = ecalloc(1, sizeof(*fs));
489 __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
490 memcpy(&fs->lfs_dlfs_u, bp->b_data, sizeof(struct dlfs));
491 fs->lfs_devvp = devvp;
492 bp->b_flags |= B_INVAL;
493 brelse(bp, 0);
494
495 dev_bsize = lfs_sb_getfsize(fs) >> lfs_sb_getfsbtodb(fs);
496
497 if (tryalt) {
498 (void)bread(devvp, LFS_FSBTODB(fs, lfs_sb_getsboff(fs, 1)),
499 LFS_SBPAD, 0, &bp);
500 altfs = ecalloc(1, sizeof(*altfs));
501 memcpy(&altfs->lfs_dlfs_u, bp->b_data,
502 sizeof(struct dlfs));
503 altfs->lfs_devvp = devvp;
504 bp->b_flags |= B_INVAL;
505 brelse(bp, 0);
506
507 if (check_sb(fs) || lfs_sb_getidaddr(fs) <= 0) {
508 if (debug)
509 printf("Primary superblock is no good, using first alternate\n");
510 free(fs);
511 fs = altfs;
512 } else {
513 /* If both superblocks check out, try verification */
514 if (check_sb(altfs)) {
515 if (debug)
516 printf("First alternate superblock is no good, using primary\n");
517 free(altfs);
518 } else {
519 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
520 free(altfs);
521 } else {
522 free(fs);
523 fs = altfs;
524 }
525 }
526 }
527 }
528 if (check_sb(fs)) {
529 free(fs);
530 return NULL;
531 }
532 }
533
534 /* Compatibility */
535 if (lfs_sb_getversion(fs) < 2) {
536 lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
537 lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
538 lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
539 lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
540 lfs_sb_setfsbtodb(fs, 0);
541 }
542
543 if (!dummy_read) {
544 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
545 fs->lfs_suflags[0] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
546 fs->lfs_suflags[1] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
547 }
548
549 if (idaddr == 0)
550 idaddr = lfs_sb_getidaddr(fs);
551 else
552 lfs_sb_setidaddr(fs, idaddr);
553 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
554 fs->lfs_ivnode = lfs_raw_vget(fs,
555 (dummy_read ? LFS_IFILE_INUM : lfs_sb_getifile(fs)),
556 devvp->v_fd, idaddr);
557 if (fs->lfs_ivnode == NULL)
558 return NULL;
559
560 register_vget((void *)fs, lfs_vget);
561
562 return fs;
563 }
564
565 /*
566 * Check partial segment validity between fs->lfs_offset and the given goal.
567 *
568 * If goal == 0, just keep on going until the segments stop making sense,
569 * and return the address of the last valid partial segment.
570 *
571 * If goal != 0, return the address of the first partial segment that failed,
572 * or "goal" if we reached it without failure (the partial segment *at* goal
573 * need not be valid).
574 */
575 ulfs_daddr_t
576 try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
577 {
578 ulfs_daddr_t daddr, odaddr;
579 SEGSUM *sp;
580 int i, bc, hitclean;
581 struct ubuf *bp;
582 ulfs_daddr_t nodirop_daddr;
583 u_int64_t serial;
584
585 bc = 0;
586 hitclean = 0;
587 odaddr = -1;
588 daddr = lfs_sb_getoffset(osb);
589 nodirop_daddr = daddr;
590 serial = lfs_sb_getserial(osb);
591 while (daddr != goal) {
592 /*
593 * Don't mistakenly read a superblock, if there is one here.
594 */
595 if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
596 if (daddr == lfs_sb_gets0addr(osb))
597 daddr += lfs_btofsb(osb, LFS_LABELPAD);
598 for (i = 0; i < LFS_MAXNUMSB; i++) {
599 if (lfs_sb_getsboff(osb, i) < daddr)
600 break;
601 if (lfs_sb_getsboff(osb, i) == daddr)
602 daddr += lfs_btofsb(osb, LFS_SBPAD);
603 }
604 }
605
606 /* Read in summary block */
607 bread(devvp, LFS_FSBTODB(osb, daddr), lfs_sb_getsumsize(osb),
608 0, &bp);
609 sp = (SEGSUM *)bp->b_data;
610
611 /*
612 * Check for a valid segment summary belonging to our fs.
613 */
614 if (sp->ss_magic != SS_MAGIC ||
615 sp->ss_ident != lfs_sb_getident(osb) ||
616 sp->ss_serial < serial || /* XXX strengthen this */
617 sp->ss_sumsum != cksum(&sp->ss_datasum, lfs_sb_getsumsize(osb) -
618 sizeof(sp->ss_sumsum))) {
619 brelse(bp, 0);
620 if (debug) {
621 if (sp->ss_magic != SS_MAGIC)
622 pwarn("pseg at 0x%jx: "
623 "wrong magic number\n",
624 (uintmax_t)daddr);
625 else if (sp->ss_ident != lfs_sb_getident(osb))
626 pwarn("pseg at 0x%jx: "
627 "expected ident %jx, got %jx\n",
628 (uintmax_t)daddr,
629 (uintmax_t)sp->ss_ident,
630 (uintmax_t)lfs_sb_getident(osb));
631 else if (sp->ss_serial >= serial)
632 pwarn("pseg at 0x%jx: "
633 "serial %d < %d\n",
634 (uintmax_t)daddr,
635 (int)sp->ss_serial, (int)serial);
636 else
637 pwarn("pseg at 0x%jx: "
638 "summary checksum wrong\n",
639 (uintmax_t)daddr);
640 }
641 break;
642 }
643 if (debug && sp->ss_serial != serial)
644 pwarn("warning, serial=%d ss_serial=%d\n",
645 (int)serial, (int)sp->ss_serial);
646 ++serial;
647 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
648 if (bc == 0) {
649 brelse(bp, 0);
650 break;
651 }
652 if (debug)
653 pwarn("summary good: 0x%x/%d\n", (uintmax_t)daddr,
654 (int)sp->ss_serial);
655 assert (bc > 0);
656 odaddr = daddr;
657 daddr += lfs_btofsb(osb, lfs_sb_getsumsize(osb) + bc);
658 if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
659 lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
660 lfs_btofsb(osb, lfs_sb_getsumsize(osb) + lfs_sb_getbsize(osb)) - 1)) {
661 daddr = sp->ss_next;
662 }
663
664 /*
665 * Check for the beginning and ending of a sequence of
666 * dirops. Writes from the cleaner never involve new
667 * information, and are always checkpoints; so don't try
668 * to roll forward through them. Likewise, psegs written
669 * by a previous roll-forward attempt are not interesting.
670 */
671 if (sp->ss_flags & (SS_CLEAN | SS_RFW))
672 hitclean = 1;
673 if (hitclean == 0 && (sp->ss_flags & SS_CONT) == 0)
674 nodirop_daddr = daddr;
675
676 brelse(bp, 0);
677 }
678
679 if (goal == 0)
680 return nodirop_daddr;
681 else
682 return daddr;
683 }
684
685 /* Use try_verify to check whether the newer superblock is valid. */
686 struct lfs *
687 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
688 {
689 ulfs_daddr_t daddr;
690 struct lfs *osb, *nsb;
691
692 /*
693 * Verify the checkpoint of the newer superblock,
694 * if the timestamp/serial number of the two superblocks is
695 * different.
696 */
697
698 osb = NULL;
699 if (debug)
700 pwarn("sb0 %ju, sb1 %ju",
701 (uintmax_t) lfs_sb_getserial(sb0),
702 (uintmax_t) lfs_sb_getserial(sb1));
703
704 if ((lfs_sb_getversion(sb0) == 1 &&
705 lfs_sb_getotstamp(sb0) != lfs_sb_getotstamp(sb1)) ||
706 (lfs_sb_getversion(sb0) > 1 &&
707 lfs_sb_getserial(sb0) != lfs_sb_getserial(sb1))) {
708 if (lfs_sb_getversion(sb0) == 1) {
709 if (lfs_sb_getotstamp(sb0) > lfs_sb_getotstamp(sb1)) {
710 osb = sb1;
711 nsb = sb0;
712 } else {
713 osb = sb0;
714 nsb = sb1;
715 }
716 } else {
717 if (lfs_sb_getserial(sb0) > lfs_sb_getserial(sb1)) {
718 osb = sb1;
719 nsb = sb0;
720 } else {
721 osb = sb0;
722 nsb = sb1;
723 }
724 }
725 if (debug) {
726 printf("Attempting to verify newer checkpoint...");
727 fflush(stdout);
728 }
729 daddr = try_verify(osb, devvp, lfs_sb_getoffset(nsb), debug);
730
731 if (debug)
732 printf("done.\n");
733 if (daddr == lfs_sb_getoffset(nsb)) {
734 pwarn("** Newer checkpoint verified; recovered %jd seconds of data\n",
735 (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
736 sbdirty();
737 } else {
738 pwarn("** Newer checkpoint invalid; lost %jd seconds of data\n", (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
739 }
740 return (daddr == lfs_sb_getoffset(nsb) ? nsb : osb);
741 }
742 /* Nothing to check */
743 return osb;
744 }
745
746 /* Verify a partial-segment summary; return the number of bytes on disk. */
747 int
748 check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
749 struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
750 {
751 FINFO *fp;
752 int bc; /* Bytes in partial segment */
753 int nblocks;
754 ulfs_daddr_t daddr;
755 ulfs_daddr_t *dp, *idp;
756 struct ubuf *bp;
757 int i, j, k, datac, len;
758 u_int32_t *datap;
759 u_int32_t ccksum;
760
761 /* We've already checked the sumsum, just do the data bounds and sum */
762
763 /* Count the blocks. */
764 nblocks = howmany(sp->ss_ninos, LFS_INOPB(fs));
765 bc = nblocks << (lfs_sb_getversion(fs) > 1 ? lfs_sb_getffshift(fs) : lfs_sb_getbshift(fs));
766 assert(bc >= 0);
767
768 fp = (FINFO *) (sp + 1);
769 for (i = 0; i < sp->ss_nfinfo; i++) {
770 nblocks += fp->fi_nblocks;
771 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
772 << lfs_sb_getbshift(fs));
773 assert(bc >= 0);
774 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
775 if (((char *)fp) - (char *)sp > lfs_sb_getsumsize(fs))
776 return 0;
777 }
778 datap = emalloc(nblocks * sizeof(*datap));
779 datac = 0;
780
781 dp = (ulfs_daddr_t *) sp;
782 dp += lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t);
783 dp--;
784
785 idp = dp;
786 daddr = pseg_addr + lfs_btofsb(fs, lfs_sb_getsumsize(fs));
787 fp = (FINFO *) (sp + 1);
788 for (i = 0, j = 0;
789 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, LFS_INOPB(fs)); i++) {
790 if (i >= sp->ss_nfinfo && *idp != daddr) {
791 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
792 ": found %d, wanted %d\n",
793 pseg_addr, j, howmany(sp->ss_ninos, LFS_INOPB(fs)));
794 if (debug)
795 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
796 daddr);
797 break;
798 }
799 while (j < howmany(sp->ss_ninos, LFS_INOPB(fs)) && *idp == daddr) {
800 bread(devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
801 0, &bp);
802 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
803 brelse(bp, 0);
804
805 ++j;
806 daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs));
807 --idp;
808 }
809 if (i < sp->ss_nfinfo) {
810 if (func)
811 func(daddr, fp);
812 for (k = 0; k < fp->fi_nblocks; k++) {
813 len = (k == fp->fi_nblocks - 1 ?
814 fp->fi_lastlength
815 : lfs_sb_getbsize(fs));
816 bread(devvp, LFS_FSBTODB(fs, daddr), len,
817 0, &bp);
818 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
819 brelse(bp, 0);
820 daddr += lfs_btofsb(fs, len);
821 }
822 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
823 }
824 }
825
826 if (datac != nblocks) {
827 pwarn("Partial segment at 0x%jx expected %d blocks counted %d\n",
828 (intmax_t)pseg_addr, nblocks, datac);
829 }
830 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
831 /* Check the data checksum */
832 if (ccksum != sp->ss_datasum) {
833 pwarn("Partial segment at 0x%jx data checksum"
834 " mismatch: given 0x%x, computed 0x%x\n",
835 (uintmax_t)pseg_addr, sp->ss_datasum, ccksum);
836 free(datap);
837 return 0;
838 }
839 free(datap);
840 assert(bc >= 0);
841 return bc;
842 }
843
844 /* print message and exit */
845 void
846 my_vpanic(int fatal, const char *fmt, va_list ap)
847 {
848 (void) vprintf(fmt, ap);
849 exit(8);
850 }
851
852 void
853 call_panic(const char *fmt, ...)
854 {
855 va_list ap;
856
857 va_start(ap, fmt);
858 panic_func(1, fmt, ap);
859 va_end(ap);
860 }
861
862 /* Allocate a new inode. */
863 struct uvnode *
864 lfs_valloc(struct lfs *fs, ino_t ino)
865 {
866 struct ubuf *bp, *cbp;
867 struct ifile *ifp;
868 ino_t new_ino;
869 int error;
870 CLEANERINFO *cip;
871
872 /* Get the head of the freelist. */
873 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
874
875 /*
876 * Remove the inode from the free list and write the new start
877 * of the free list into the superblock.
878 */
879 LFS_IENTRY(ifp, fs, new_ino, bp);
880 if (ifp->if_daddr != LFS_UNUSED_DADDR)
881 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
882 LFS_PUT_HEADFREE(fs, cip, cbp, ifp->if_nextfree);
883
884 brelse(bp, 0);
885
886 /* Extend IFILE so that the next lfs_valloc will succeed. */
887 if (lfs_sb_getfreehd(fs) == LFS_UNUSED_INUM) {
888 if ((error = extend_ifile(fs)) != 0) {
889 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
890 return NULL;
891 }
892 }
893
894 /* Set superblock modified bit and increment file count. */
895 sbdirty();
896 lfs_sb_addnfiles(fs, 1);
897
898 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
899 }
900
901 #ifdef IN_FSCK_LFS
902 void reset_maxino(ino_t);
903 #endif
904
905 /*
906 * Add a new block to the Ifile, to accommodate future file creations.
907 */
908 int
909 extend_ifile(struct lfs *fs)
910 {
911 struct uvnode *vp;
912 struct inode *ip;
913 IFILE *ifp;
914 IFILE_V1 *ifp_v1;
915 struct ubuf *bp, *cbp;
916 daddr_t i, blkno, max;
917 ino_t oldlast;
918 CLEANERINFO *cip;
919
920 vp = fs->lfs_ivnode;
921 ip = VTOI(vp);
922 blkno = lfs_lblkno(fs, ip->i_ffs1_size);
923
924 lfs_balloc(vp, ip->i_ffs1_size, lfs_sb_getbsize(fs), &bp);
925 ip->i_ffs1_size += lfs_sb_getbsize(fs);
926 ip->i_flag |= IN_MODIFIED;
927
928 i = (blkno - lfs_sb_getsegtabsz(fs) - lfs_sb_getcleansz(fs)) *
929 lfs_sb_getifpb(fs);
930 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
931 LFS_PUT_HEADFREE(fs, cip, cbp, i);
932 max = i + lfs_sb_getifpb(fs);
933 lfs_sb_subbfree(fs, lfs_btofsb(fs, lfs_sb_getbsize(fs)));
934
935 if (lfs_sb_getversion(fs) == 1) {
936 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
937 ifp_v1->if_version = 1;
938 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
939 ifp_v1->if_nextfree = ++i;
940 }
941 ifp_v1--;
942 ifp_v1->if_nextfree = oldlast;
943 } else {
944 for (ifp = (IFILE *)bp->b_data; i < max; ++ifp) {
945 ifp->if_version = 1;
946 ifp->if_daddr = LFS_UNUSED_DADDR;
947 ifp->if_nextfree = ++i;
948 }
949 ifp--;
950 ifp->if_nextfree = oldlast;
951 }
952 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
953
954 LFS_BWRITE_LOG(bp);
955
956 #ifdef IN_FSCK_LFS
957 reset_maxino(((ip->i_ffs1_size >> lfs_sb_getbshift(fs))
958 - lfs_sb_getsegtabsz(fs)
959 - lfs_sb_getcleansz(fs)) * lfs_sb_getifpb(fs));
960 #endif
961 return 0;
962 }
963
964 /*
965 * Allocate a block, and to inode and filesystem block accounting for it
966 * and for any indirect blocks the may need to be created in order for
967 * this block to be created.
968 *
969 * Blocks which have never been accounted for (i.e., which "do not exist")
970 * have disk address 0, which is translated by ulfs_bmap to the special value
971 * UNASSIGNED == -1, as in the historical ULFS.
972 *
973 * Blocks which have been accounted for but which have not yet been written
974 * to disk are given the new special disk address UNWRITTEN == -2, so that
975 * they can be differentiated from completely new blocks.
976 */
977 int
978 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
979 {
980 int offset;
981 daddr_t daddr, idaddr;
982 struct ubuf *ibp, *bp;
983 struct inode *ip;
984 struct lfs *fs;
985 struct indir indirs[ULFS_NIADDR+2], *idp;
986 daddr_t lbn, lastblock;
987 int bcount;
988 int error, frags, i, nsize, osize, num;
989
990 ip = VTOI(vp);
991 fs = ip->i_lfs;
992 offset = lfs_blkoff(fs, startoffset);
993 lbn = lfs_lblkno(fs, startoffset);
994
995 /*
996 * Three cases: it's a block beyond the end of file, it's a block in
997 * the file that may or may not have been assigned a disk address or
998 * we're writing an entire block.
999 *
1000 * Note, if the daddr is UNWRITTEN, the block already exists in
1001 * the cache (it was read or written earlier). If so, make sure
1002 * we don't count it as a new block or zero out its contents. If
1003 * it did not, make sure we allocate any necessary indirect
1004 * blocks.
1005 *
1006 * If we are writing a block beyond the end of the file, we need to
1007 * check if the old last block was a fragment. If it was, we need
1008 * to rewrite it.
1009 */
1010
1011 if (bpp)
1012 *bpp = NULL;
1013
1014 /* Check for block beyond end of file and fragment extension needed. */
1015 lastblock = lfs_lblkno(fs, ip->i_ffs1_size);
1016 if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1017 osize = lfs_blksize(fs, ip, lastblock);
1018 if (osize < lfs_sb_getbsize(fs) && osize > 0) {
1019 if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
1020 lastblock,
1021 (bpp ? &bp : NULL))))
1022 return (error);
1023 ip->i_ffs1_size = (lastblock + 1) * lfs_sb_getbsize(fs);
1024 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1025 if (bpp)
1026 (void) VOP_BWRITE(bp);
1027 }
1028 }
1029
1030 /*
1031 * If the block we are writing is a direct block, it's the last
1032 * block in the file, and offset + iosize is less than a full
1033 * block, we can write one or more fragments. There are two cases:
1034 * the block is brand new and we should allocate it the correct
1035 * size or it already exists and contains some fragments and
1036 * may need to extend it.
1037 */
1038 if (lbn < ULFS_NDADDR && lfs_lblkno(fs, ip->i_ffs1_size) <= lbn) {
1039 osize = lfs_blksize(fs, ip, lbn);
1040 nsize = lfs_fragroundup(fs, offset + iosize);
1041 if (lfs_lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1042 /* Brand new block or fragment */
1043 frags = lfs_numfrags(fs, nsize);
1044 if (bpp) {
1045 *bpp = bp = getblk(vp, lbn, nsize);
1046 bp->b_blkno = UNWRITTEN;
1047 }
1048 ip->i_lfs_effnblks += frags;
1049 lfs_sb_subbfree(fs, frags);
1050 ip->i_ffs1_db[lbn] = UNWRITTEN;
1051 } else {
1052 if (nsize <= osize) {
1053 /* No need to extend */
1054 if (bpp && (error = bread(vp, lbn, osize,
1055 0, &bp)))
1056 return error;
1057 } else {
1058 /* Extend existing block */
1059 if ((error =
1060 lfs_fragextend(vp, osize, nsize, lbn,
1061 (bpp ? &bp : NULL))))
1062 return error;
1063 }
1064 if (bpp)
1065 *bpp = bp;
1066 }
1067 return 0;
1068 }
1069
1070 error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1071 if (error)
1072 return (error);
1073
1074 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1075
1076 /*
1077 * Do byte accounting all at once, so we can gracefully fail *before*
1078 * we start assigning blocks.
1079 */
1080 frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1081 bcount = 0;
1082 if (daddr == UNASSIGNED) {
1083 bcount = frags;
1084 }
1085 for (i = 1; i < num; ++i) {
1086 if (!indirs[i].in_exists) {
1087 bcount += frags;
1088 }
1089 }
1090 lfs_sb_subbfree(fs, bcount);
1091 ip->i_lfs_effnblks += bcount;
1092
1093 if (daddr == UNASSIGNED) {
1094 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1095 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1096 }
1097
1098 /*
1099 * Create new indirect blocks if necessary
1100 */
1101 if (num > 1) {
1102 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1103 for (i = 1; i < num; ++i) {
1104 ibp = getblk(vp, indirs[i].in_lbn,
1105 lfs_sb_getbsize(fs));
1106 if (!indirs[i].in_exists) {
1107 memset(ibp->b_data, 0, ibp->b_bufsize);
1108 ibp->b_blkno = UNWRITTEN;
1109 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1110 ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
1111 ibp->b_flags |= B_READ;
1112 VOP_STRATEGY(ibp);
1113 }
1114 /*
1115 * This block exists, but the next one may not.
1116 * If that is the case mark it UNWRITTEN to
1117 * keep the accounting straight.
1118 */
1119 /* XXX ondisk32 */
1120 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1121 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1122 UNWRITTEN;
1123 /* XXX ondisk32 */
1124 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1125 if ((error = VOP_BWRITE(ibp)))
1126 return error;
1127 }
1128 }
1129 }
1130
1131
1132 /*
1133 * Get the existing block from the cache, if requested.
1134 */
1135 if (bpp)
1136 *bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
1137
1138 /*
1139 * The block we are writing may be a brand new block
1140 * in which case we need to do accounting.
1141 *
1142 * We can tell a truly new block because ulfs_bmaparray will say
1143 * it is UNASSIGNED. Once we allocate it we will assign it the
1144 * disk address UNWRITTEN.
1145 */
1146 if (daddr == UNASSIGNED) {
1147 if (bpp) {
1148 /* Note the new address */
1149 bp->b_blkno = UNWRITTEN;
1150 }
1151
1152 switch (num) {
1153 case 0:
1154 ip->i_ffs1_db[lbn] = UNWRITTEN;
1155 break;
1156 case 1:
1157 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1158 break;
1159 default:
1160 idp = &indirs[num - 1];
1161 if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs), 0, &ibp))
1162 panic("lfs_balloc: bread bno %lld",
1163 (long long)idp->in_lbn);
1164 /* XXX ondisk32 */
1165 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1166 VOP_BWRITE(ibp);
1167 }
1168 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1169 /*
1170 * Not a brand new block, also not in the cache;
1171 * read it in from disk.
1172 */
1173 if (iosize == lfs_sb_getbsize(fs))
1174 /* Optimization: I/O is unnecessary. */
1175 bp->b_blkno = daddr;
1176 else {
1177 /*
1178 * We need to read the block to preserve the
1179 * existing bytes.
1180 */
1181 bp->b_blkno = daddr;
1182 bp->b_flags |= B_READ;
1183 VOP_STRATEGY(bp);
1184 return 0;
1185 }
1186 }
1187
1188 return (0);
1189 }
1190
1191 int
1192 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1193 struct ubuf **bpp)
1194 {
1195 struct inode *ip;
1196 struct lfs *fs;
1197 int frags;
1198 int error;
1199
1200 ip = VTOI(vp);
1201 fs = ip->i_lfs;
1202 frags = (long)lfs_numfrags(fs, nsize - osize);
1203 error = 0;
1204
1205 /*
1206 * If we are not asked to actually return the block, all we need
1207 * to do is allocate space for it. UBC will handle dirtying the
1208 * appropriate things and making sure it all goes to disk.
1209 * Don't bother to read in that case.
1210 */
1211 if (bpp && (error = bread(vp, lbn, osize, 0, bpp))) {
1212 brelse(*bpp, 0);
1213 goto out;
1214 }
1215
1216 lfs_sb_subbfree(fs, frags);
1217 ip->i_lfs_effnblks += frags;
1218 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1219
1220 if (bpp) {
1221 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1222 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1223 }
1224
1225 out:
1226 return (error);
1227 }
1228