lfs.c revision 1.57 1 /* $NetBSD: lfs.c,v 1.57 2015/08/19 20:33:29 dholland Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1989, 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 */
65
66
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/time.h>
70 #include <sys/buf.h>
71 #include <sys/mount.h>
72
73 #define vnode uvnode
74 #include <ufs/lfs/lfs.h>
75 #include <ufs/lfs/lfs_inode.h>
76 #include <ufs/lfs/lfs_accessors.h>
77 #undef vnode
78
79 #include <assert.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <stdarg.h>
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <string.h>
86 #include <unistd.h>
87 #include <util.h>
88
89 #include "bufcache.h"
90 #include "vnode.h"
91 #include "lfs_user.h"
92 #include "segwrite.h"
93 #include "kernelops.h"
94
95 #define panic call_panic
96
97 extern u_int32_t cksum(void *, size_t);
98 extern u_int32_t lfs_sb_cksum(struct lfs *);
99 extern void pwarn(const char *, ...);
100
101 extern struct uvnodelst vnodelist;
102 extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
103 extern int nvnodes;
104
105 long dev_bsize = DEV_BSIZE;
106
107 static int
108 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 bp->b_blkno * dev_bsize);
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 bp->b_blkno * dev_bsize);
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 lfs_sb_subavail(fs, lfs_btofsb(fs, bp->b_bcount));
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp, 0);
152 return 0;
153 }
154
155 /*
156 * ulfs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[ULFS_NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < ULFS_NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = LFS_FSBTODB(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp, 0);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, lfs_sb_getbsize(fs));
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = LFS_FSBTODB(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ulfs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp, 0);
219
220 daddr = LFS_FSBTODB(fs, (ulfs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
244
245 if (nump)
246 *nump = 0;
247 numlevels = 0;
248 realbn = bn;
249 if (bn < 0)
250 bn = -bn;
251
252 lognindir = -1;
253 for (indir = lfs_sb_getnindir(fs); indir; indir >>= 1)
254 ++lognindir;
255
256 /* Determine the number of levels of indirection. After this loop is
257 * done, blockcnt indicates the number of data blocks possible at the
258 * given level of indirection, and ULFS_NIADDR - i is the number of levels
259 * of indirection needed to locate the requested block. */
260
261 bn -= ULFS_NDADDR;
262 for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
263 if (i == 0)
264 return (EFBIG);
265
266 lbc += lognindir;
267 blockcnt = (int64_t) 1 << lbc;
268
269 if (bn < blockcnt)
270 break;
271 }
272
273 /* Calculate the address of the first meta-block. */
274 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
275
276 /* At each iteration, off is the offset into the bap array which is an
277 * array of disk addresses at the current level of indirection. The
278 * logical block number and the offset in that block are stored into
279 * the argument array. */
280 ap->in_lbn = metalbn;
281 ap->in_off = off = ULFS_NIADDR - i;
282 ap->in_exists = 0;
283 ap++;
284 for (++numlevels; i <= ULFS_NIADDR; i++) {
285 /* If searching for a meta-data block, quit when found. */
286 if (metalbn == realbn)
287 break;
288
289 lbc -= lognindir;
290 blockcnt = (int64_t) 1 << lbc;
291 off = (bn >> lbc) & (lfs_sb_getnindir(fs) - 1);
292
293 ++numlevels;
294 ap->in_lbn = metalbn;
295 ap->in_off = off;
296 ap->in_exists = 0;
297 ++ap;
298
299 metalbn -= -1 + (off << lbc);
300 }
301 if (nump)
302 *nump = numlevels;
303 return (0);
304 }
305
306 int
307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 {
309 return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 }
311
312 /* Search a block for a specific dinode. */
313 union lfs_dinode *
314 lfs_ifind(struct lfs *fs, ino_t ino, struct ubuf *bp)
315 {
316 union lfs_dinode *ldip;
317 unsigned i, num;
318
319 num = LFS_INOPB(fs);
320
321 /*
322 * Read the inode block backwards, since later versions of the
323 * inode will supercede earlier ones. Though it is unlikely, it is
324 * possible that the same inode will appear in the same inode block.
325 */
326 for (i = num; i-- > 0; ) {
327 ldip = DINO_IN_BLOCK(fs, bp->b_data, i);
328 if (lfs_dino_getinumber(fs, ldip) == ino)
329 return (ldip);
330 }
331 return NULL;
332 }
333
334 /*
335 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
336 * XXX it currently loses atime information.
337 */
338 struct uvnode *
339 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ulfs_daddr_t daddr)
340 {
341 struct uvnode *vp;
342 struct inode *ip;
343 union lfs_dinode *dip;
344 struct ubuf *bp;
345 int i, hash;
346
347 vp = ecalloc(1, sizeof(*vp));
348 vp->v_fd = fd;
349 vp->v_fs = fs;
350 vp->v_usecount = 0;
351 vp->v_strategy_op = lfs_vop_strategy;
352 vp->v_bwrite_op = lfs_vop_bwrite;
353 vp->v_bmap_op = lfs_vop_bmap;
354 LIST_INIT(&vp->v_cleanblkhd);
355 LIST_INIT(&vp->v_dirtyblkhd);
356
357 ip = ecalloc(1, sizeof(*ip));
358
359 ip->i_din = dip = ecalloc(1, sizeof(*dip));
360
361 /* Initialize the inode -- from lfs_vcreate. */
362 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
363 vp->v_data = ip;
364 /* ip->i_vnode = vp; */
365 ip->i_number = ino;
366 ip->i_lockf = 0;
367 ip->i_lfs_effnblks = 0;
368 ip->i_flag = 0;
369
370 /* Load inode block and find inode */
371 if (daddr > 0) {
372 bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
373 0, &bp);
374 bp->b_flags |= B_AGE;
375 dip = lfs_ifind(fs, ino, bp);
376 if (dip == NULL) {
377 brelse(bp, 0);
378 free(ip);
379 free(vp);
380 return NULL;
381 }
382 lfs_copy_dinode(fs, ip->i_din, dip);
383 brelse(bp, 0);
384 }
385 ip->i_number = ino;
386 /* ip->i_devvp = fs->lfs_devvp; */
387 ip->i_lfs = fs;
388
389 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
390 ip->i_lfs_osize = ip->i_ffs1_size;
391 #if 0
392 if (fs->lfs_version > 1) {
393 ip->i_ffs1_atime = ts.tv_sec;
394 ip->i_ffs1_atimensec = ts.tv_nsec;
395 }
396 #endif
397
398 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
399 for (i = 0; i < ULFS_NDADDR; i++)
400 if (ip->i_ffs1_db[i] != 0)
401 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
402
403 ++nvnodes;
404 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
405 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
406 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
407
408 return vp;
409 }
410
411 static struct uvnode *
412 lfs_vget(void *vfs, ino_t ino)
413 {
414 struct lfs *fs = (struct lfs *)vfs;
415 ulfs_daddr_t daddr;
416 struct ubuf *bp;
417 IFILE *ifp;
418
419 LFS_IENTRY(ifp, fs, ino, bp);
420 daddr = lfs_if_getdaddr(fs, ifp);
421 brelse(bp, 0);
422 if (daddr <= 0 || lfs_dtosn(fs, daddr) >= lfs_sb_getnseg(fs))
423 return NULL;
424 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
425 }
426
427 /* Check superblock magic number and checksum */
428 static int
429 check_sb(struct lfs *fs)
430 {
431 u_int32_t checksum;
432 u_int32_t magic;
433
434 /* we can read the magic out of either the 32-bit or 64-bit dlfs */
435 magic = fs->lfs_dlfs_u.u_32.dlfs_magic;
436
437 if (magic != LFS_MAGIC) {
438 printf("Superblock magic number (0x%lx) does not match "
439 "expected 0x%lx\n", (unsigned long) magic,
440 (unsigned long) LFS_MAGIC);
441 return 1;
442 }
443 /* checksum */
444 checksum = lfs_sb_cksum(fs);
445 if (lfs_sb_getcksum(fs) != checksum) {
446 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
447 (unsigned long) lfs_sb_getcksum(fs), (unsigned long) checksum);
448 return 1;
449 }
450 return 0;
451 }
452
453 /* Initialize LFS library; load superblocks and choose which to use. */
454 struct lfs *
455 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
456 {
457 struct uvnode *devvp;
458 struct ubuf *bp;
459 int tryalt;
460 struct lfs *fs, *altfs;
461
462 vfs_init();
463
464 devvp = ecalloc(1, sizeof(*devvp));
465 devvp->v_fs = NULL;
466 devvp->v_fd = devfd;
467 devvp->v_strategy_op = raw_vop_strategy;
468 devvp->v_bwrite_op = raw_vop_bwrite;
469 devvp->v_bmap_op = raw_vop_bmap;
470 LIST_INIT(&devvp->v_cleanblkhd);
471 LIST_INIT(&devvp->v_dirtyblkhd);
472
473 tryalt = 0;
474 if (dummy_read) {
475 if (sblkno == 0)
476 sblkno = LFS_LABELPAD / dev_bsize;
477 fs = ecalloc(1, sizeof(*fs));
478 fs->lfs_devvp = devvp;
479 } else {
480 if (sblkno == 0) {
481 sblkno = LFS_LABELPAD / dev_bsize;
482 tryalt = 1;
483 } else if (debug) {
484 printf("No -b flag given, not attempting to verify checkpoint\n");
485 }
486
487 dev_bsize = DEV_BSIZE;
488
489 (void)bread(devvp, sblkno, LFS_SBPAD, 0, &bp);
490 fs = ecalloc(1, sizeof(*fs));
491 __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
492 memcpy(&fs->lfs_dlfs_u, bp->b_data, sizeof(struct dlfs));
493 fs->lfs_devvp = devvp;
494 bp->b_flags |= B_INVAL;
495 brelse(bp, 0);
496
497 dev_bsize = lfs_sb_getfsize(fs) >> lfs_sb_getfsbtodb(fs);
498
499 if (tryalt) {
500 (void)bread(devvp, LFS_FSBTODB(fs, lfs_sb_getsboff(fs, 1)),
501 LFS_SBPAD, 0, &bp);
502 altfs = ecalloc(1, sizeof(*altfs));
503 memcpy(&altfs->lfs_dlfs_u, bp->b_data,
504 sizeof(struct dlfs));
505 altfs->lfs_devvp = devvp;
506 bp->b_flags |= B_INVAL;
507 brelse(bp, 0);
508
509 if (check_sb(fs) || lfs_sb_getidaddr(fs) <= 0) {
510 if (debug)
511 printf("Primary superblock is no good, using first alternate\n");
512 free(fs);
513 fs = altfs;
514 } else {
515 /* If both superblocks check out, try verification */
516 if (check_sb(altfs)) {
517 if (debug)
518 printf("First alternate superblock is no good, using primary\n");
519 free(altfs);
520 } else {
521 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
522 free(altfs);
523 } else {
524 free(fs);
525 fs = altfs;
526 }
527 }
528 }
529 }
530 if (check_sb(fs)) {
531 free(fs);
532 return NULL;
533 }
534 }
535
536 /* Compatibility */
537 if (lfs_sb_getversion(fs) < 2) {
538 lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
539 lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
540 lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
541 lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
542 lfs_sb_setfsbtodb(fs, 0);
543 }
544
545 if (!dummy_read) {
546 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
547 fs->lfs_suflags[0] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
548 fs->lfs_suflags[1] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
549 }
550
551 if (idaddr == 0)
552 idaddr = lfs_sb_getidaddr(fs);
553 else
554 lfs_sb_setidaddr(fs, idaddr);
555 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
556 fs->lfs_ivnode = lfs_raw_vget(fs,
557 (dummy_read ? LFS_IFILE_INUM : lfs_sb_getifile(fs)),
558 devvp->v_fd, idaddr);
559 if (fs->lfs_ivnode == NULL)
560 return NULL;
561
562 register_vget((void *)fs, lfs_vget);
563
564 return fs;
565 }
566
567 /*
568 * Check partial segment validity between fs->lfs_offset and the given goal.
569 *
570 * If goal == 0, just keep on going until the segments stop making sense,
571 * and return the address of the last valid partial segment.
572 *
573 * If goal != 0, return the address of the first partial segment that failed,
574 * or "goal" if we reached it without failure (the partial segment *at* goal
575 * need not be valid).
576 */
577 ulfs_daddr_t
578 try_verify(struct lfs *osb, struct uvnode *devvp, ulfs_daddr_t goal, int debug)
579 {
580 ulfs_daddr_t daddr, odaddr;
581 SEGSUM *sp;
582 int i, bc, hitclean;
583 struct ubuf *bp;
584 ulfs_daddr_t nodirop_daddr;
585 u_int64_t serial;
586
587 bc = 0;
588 hitclean = 0;
589 odaddr = -1;
590 daddr = lfs_sb_getoffset(osb);
591 nodirop_daddr = daddr;
592 serial = lfs_sb_getserial(osb);
593 while (daddr != goal) {
594 /*
595 * Don't mistakenly read a superblock, if there is one here.
596 */
597 if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
598 if (daddr == lfs_sb_gets0addr(osb))
599 daddr += lfs_btofsb(osb, LFS_LABELPAD);
600 for (i = 0; i < LFS_MAXNUMSB; i++) {
601 if (lfs_sb_getsboff(osb, i) < daddr)
602 break;
603 if (lfs_sb_getsboff(osb, i) == daddr)
604 daddr += lfs_btofsb(osb, LFS_SBPAD);
605 }
606 }
607
608 /* Read in summary block */
609 bread(devvp, LFS_FSBTODB(osb, daddr), lfs_sb_getsumsize(osb),
610 0, &bp);
611 sp = (SEGSUM *)bp->b_data;
612
613 /*
614 * Check for a valid segment summary belonging to our fs.
615 */
616 if (lfs_ss_getmagic(osb, sp) != SS_MAGIC ||
617 lfs_ss_getident(osb, sp) != lfs_sb_getident(osb) ||
618 lfs_ss_getserial(osb, sp) < serial || /* XXX strengthen this */
619 lfs_ss_getsumsum(osb, sp) !=
620 cksum((char *)sp + lfs_ss_getsumstart(osb),
621 lfs_sb_getsumsize(osb) - lfs_ss_getsumstart(osb))) {
622 brelse(bp, 0);
623 if (debug) {
624 if (lfs_ss_getmagic(osb, sp) != SS_MAGIC)
625 pwarn("pseg at 0x%jx: "
626 "wrong magic number\n",
627 (uintmax_t)daddr);
628 else if (lfs_ss_getident(osb, sp) != lfs_sb_getident(osb))
629 pwarn("pseg at 0x%jx: "
630 "expected ident %jx, got %jx\n",
631 (uintmax_t)daddr,
632 (uintmax_t)lfs_ss_getident(osb, sp),
633 (uintmax_t)lfs_sb_getident(osb));
634 else if (lfs_ss_getserial(osb, sp) >= serial)
635 pwarn("pseg at 0x%jx: "
636 "serial %d < %d\n",
637 (uintmax_t)daddr,
638 (int)lfs_ss_getserial(osb, sp), (int)serial);
639 else
640 pwarn("pseg at 0x%jx: "
641 "summary checksum wrong\n",
642 (uintmax_t)daddr);
643 }
644 break;
645 }
646 if (debug && lfs_ss_getserial(osb, sp) != serial)
647 pwarn("warning, serial=%d ss_serial=%d\n",
648 (int)serial, (int)lfs_ss_getserial(osb, sp));
649 ++serial;
650 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
651 if (bc == 0) {
652 brelse(bp, 0);
653 break;
654 }
655 if (debug)
656 pwarn("summary good: 0x%x/%d\n", (uintmax_t)daddr,
657 (int)lfs_ss_getserial(osb, sp));
658 assert (bc > 0);
659 odaddr = daddr;
660 daddr += lfs_btofsb(osb, lfs_sb_getsumsize(osb) + bc);
661 if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
662 lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
663 lfs_btofsb(osb, lfs_sb_getsumsize(osb) + lfs_sb_getbsize(osb)) - 1)) {
664 daddr = lfs_ss_getnext(osb, sp);
665 }
666
667 /*
668 * Check for the beginning and ending of a sequence of
669 * dirops. Writes from the cleaner never involve new
670 * information, and are always checkpoints; so don't try
671 * to roll forward through them. Likewise, psegs written
672 * by a previous roll-forward attempt are not interesting.
673 */
674 if (lfs_ss_getflags(osb, sp) & (SS_CLEAN | SS_RFW))
675 hitclean = 1;
676 if (hitclean == 0 && (lfs_ss_getflags(osb, sp) & SS_CONT) == 0)
677 nodirop_daddr = daddr;
678
679 brelse(bp, 0);
680 }
681
682 if (goal == 0)
683 return nodirop_daddr;
684 else
685 return daddr;
686 }
687
688 /* Use try_verify to check whether the newer superblock is valid. */
689 struct lfs *
690 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
691 {
692 ulfs_daddr_t daddr;
693 struct lfs *osb, *nsb;
694
695 /*
696 * Verify the checkpoint of the newer superblock,
697 * if the timestamp/serial number of the two superblocks is
698 * different.
699 */
700
701 osb = NULL;
702 if (debug)
703 pwarn("sb0 %ju, sb1 %ju",
704 (uintmax_t) lfs_sb_getserial(sb0),
705 (uintmax_t) lfs_sb_getserial(sb1));
706
707 if ((lfs_sb_getversion(sb0) == 1 &&
708 lfs_sb_getotstamp(sb0) != lfs_sb_getotstamp(sb1)) ||
709 (lfs_sb_getversion(sb0) > 1 &&
710 lfs_sb_getserial(sb0) != lfs_sb_getserial(sb1))) {
711 if (lfs_sb_getversion(sb0) == 1) {
712 if (lfs_sb_getotstamp(sb0) > lfs_sb_getotstamp(sb1)) {
713 osb = sb1;
714 nsb = sb0;
715 } else {
716 osb = sb0;
717 nsb = sb1;
718 }
719 } else {
720 if (lfs_sb_getserial(sb0) > lfs_sb_getserial(sb1)) {
721 osb = sb1;
722 nsb = sb0;
723 } else {
724 osb = sb0;
725 nsb = sb1;
726 }
727 }
728 if (debug) {
729 printf("Attempting to verify newer checkpoint...");
730 fflush(stdout);
731 }
732 daddr = try_verify(osb, devvp, lfs_sb_getoffset(nsb), debug);
733
734 if (debug)
735 printf("done.\n");
736 if (daddr == lfs_sb_getoffset(nsb)) {
737 pwarn("** Newer checkpoint verified; recovered %jd seconds of data\n",
738 (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
739 sbdirty();
740 } else {
741 pwarn("** Newer checkpoint invalid; lost %jd seconds of data\n", (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
742 }
743 return (daddr == lfs_sb_getoffset(nsb) ? nsb : osb);
744 }
745 /* Nothing to check */
746 return osb;
747 }
748
749 /* Verify a partial-segment summary; return the number of bytes on disk. */
750 int
751 check_summary(struct lfs *fs, SEGSUM *sp, ulfs_daddr_t pseg_addr, int debug,
752 struct uvnode *devvp, void (func(ulfs_daddr_t, FINFO *)))
753 {
754 FINFO *fp;
755 int bc; /* Bytes in partial segment */
756 int nblocks;
757 ulfs_daddr_t daddr;
758 ulfs_daddr_t *dp, *idp;
759 struct ubuf *bp;
760 int i, j, k, datac, len;
761 u_int32_t *datap;
762 u_int32_t ccksum;
763
764 /* We've already checked the sumsum, just do the data bounds and sum */
765
766 /* Count the blocks. */
767 nblocks = howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs));
768 bc = nblocks << (lfs_sb_getversion(fs) > 1 ? lfs_sb_getffshift(fs) : lfs_sb_getbshift(fs));
769 assert(bc >= 0);
770
771 fp = SEGSUM_FINFOBASE(fs, sp);
772 for (i = 0; i < lfs_ss_getnfinfo(fs, sp); i++) {
773 nblocks += lfs_fi_getnblocks(fs, fp);
774 bc += lfs_fi_getlastlength(fs, fp) + ((lfs_fi_getnblocks(fs, fp) - 1)
775 << lfs_sb_getbshift(fs));
776 assert(bc >= 0);
777 fp = NEXT_FINFO(fs, fp);
778 if (((char *)fp) - (char *)sp > lfs_sb_getsumsize(fs))
779 return 0;
780 }
781 datap = emalloc(nblocks * sizeof(*datap));
782 datac = 0;
783
784 dp = (ulfs_daddr_t *) sp;
785 dp += lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t);
786 dp--;
787
788 idp = dp;
789 daddr = pseg_addr + lfs_btofsb(fs, lfs_sb_getsumsize(fs));
790 fp = (FINFO *) (sp + 1);
791 for (i = 0, j = 0;
792 i < lfs_ss_getnfinfo(fs, sp) || j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)); i++) {
793 if (i >= lfs_ss_getnfinfo(fs, sp) && *idp != daddr) {
794 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
795 ": found %d, wanted %d\n",
796 pseg_addr, j, howmany(lfs_ss_getninos(fs, sp),
797 LFS_INOPB(fs)));
798 if (debug)
799 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
800 daddr);
801 break;
802 }
803 while (j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)) && *idp == daddr) {
804 bread(devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
805 0, &bp);
806 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
807 brelse(bp, 0);
808
809 ++j;
810 daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs));
811 --idp;
812 }
813 if (i < lfs_ss_getnfinfo(fs, sp)) {
814 if (func)
815 func(daddr, fp);
816 for (k = 0; k < lfs_fi_getnblocks(fs, fp); k++) {
817 len = (k == lfs_fi_getnblocks(fs, fp) - 1 ?
818 lfs_fi_getlastlength(fs, fp)
819 : lfs_sb_getbsize(fs));
820 bread(devvp, LFS_FSBTODB(fs, daddr), len,
821 0, &bp);
822 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
823 brelse(bp, 0);
824 daddr += lfs_btofsb(fs, len);
825 }
826 fp = NEXT_FINFO(fs, fp);
827 }
828 }
829
830 if (datac != nblocks) {
831 pwarn("Partial segment at 0x%jx expected %d blocks counted %d\n",
832 (intmax_t)pseg_addr, nblocks, datac);
833 }
834 /* XXX ondisk32 */
835 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
836 /* Check the data checksum */
837 if (ccksum != lfs_ss_getdatasum(fs, sp)) {
838 pwarn("Partial segment at 0x%jx data checksum"
839 " mismatch: given 0x%x, computed 0x%x\n",
840 (uintmax_t)pseg_addr, lfs_ss_getdatasum(fs, sp), ccksum);
841 free(datap);
842 return 0;
843 }
844 free(datap);
845 assert(bc >= 0);
846 return bc;
847 }
848
849 /* print message and exit */
850 void
851 my_vpanic(int fatal, const char *fmt, va_list ap)
852 {
853 (void) vprintf(fmt, ap);
854 exit(8);
855 }
856
857 void
858 call_panic(const char *fmt, ...)
859 {
860 va_list ap;
861
862 va_start(ap, fmt);
863 panic_func(1, fmt, ap);
864 va_end(ap);
865 }
866
867 /* Allocate a new inode. */
868 struct uvnode *
869 lfs_valloc(struct lfs *fs, ino_t ino)
870 {
871 struct ubuf *bp, *cbp;
872 IFILE *ifp;
873 ino_t new_ino;
874 int error;
875 CLEANERINFO *cip;
876
877 /* Get the head of the freelist. */
878 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
879
880 /*
881 * Remove the inode from the free list and write the new start
882 * of the free list into the superblock.
883 */
884 LFS_IENTRY(ifp, fs, new_ino, bp);
885 if (lfs_if_getdaddr(fs, ifp) != LFS_UNUSED_DADDR)
886 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
887 LFS_PUT_HEADFREE(fs, cip, cbp, lfs_if_getnextfree(fs, ifp));
888
889 brelse(bp, 0);
890
891 /* Extend IFILE so that the next lfs_valloc will succeed. */
892 if (lfs_sb_getfreehd(fs) == LFS_UNUSED_INUM) {
893 if ((error = extend_ifile(fs)) != 0) {
894 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
895 return NULL;
896 }
897 }
898
899 /* Set superblock modified bit and increment file count. */
900 sbdirty();
901 lfs_sb_addnfiles(fs, 1);
902
903 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
904 }
905
906 #ifdef IN_FSCK_LFS
907 void reset_maxino(ino_t);
908 #endif
909
910 /*
911 * Add a new block to the Ifile, to accommodate future file creations.
912 */
913 int
914 extend_ifile(struct lfs *fs)
915 {
916 struct uvnode *vp;
917 struct inode *ip;
918 IFILE64 *ifp64;
919 IFILE32 *ifp32;
920 IFILE_V1 *ifp_v1;
921 struct ubuf *bp, *cbp;
922 daddr_t i, blkno, max;
923 ino_t oldlast;
924 CLEANERINFO *cip;
925
926 vp = fs->lfs_ivnode;
927 ip = VTOI(vp);
928 blkno = lfs_lblkno(fs, ip->i_ffs1_size);
929
930 lfs_balloc(vp, ip->i_ffs1_size, lfs_sb_getbsize(fs), &bp);
931 ip->i_ffs1_size += lfs_sb_getbsize(fs);
932 ip->i_flag |= IN_MODIFIED;
933
934 i = (blkno - lfs_sb_getsegtabsz(fs) - lfs_sb_getcleansz(fs)) *
935 lfs_sb_getifpb(fs);
936 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
937 LFS_PUT_HEADFREE(fs, cip, cbp, i);
938 max = i + lfs_sb_getifpb(fs);
939 lfs_sb_subbfree(fs, lfs_btofsb(fs, lfs_sb_getbsize(fs)));
940
941 if (fs->lfs_is64) {
942 for (ifp64 = (IFILE64 *)bp->b_data; i < max; ++ifp64) {
943 ifp64->if_version = 1;
944 ifp64->if_daddr = LFS_UNUSED_DADDR;
945 ifp64->if_nextfree = ++i;
946 }
947 ifp64--;
948 ifp64->if_nextfree = oldlast;
949 } else if (lfs_sb_getversion(fs) > 1) {
950 for (ifp32 = (IFILE32 *)bp->b_data; i < max; ++ifp32) {
951 ifp32->if_version = 1;
952 ifp32->if_daddr = LFS_UNUSED_DADDR;
953 ifp32->if_nextfree = ++i;
954 }
955 ifp32--;
956 ifp32->if_nextfree = oldlast;
957 } else {
958 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
959 ifp_v1->if_version = 1;
960 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
961 ifp_v1->if_nextfree = ++i;
962 }
963 ifp_v1--;
964 ifp_v1->if_nextfree = oldlast;
965 }
966 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
967
968 LFS_BWRITE_LOG(bp);
969
970 #ifdef IN_FSCK_LFS
971 reset_maxino(((ip->i_ffs1_size >> lfs_sb_getbshift(fs))
972 - lfs_sb_getsegtabsz(fs)
973 - lfs_sb_getcleansz(fs)) * lfs_sb_getifpb(fs));
974 #endif
975 return 0;
976 }
977
978 /*
979 * Allocate a block, and to inode and filesystem block accounting for it
980 * and for any indirect blocks the may need to be created in order for
981 * this block to be created.
982 *
983 * Blocks which have never been accounted for (i.e., which "do not exist")
984 * have disk address 0, which is translated by ulfs_bmap to the special value
985 * UNASSIGNED == -1, as in the historical ULFS.
986 *
987 * Blocks which have been accounted for but which have not yet been written
988 * to disk are given the new special disk address UNWRITTEN == -2, so that
989 * they can be differentiated from completely new blocks.
990 */
991 int
992 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
993 {
994 int offset;
995 daddr_t daddr, idaddr;
996 struct ubuf *ibp, *bp;
997 struct inode *ip;
998 struct lfs *fs;
999 struct indir indirs[ULFS_NIADDR+2], *idp;
1000 daddr_t lbn, lastblock;
1001 int bcount;
1002 int error, frags, i, nsize, osize, num;
1003
1004 ip = VTOI(vp);
1005 fs = ip->i_lfs;
1006 offset = lfs_blkoff(fs, startoffset);
1007 lbn = lfs_lblkno(fs, startoffset);
1008
1009 /*
1010 * Three cases: it's a block beyond the end of file, it's a block in
1011 * the file that may or may not have been assigned a disk address or
1012 * we're writing an entire block.
1013 *
1014 * Note, if the daddr is UNWRITTEN, the block already exists in
1015 * the cache (it was read or written earlier). If so, make sure
1016 * we don't count it as a new block or zero out its contents. If
1017 * it did not, make sure we allocate any necessary indirect
1018 * blocks.
1019 *
1020 * If we are writing a block beyond the end of the file, we need to
1021 * check if the old last block was a fragment. If it was, we need
1022 * to rewrite it.
1023 */
1024
1025 if (bpp)
1026 *bpp = NULL;
1027
1028 /* Check for block beyond end of file and fragment extension needed. */
1029 lastblock = lfs_lblkno(fs, ip->i_ffs1_size);
1030 if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1031 osize = lfs_blksize(fs, ip, lastblock);
1032 if (osize < lfs_sb_getbsize(fs) && osize > 0) {
1033 if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
1034 lastblock,
1035 (bpp ? &bp : NULL))))
1036 return (error);
1037 ip->i_ffs1_size = (lastblock + 1) * lfs_sb_getbsize(fs);
1038 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1039 if (bpp)
1040 (void) VOP_BWRITE(bp);
1041 }
1042 }
1043
1044 /*
1045 * If the block we are writing is a direct block, it's the last
1046 * block in the file, and offset + iosize is less than a full
1047 * block, we can write one or more fragments. There are two cases:
1048 * the block is brand new and we should allocate it the correct
1049 * size or it already exists and contains some fragments and
1050 * may need to extend it.
1051 */
1052 if (lbn < ULFS_NDADDR && lfs_lblkno(fs, ip->i_ffs1_size) <= lbn) {
1053 osize = lfs_blksize(fs, ip, lbn);
1054 nsize = lfs_fragroundup(fs, offset + iosize);
1055 if (lfs_lblktosize(fs, lbn) >= ip->i_ffs1_size) {
1056 /* Brand new block or fragment */
1057 frags = lfs_numfrags(fs, nsize);
1058 if (bpp) {
1059 *bpp = bp = getblk(vp, lbn, nsize);
1060 bp->b_blkno = UNWRITTEN;
1061 }
1062 ip->i_lfs_effnblks += frags;
1063 lfs_sb_subbfree(fs, frags);
1064 ip->i_ffs1_db[lbn] = UNWRITTEN;
1065 } else {
1066 if (nsize <= osize) {
1067 /* No need to extend */
1068 if (bpp && (error = bread(vp, lbn, osize,
1069 0, &bp)))
1070 return error;
1071 } else {
1072 /* Extend existing block */
1073 if ((error =
1074 lfs_fragextend(vp, osize, nsize, lbn,
1075 (bpp ? &bp : NULL))))
1076 return error;
1077 }
1078 if (bpp)
1079 *bpp = bp;
1080 }
1081 return 0;
1082 }
1083
1084 error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1085 if (error)
1086 return (error);
1087
1088 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1089
1090 /*
1091 * Do byte accounting all at once, so we can gracefully fail *before*
1092 * we start assigning blocks.
1093 */
1094 frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1095 bcount = 0;
1096 if (daddr == UNASSIGNED) {
1097 bcount = frags;
1098 }
1099 for (i = 1; i < num; ++i) {
1100 if (!indirs[i].in_exists) {
1101 bcount += frags;
1102 }
1103 }
1104 lfs_sb_subbfree(fs, bcount);
1105 ip->i_lfs_effnblks += bcount;
1106
1107 if (daddr == UNASSIGNED) {
1108 if (num > 0 && ip->i_ffs1_ib[indirs[0].in_off] == 0) {
1109 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1110 }
1111
1112 /*
1113 * Create new indirect blocks if necessary
1114 */
1115 if (num > 1) {
1116 idaddr = ip->i_ffs1_ib[indirs[0].in_off];
1117 for (i = 1; i < num; ++i) {
1118 ibp = getblk(vp, indirs[i].in_lbn,
1119 lfs_sb_getbsize(fs));
1120 if (!indirs[i].in_exists) {
1121 memset(ibp->b_data, 0, ibp->b_bufsize);
1122 ibp->b_blkno = UNWRITTEN;
1123 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1124 ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
1125 ibp->b_flags |= B_READ;
1126 VOP_STRATEGY(ibp);
1127 }
1128 /*
1129 * This block exists, but the next one may not.
1130 * If that is the case mark it UNWRITTEN to
1131 * keep the accounting straight.
1132 */
1133 /* XXX ondisk32 */
1134 if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
1135 ((int32_t *)ibp->b_data)[indirs[i].in_off] =
1136 UNWRITTEN;
1137 /* XXX ondisk32 */
1138 idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
1139 if ((error = VOP_BWRITE(ibp)))
1140 return error;
1141 }
1142 }
1143 }
1144
1145
1146 /*
1147 * Get the existing block from the cache, if requested.
1148 */
1149 if (bpp)
1150 *bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
1151
1152 /*
1153 * The block we are writing may be a brand new block
1154 * in which case we need to do accounting.
1155 *
1156 * We can tell a truly new block because ulfs_bmaparray will say
1157 * it is UNASSIGNED. Once we allocate it we will assign it the
1158 * disk address UNWRITTEN.
1159 */
1160 if (daddr == UNASSIGNED) {
1161 if (bpp) {
1162 /* Note the new address */
1163 bp->b_blkno = UNWRITTEN;
1164 }
1165
1166 switch (num) {
1167 case 0:
1168 ip->i_ffs1_db[lbn] = UNWRITTEN;
1169 break;
1170 case 1:
1171 ip->i_ffs1_ib[indirs[0].in_off] = UNWRITTEN;
1172 break;
1173 default:
1174 idp = &indirs[num - 1];
1175 if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs), 0, &ibp))
1176 panic("lfs_balloc: bread bno %lld",
1177 (long long)idp->in_lbn);
1178 /* XXX ondisk32 */
1179 ((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
1180 VOP_BWRITE(ibp);
1181 }
1182 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1183 /*
1184 * Not a brand new block, also not in the cache;
1185 * read it in from disk.
1186 */
1187 if (iosize == lfs_sb_getbsize(fs))
1188 /* Optimization: I/O is unnecessary. */
1189 bp->b_blkno = daddr;
1190 else {
1191 /*
1192 * We need to read the block to preserve the
1193 * existing bytes.
1194 */
1195 bp->b_blkno = daddr;
1196 bp->b_flags |= B_READ;
1197 VOP_STRATEGY(bp);
1198 return 0;
1199 }
1200 }
1201
1202 return (0);
1203 }
1204
1205 int
1206 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1207 struct ubuf **bpp)
1208 {
1209 struct inode *ip;
1210 struct lfs *fs;
1211 int frags;
1212 int error;
1213
1214 ip = VTOI(vp);
1215 fs = ip->i_lfs;
1216 frags = (long)lfs_numfrags(fs, nsize - osize);
1217 error = 0;
1218
1219 /*
1220 * If we are not asked to actually return the block, all we need
1221 * to do is allocate space for it. UBC will handle dirtying the
1222 * appropriate things and making sure it all goes to disk.
1223 * Don't bother to read in that case.
1224 */
1225 if (bpp && (error = bread(vp, lbn, osize, 0, bpp))) {
1226 brelse(*bpp, 0);
1227 goto out;
1228 }
1229
1230 lfs_sb_subbfree(fs, frags);
1231 ip->i_lfs_effnblks += frags;
1232 ip->i_flag |= IN_CHANGE | IN_UPDATE;
1233
1234 if (bpp) {
1235 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1236 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1237 }
1238
1239 out:
1240 return (error);
1241 }
1242