lfs.c revision 1.7 1 /* $NetBSD: lfs.c,v 1.7 2003/08/07 10:04:23 agc Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs.h"
98 #include "segwrite.h"
99
100 #define panic call_panic
101
102 extern u_int32_t cksum(void *, size_t);
103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
104
105 extern struct uvnodelst vnodelist;
106 extern struct uvnodelst getvnodelist;
107 extern int nvnodes;
108
109 int fsdirty = 0;
110 void (*panic_func)(int, const char *, va_list) = my_vpanic;
111
112 /*
113 * LFS buffer and uvnode operations
114 */
115
116 int
117 lfs_vop_strategy(struct ubuf * bp)
118 {
119 int count;
120
121 if (bp->b_flags & B_READ) {
122 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
123 dbtob(bp->b_blkno));
124 if (count == bp->b_bcount)
125 bp->b_flags |= B_DONE;
126 } else {
127 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
128 dbtob(bp->b_blkno));
129 if (count == 0) {
130 perror("pwrite");
131 return -1;
132 }
133 bp->b_flags &= ~B_DELWRI;
134 reassignbuf(bp, bp->b_vp);
135 }
136 return 0;
137 }
138
139 int
140 lfs_vop_bwrite(struct ubuf * bp)
141 {
142 struct lfs *fs;
143
144 fs = bp->b_vp->v_fs;
145 if (!(bp->b_flags & B_DELWRI)) {
146 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
147 }
148 bp->b_flags |= B_DELWRI | B_LOCKED;
149 reassignbuf(bp, bp->b_vp);
150 brelse(bp);
151 return 0;
152 }
153
154 /*
155 * ufs_bmaparray does the bmap conversion, and if requested returns the
156 * array of logical blocks which must be traversed to get to a block.
157 * Each entry contains the offset into that block that gets you to the
158 * next block and the disk address of the block (if it is assigned).
159 */
160 int
161 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
162 {
163 struct inode *ip;
164 struct ubuf *bp;
165 struct indir a[NIADDR + 1], *xap;
166 daddr_t daddr;
167 daddr_t metalbn;
168 int error, num;
169
170 ip = VTOI(vp);
171
172 if (bn >= 0 && bn < NDADDR) {
173 if (nump != NULL)
174 *nump = 0;
175 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
176 if (*bnp == 0)
177 *bnp = -1;
178 return (0);
179 }
180 xap = ap == NULL ? a : ap;
181 if (!nump)
182 nump = #
183 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
184 return (error);
185
186 num = *nump;
187
188 /* Get disk address out of indirect block array */
189 daddr = ip->i_ffs1_ib[xap->in_off];
190
191 for (bp = NULL, ++xap; --num; ++xap) {
192 /* Exit the loop if there is no disk address assigned yet and
193 * the indirect block isn't in the cache, or if we were
194 * looking for an indirect block and we've found it. */
195
196 metalbn = xap->in_lbn;
197 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
198 break;
199 /*
200 * If we get here, we've either got the block in the cache
201 * or we have a disk address for it, go fetch it.
202 */
203 if (bp)
204 brelse(bp);
205
206 xap->in_exists = 1;
207 bp = getblk(vp, metalbn, fs->lfs_bsize);
208
209 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
210 bp->b_blkno = fsbtodb(fs, daddr);
211 bp->b_flags |= B_READ;
212 VOP_STRATEGY(bp);
213 }
214 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
215 }
216 if (bp)
217 brelse(bp);
218
219 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
220 *bnp = daddr == 0 ? -1 : daddr;
221 return (0);
222 }
223
224 /*
225 * Create an array of logical block number/offset pairs which represent the
226 * path of indirect blocks required to access a data block. The first "pair"
227 * contains the logical block number of the appropriate single, double or
228 * triple indirect block and the offset into the inode indirect block array.
229 * Note, the logical block number of the inode single/double/triple indirect
230 * block appears twice in the array, once with the offset into the i_ffs1_ib and
231 * once with the offset into the page itself.
232 */
233 int
234 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
235 {
236 daddr_t metalbn, realbn;
237 int64_t blockcnt;
238 int lbc;
239 int i, numlevels, off;
240 int lognindir, indir;
241
242 if (nump)
243 *nump = 0;
244 numlevels = 0;
245 realbn = bn;
246 if (bn < 0)
247 bn = -bn;
248
249 lognindir = -1;
250 for (indir = fs->lfs_nindir; indir; indir >>= 1)
251 ++lognindir;
252
253 /* Determine the number of levels of indirection. After this loop is
254 * done, blockcnt indicates the number of data blocks possible at the
255 * given level of indirection, and NIADDR - i is the number of levels
256 * of indirection needed to locate the requested block. */
257
258 bn -= NDADDR;
259 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
260 if (i == 0)
261 return (EFBIG);
262
263 lbc += lognindir;
264 blockcnt = (int64_t) 1 << lbc;
265
266 if (bn < blockcnt)
267 break;
268 }
269
270 /* Calculate the address of the first meta-block. */
271 if (realbn >= 0)
272 metalbn = -(realbn - bn + NIADDR - i);
273 else
274 metalbn = -(-realbn - bn + NIADDR - i);
275
276 /* At each iteration, off is the offset into the bap array which is an
277 * array of disk addresses at the current level of indirection. The
278 * logical block number and the offset in that block are stored into
279 * the argument array. */
280 ap->in_lbn = metalbn;
281 ap->in_off = off = NIADDR - i;
282 ap->in_exists = 0;
283 ap++;
284 for (++numlevels; i <= NIADDR; i++) {
285 /* If searching for a meta-data block, quit when found. */
286 if (metalbn == realbn)
287 break;
288
289 lbc -= lognindir;
290 blockcnt = (int64_t) 1 << lbc;
291 off = (bn >> lbc) & (fs->lfs_nindir - 1);
292
293 ++numlevels;
294 ap->in_lbn = metalbn;
295 ap->in_off = off;
296 ap->in_exists = 0;
297 ++ap;
298
299 metalbn -= -1 + (off << lbc);
300 }
301 if (nump)
302 *nump = numlevels;
303 return (0);
304 }
305
306 int
307 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
308 {
309 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
310 }
311
312 /* Search a block for a specific dinode. */
313 struct ufs1_dinode *
314 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
315 {
316 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
317 struct ufs1_dinode *ldip, *fin;
318
319 fin = dip + INOPB(fs);
320
321 /*
322 * Read the inode block backwards, since later versions of the
323 * inode will supercede earlier ones. Though it is unlikely, it is
324 * possible that the same inode will appear in the same inode block.
325 */
326 for (ldip = fin - 1; ldip >= dip; --ldip)
327 if (ldip->di_inumber == ino)
328 return (ldip);
329 return NULL;
330 }
331
332 /*
333 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
334 * XXX it currently loses atime information.
335 */
336 struct uvnode *
337 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
338 {
339 struct uvnode *vp;
340 struct inode *ip;
341 struct ufs1_dinode *dip;
342 struct ubuf *bp;
343 int i;
344
345 vp = (struct uvnode *) malloc(sizeof(*vp));
346 memset(vp, 0, sizeof(*vp));
347 vp->v_fd = fd;
348 vp->v_fs = fs;
349 vp->v_usecount = 0;
350 vp->v_strategy_op = lfs_vop_strategy;
351 vp->v_bwrite_op = lfs_vop_bwrite;
352 vp->v_bmap_op = lfs_vop_bmap;
353 LIST_INIT(&vp->v_cleanblkhd);
354 LIST_INIT(&vp->v_dirtyblkhd);
355
356 ip = (struct inode *) malloc(sizeof(*ip));
357 memset(ip, 0, sizeof(*ip));
358
359 ip->i_din.ffs1_din = (struct ufs1_dinode *)
360 malloc(sizeof(struct ufs1_dinode));
361 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
362
363 /* Initialize the inode -- from lfs_vcreate. */
364 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
365 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
366 vp->v_data = ip;
367 /* ip->i_vnode = vp; */
368 ip->i_number = ino;
369 ip->i_lockf = 0;
370 ip->i_diroff = 0;
371 ip->i_lfs_effnblks = 0;
372 ip->i_flag = 0;
373
374 /* Load inode block and find inode */
375 bread(fs->lfs_unlockvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
376 bp->b_flags |= B_AGE;
377 dip = lfs_ifind(fs, ino, bp);
378 if (dip == NULL) {
379 brelse(bp);
380 free(ip);
381 free(vp);
382 return NULL;
383 }
384 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
385 brelse(bp);
386 ip->i_number = ino;
387 /* ip->i_devvp = fs->lfs_unlockvp; */
388 ip->i_lfs = fs;
389
390 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
391 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
392 ip->i_lfs_osize = ip->i_ffs1_size;
393 #if 0
394 if (fs->lfs_version > 1) {
395 ip->i_ffs1_atime = ts.tv_sec;
396 ip->i_ffs1_atimensec = ts.tv_nsec;
397 }
398 #endif
399
400 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
401 for (i = 0; i < NDADDR; i++)
402 if (ip->i_ffs1_db[i] != 0)
403 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
404
405 ++nvnodes;
406 LIST_INSERT_HEAD(&getvnodelist, vp, v_getvnodes);
407 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
408
409 return vp;
410 }
411
412 static struct uvnode *
413 lfs_vget(void *vfs, ino_t ino)
414 {
415 struct lfs *fs = (struct lfs *)vfs;
416 ufs_daddr_t daddr;
417 struct ubuf *bp;
418 IFILE *ifp;
419
420 LFS_IENTRY(ifp, fs, ino, bp);
421 daddr = ifp->if_daddr;
422 brelse(bp);
423 if (daddr == 0)
424 return NULL;
425 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
426 }
427
428 /* Check superblock magic number and checksum */
429 static int
430 check_sb(struct lfs *fs)
431 {
432 u_int32_t checksum;
433
434 if (fs->lfs_magic != LFS_MAGIC) {
435 printf("Superblock magic number (0x%lx) does not match "
436 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
437 (unsigned long) LFS_MAGIC);
438 return 1;
439 }
440 /* checksum */
441 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
442 if (fs->lfs_cksum != checksum) {
443 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
444 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
445 return 1;
446 }
447 return 0;
448 }
449
450 /* Initialize LFS library; load superblocks and choose which to use. */
451 struct lfs *
452 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int debug)
453 {
454 struct uvnode *devvp;
455 struct ubuf *bp;
456 int tryalt;
457 struct lfs *fs, *altfs;
458 int error;
459
460 vfs_init();
461
462 devvp = (struct uvnode *) malloc(sizeof(*devvp));
463 memset(devvp, 0, sizeof(*devvp));
464 devvp->v_fs = NULL;
465 devvp->v_fd = devfd;
466 devvp->v_strategy_op = raw_vop_strategy;
467 devvp->v_bwrite_op = raw_vop_bwrite;
468 devvp->v_bmap_op = raw_vop_bmap;
469 LIST_INIT(&devvp->v_cleanblkhd);
470 LIST_INIT(&devvp->v_dirtyblkhd);
471
472 tryalt = 0;
473 if (sblkno == 0) {
474 sblkno = btodb(LFS_LABELPAD);
475 tryalt = 1;
476 } else if (debug) {
477 printf("No -b flag given, not attempting to verify checkpoint\n");
478 }
479 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
480 fs = (struct lfs *) malloc(sizeof(*fs));
481 memset(fs, 0, sizeof(*fs));
482 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
483 fs->lfs_unlockvp = devvp;
484 bp->b_flags |= B_INVAL;
485 brelse(bp);
486
487 if (tryalt) {
488 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
489 LFS_SBPAD, NOCRED, &bp);
490 altfs = (struct lfs *) malloc(sizeof(*altfs));
491 memset(altfs, 0, sizeof(*altfs));
492 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
493 altfs->lfs_unlockvp = devvp;
494 bp->b_flags |= B_INVAL;
495 brelse(bp);
496
497 if (check_sb(fs)) {
498 if (debug)
499 printf("Primary superblock is no good, using first alternate\n");
500 free(fs);
501 fs = altfs;
502 } else {
503 /* If both superblocks check out, try verification */
504 if (check_sb(altfs)) {
505 if (debug)
506 printf("First alternate superblock is no good, using primary\n");
507 free(altfs);
508 } else {
509 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
510 free(altfs);
511 } else {
512 free(fs);
513 fs = altfs;
514 }
515 }
516 }
517 }
518 if (check_sb(fs)) {
519 free(fs);
520 return NULL;
521 }
522 /* Compatibility */
523 if (fs->lfs_version < 2) {
524 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
525 fs->lfs_ibsize = fs->lfs_bsize;
526 fs->lfs_start = fs->lfs_sboffs[0];
527 fs->lfs_tstamp = fs->lfs_otstamp;
528 fs->lfs_fsbtodb = 0;
529 }
530 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
531 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
532 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
533
534 if (idaddr == 0)
535 idaddr = fs->lfs_idaddr;
536 fs->lfs_ivnode = lfs_raw_vget(fs, fs->lfs_ifile, devvp->v_fd, idaddr);
537
538 register_vget((void *)fs, lfs_vget);
539
540 return fs;
541 }
542
543 /*
544 * Check partial segment validity between fs->lfs_offset and the given goal.
545 * If goal == 0, just keep on going until the segments stop making sense.
546 * Return the address of the first partial segment that failed.
547 */
548 ufs_daddr_t
549 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
550 {
551 ufs_daddr_t daddr, odaddr;
552 SEGSUM *sp;
553 int bc, flag;
554 struct ubuf *bp;
555 ufs_daddr_t nodirop_daddr;
556 u_int64_t serial;
557
558 daddr = osb->lfs_offset;
559 nodirop_daddr = daddr;
560 serial = osb->lfs_serial;
561 while (daddr != goal) {
562 flag = 0;
563 oncemore:
564 /* Read in summary block */
565 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
566 sp = (SEGSUM *)bp->b_data;
567
568 /*
569 * Could be a superblock instead of a segment summary.
570 * XXX should use gseguse, but right now we need to do more
571 * setup before we can...fix this
572 */
573 if (sp->ss_magic != SS_MAGIC ||
574 sp->ss_ident != osb->lfs_ident ||
575 sp->ss_serial < serial ||
576 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
577 sizeof(sp->ss_sumsum))) {
578 brelse(bp);
579 if (flag == 0) {
580 flag = 1;
581 daddr += btofsb(osb, LFS_SBPAD);
582 goto oncemore;
583 }
584 break;
585 }
586 ++serial;
587 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
588 if (bc == 0) {
589 brelse(bp);
590 break;
591 }
592 assert (bc > 0);
593 odaddr = daddr;
594 daddr += btofsb(osb, osb->lfs_sumsize + bc);
595 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
596 dtosn(osb, daddr) != dtosn(osb, daddr +
597 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
598 daddr = sp->ss_next;
599 }
600 if (!(sp->ss_flags & SS_CONT))
601 nodirop_daddr = daddr;
602 brelse(bp);
603 }
604
605 if (goal == 0)
606 return nodirop_daddr;
607 else
608 return daddr;
609 }
610
611 /* Use try_verify to check whether the newer superblock is valid. */
612 struct lfs *
613 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
614 {
615 ufs_daddr_t daddr;
616 struct lfs *osb, *nsb;
617
618 /*
619 * Verify the checkpoint of the newer superblock,
620 * if the timestamp/serial number of the two superblocks is
621 * different.
622 */
623
624 if (debug)
625 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
626 (long long) sb1->lfs_serial);
627
628 if ((sb0->lfs_version == 1 &&
629 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
630 (sb0->lfs_version > 1 &&
631 sb0->lfs_serial != sb1->lfs_serial)) {
632 if (sb0->lfs_version == 1) {
633 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
634 osb = sb1;
635 nsb = sb0;
636 } else {
637 osb = sb0;
638 nsb = sb1;
639 }
640 } else {
641 if (sb0->lfs_serial > sb1->lfs_serial) {
642 osb = sb1;
643 nsb = sb0;
644 } else {
645 osb = sb0;
646 nsb = sb1;
647 }
648 }
649 if (debug) {
650 printf("Attempting to verify newer checkpoint...");
651 fflush(stdout);
652 }
653 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
654
655 if (debug)
656 printf("done.\n");
657 if (daddr == nsb->lfs_offset) {
658 warnx("** Newer checkpoint verified, recovered %lld seconds of data\n",
659 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
660 sbdirty();
661 } else {
662 warnx("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
663 }
664 return (daddr == nsb->lfs_offset ? nsb : osb);
665 }
666 /* Nothing to check */
667 return osb;
668 }
669
670 /* Verify a partial-segment summary; return the number of bytes on disk. */
671 int
672 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
673 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
674 {
675 FINFO *fp;
676 int bc; /* Bytes in partial segment */
677 int nblocks;
678 ufs_daddr_t seg_addr, daddr;
679 ufs_daddr_t *dp, *idp;
680 struct ubuf *bp;
681 int i, j, k, datac, len;
682 long sn;
683 u_int32_t *datap;
684 u_int32_t ccksum;
685
686 sn = dtosn(fs, pseg_addr);
687 seg_addr = sntod(fs, sn);
688
689 /* We've already checked the sumsum, just do the data bounds and sum */
690
691 /* Count the blocks. */
692 nblocks = howmany(sp->ss_ninos, INOPB(fs));
693 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
694 assert(bc >= 0);
695
696 fp = (FINFO *) (sp + 1);
697 for (i = 0; i < sp->ss_nfinfo; i++) {
698 nblocks += fp->fi_nblocks;
699 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
700 << fs->lfs_bshift);
701 assert(bc >= 0);
702 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
703 }
704 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
705 datac = 0;
706
707 dp = (ufs_daddr_t *) sp;
708 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
709 dp--;
710
711 idp = dp;
712 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
713 fp = (FINFO *) (sp + 1);
714 for (i = 0, j = 0;
715 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
716 if (i >= sp->ss_nfinfo && *idp != daddr) {
717 warnx("Not enough inode blocks in pseg at 0x%" PRIx32
718 ": found %d, wanted %d\n",
719 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
720 if (debug)
721 warnx("*idp=%x, daddr=%" PRIx32 "\n", *idp,
722 daddr);
723 break;
724 }
725 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
726 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
727 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
728 brelse(bp);
729
730 ++j;
731 daddr += btofsb(fs, fs->lfs_ibsize);
732 --idp;
733 }
734 if (i < sp->ss_nfinfo) {
735 if (func)
736 func(daddr, fp);
737 for (k = 0; k < fp->fi_nblocks; k++) {
738 len = (k == fp->fi_nblocks - 1 ?
739 fp->fi_lastlength
740 : fs->lfs_bsize);
741 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
742 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
743 brelse(bp);
744 daddr += btofsb(fs, len);
745 }
746 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
747 }
748 }
749
750 if (datac != nblocks) {
751 warnx("Partial segment at 0x%llx expected %d blocks counted %d\n",
752 (long long) pseg_addr, nblocks, datac);
753 }
754 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
755 /* Check the data checksum */
756 if (ccksum != sp->ss_datasum) {
757 warnx("Partial segment at 0x%" PRIx32 " data checksum"
758 " mismatch: given 0x%x, computed 0x%x\n",
759 pseg_addr, sp->ss_datasum, ccksum);
760 free(datap);
761 return 0;
762 }
763 free(datap);
764 assert(bc >= 0);
765 return bc;
766 }
767
768 /* print message and exit */
769 void
770 my_vpanic(int fatal, const char *fmt, va_list ap)
771 {
772 (void) vprintf(fmt, ap);
773 exit(8);
774 }
775
776 void
777 call_panic(const char *fmt, ...)
778 {
779 va_list ap;
780
781 va_start(ap, fmt);
782 panic_func(1, fmt, ap);
783 va_end(ap);
784 }
785