lfs.c revision 1.76 1 /* $NetBSD: lfs.c,v 1.76 2025/10/12 01:44:26 perseant Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1989, 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
64 */
65
66
67 #include <sys/types.h>
68 #include <sys/param.h>
69 #include <sys/time.h>
70 #include <sys/buf.h>
71 #include <sys/mount.h>
72
73 #define vnode uvnode
74 #include <ufs/lfs/lfs.h>
75 #include <ufs/lfs/lfs_inode.h>
76 #include <ufs/lfs/lfs_accessors.h>
77 #undef vnode
78
79 #include <assert.h>
80 #include <err.h>
81 #include <errno.h>
82 #include <stdarg.h>
83 #include <stdbool.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <string.h>
87 #include <unistd.h>
88 #include <util.h>
89
90 #include "bufcache.h"
91 #include "extern.h"
92 #include "lfs_user.h"
93 #include "segwrite.h"
94 #include "kernelops.h"
95
96 #define panic call_panic
97
98 long dev_bsize = DEV_BSIZE;
99
100 static int
101 lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
102
103 int fsdirty = 0;
104 void (*panic_func)(int, const char *, va_list) = my_vpanic;
105
106 /*
107 * LFS buffer and uvnode operations
108 */
109
110 int
111 lfs_vop_strategy(struct ubuf * bp)
112 {
113 int count;
114
115 if (bp->b_flags & B_READ) {
116 count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
117 bp->b_blkno * dev_bsize);
118 if (count == bp->b_bcount)
119 bp->b_flags |= B_DONE;
120 } else {
121 count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
122 bp->b_blkno * dev_bsize);
123 if (count == 0) {
124 perror("pwrite");
125 return -1;
126 }
127 bp->b_flags &= ~B_DELWRI;
128 reassignbuf(bp, bp->b_vp);
129 }
130 return 0;
131 }
132
133 int
134 lfs_vop_bwrite(struct ubuf * bp)
135 {
136 struct lfs *fs;
137
138 fs = bp->b_vp->v_fs;
139 if (!(bp->b_flags & B_DELWRI)) {
140 lfs_sb_subavail(fs, lfs_btofsb(fs, bp->b_bcount));
141 }
142 bp->b_flags |= B_DELWRI | B_LOCKED;
143 reassignbuf(bp, bp->b_vp);
144 brelse(bp, 0);
145 return 0;
146 }
147
148 /*
149 * ulfs_bmaparray does the bmap conversion, and if requested returns the
150 * array of logical blocks which must be traversed to get to a block.
151 * Each entry contains the offset into that block that gets you to the
152 * next block and the disk address of the block (if it is assigned).
153 */
154 int
155 ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
156 {
157 struct inode *ip;
158 struct ubuf *bp;
159 struct indir a[ULFS_NIADDR + 1], *xap;
160 daddr_t daddr;
161 daddr_t metalbn;
162 int error, num;
163
164 ip = VTOI(vp);
165
166 if (bn >= 0 && bn < ULFS_NDADDR) {
167 if (nump != NULL)
168 *nump = 0;
169 *bnp = LFS_FSBTODB(fs, lfs_dino_getdb(fs, ip->i_din, bn));
170 if (*bnp == 0)
171 *bnp = -1;
172 return (0);
173 }
174 xap = ap == NULL ? a : ap;
175 if (!nump)
176 nump = #
177 if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
178 return (error);
179
180 num = *nump;
181
182 /* Get disk address out of indirect block array */
183 daddr = lfs_dino_getib(fs, ip->i_din, xap->in_off);
184
185 for (bp = NULL, ++xap; --num; ++xap) {
186 /* Exit the loop if there is no disk address assigned yet and
187 * the indirect block isn't in the cache, or if we were
188 * looking for an indirect block and we've found it. */
189
190 metalbn = xap->in_lbn;
191 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
192 break;
193 /*
194 * If we get here, we've either got the block in the cache
195 * or we have a disk address for it, go fetch it.
196 */
197 if (bp)
198 brelse(bp, 0);
199
200 xap->in_exists = 1;
201 bp = getblk(vp, metalbn, lfs_sb_getbsize(fs));
202
203 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
204 bp->b_blkno = LFS_FSBTODB(fs, daddr);
205 bp->b_flags |= B_READ;
206 VOP_STRATEGY(bp);
207 }
208 daddr = lfs_iblock_get(fs, bp->b_data, xap->in_off);
209 }
210 if (bp)
211 brelse(bp, 0);
212
213 daddr = LFS_FSBTODB(fs, daddr);
214 *bnp = daddr == 0 ? -1 : daddr;
215 return (0);
216 }
217
218 /*
219 * Create an array of logical block number/offset pairs which represent the
220 * path of indirect blocks required to access a data block. The first "pair"
221 * contains the logical block number of the appropriate single, double or
222 * triple indirect block and the offset into the inode indirect block array.
223 * Note, the logical block number of the inode single/double/triple indirect
224 * block appears twice in the array, once with the offset into di_ib and
225 * once with the offset into the page itself.
226 */
227 int
228 ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
229 {
230 daddr_t metalbn, realbn;
231 int64_t blockcnt;
232 int lbc;
233 int i, numlevels, off;
234 int lognindir, indir;
235
236 metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
237
238 if (nump)
239 *nump = 0;
240 numlevels = 0;
241 realbn = bn;
242 if (bn < 0)
243 bn = -bn;
244
245 lognindir = -1;
246 for (indir = lfs_sb_getnindir(fs); indir; indir >>= 1)
247 ++lognindir;
248
249 /* Determine the number of levels of indirection. After this loop is
250 * done, blockcnt indicates the number of data blocks possible at the
251 * given level of indirection, and ULFS_NIADDR - i is the number of levels
252 * of indirection needed to locate the requested block. */
253
254 bn -= ULFS_NDADDR;
255 for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
256 if (i == 0)
257 return (EFBIG);
258
259 lbc += lognindir;
260 blockcnt = (int64_t) 1 << lbc;
261
262 if (bn < blockcnt)
263 break;
264 }
265
266 /* Calculate the address of the first meta-block. */
267 metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
268
269 /* At each iteration, off is the offset into the bap array which is an
270 * array of disk addresses at the current level of indirection. The
271 * logical block number and the offset in that block are stored into
272 * the argument array. */
273 ap->in_lbn = metalbn;
274 ap->in_off = off = ULFS_NIADDR - i;
275 ap->in_exists = 0;
276 ap++;
277 for (++numlevels; i <= ULFS_NIADDR; i++) {
278 /* If searching for a meta-data block, quit when found. */
279 if (metalbn == realbn)
280 break;
281
282 lbc -= lognindir;
283 /*blockcnt = (int64_t) 1 << lbc;*/
284 off = (bn >> lbc) & (lfs_sb_getnindir(fs) - 1);
285
286 ++numlevels;
287 ap->in_lbn = metalbn;
288 ap->in_off = off;
289 ap->in_exists = 0;
290 ++ap;
291
292 metalbn -= -1 + (off << lbc);
293 }
294 if (nump)
295 *nump = numlevels;
296 return (0);
297 }
298
299 int
300 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
301 {
302 return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
303 }
304
305 /* Search a block for a specific dinode. */
306 union lfs_dinode *
307 lfs_ifind(struct lfs *fs, ino_t ino, struct ubuf *bp)
308 {
309 union lfs_dinode *ldip;
310 unsigned i, num;
311
312 num = LFS_INOPB(fs);
313
314 /*
315 * Read the inode block backwards, since later versions of the
316 * inode will supercede earlier ones. Though it is unlikely, it is
317 * possible that the same inode will appear in the same inode block.
318 */
319 for (i = num; i-- > 0; ) {
320 ldip = DINO_IN_BLOCK(fs, bp->b_data, i);
321 if (lfs_dino_getinumber(fs, ldip) == ino)
322 return (ldip);
323 }
324 return NULL;
325 }
326
327 /*
328 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
329 * XXX it currently loses atime information.
330 */
331 struct uvnode *
332 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, daddr_t daddr)
333 {
334 struct uvnode *vp;
335 struct inode *ip;
336 union lfs_dinode *dip;
337 struct ubuf *bp;
338 int i, hash;
339
340 vp = ecalloc(1, sizeof(*vp));
341 vp->v_fd = fd;
342 vp->v_fs = fs;
343 vp->v_usecount = 0;
344 vp->v_strategy_op = lfs_vop_strategy;
345 vp->v_bwrite_op = lfs_vop_bwrite;
346 vp->v_bmap_op = lfs_vop_bmap;
347 LIST_INIT(&vp->v_cleanblkhd);
348 LIST_INIT(&vp->v_dirtyblkhd);
349
350 ip = ecalloc(1, sizeof(*ip));
351
352 ip->i_din = dip = ecalloc(1, sizeof(*dip));
353
354 /* Initialize the inode -- from lfs_vcreate. */
355 ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
356 vp->v_data = ip;
357 /* ip->i_vnode = vp; */
358 ip->i_lockf = 0;
359 ip->i_state = 0;
360
361 /* Load inode block and find inode */
362 if (daddr > 0) {
363 bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
364 0, &bp);
365 bp->b_flags |= B_AGE;
366 dip = lfs_ifind(fs, ino, bp);
367 if (dip == NULL) {
368 brelse(bp, 0);
369 free(ip->i_din);
370 free(ip->inode_ext.lfs);
371 free(ip);
372 free(vp);
373 return NULL;
374 }
375 lfs_copy_dinode(fs, ip->i_din, dip);
376 brelse(bp, 0);
377 }
378 ip->i_number = ino;
379 /* ip->i_devvp = fs->lfs_devvp; */
380 ip->i_lfs = fs;
381
382 ip->i_lfs_effnblks = lfs_dino_getblocks(fs, ip->i_din);
383 ip->i_lfs_osize = lfs_dino_getsize(fs, ip->i_din);
384 #if 0
385 if (lfs_sb_getversion(fs) > 1) {
386 lfs_dino_setatime(fs, ip->i_din, ts.tv_sec);
387 lfs_dino_setatimensec(fs, ip->i_din, ts.tv_nsec);
388 }
389 #endif
390
391 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
392 for (i = 0; i < ULFS_NDADDR; i++)
393 if (lfs_dino_getdb(fs, ip->i_din, i) != 0)
394 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
395
396 ++nvnodes;
397 hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
398 LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
399 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
400
401 return vp;
402 }
403
404 static struct uvnode *
405 lfs_vget(void *vfs, ino_t ino)
406 {
407 struct lfs *fs = (struct lfs *)vfs;
408 daddr_t daddr;
409 struct ubuf *bp;
410 IFILE *ifp;
411
412 LFS_IENTRY(ifp, fs, ino, bp);
413 daddr = lfs_if_getdaddr(fs, ifp);
414 brelse(bp, 0);
415 if (daddr <= 0 || lfs_dtosn(fs, daddr) >= lfs_sb_getnseg(fs))
416 return NULL;
417 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
418 }
419
420 /*
421 * Check superblock magic number and checksum.
422 * Sets lfs_is64 and lfs_dobyteswap.
423 */
424 static int
425 check_sb(struct lfs *fs)
426 {
427 u_int32_t checksum;
428 u_int32_t magic;
429
430 /* we can read the magic out of either the 32-bit or 64-bit dlfs */
431 magic = fs->lfs_dlfs_u.u_32.dlfs_magic;
432
433 switch (magic) {
434 case LFS_MAGIC:
435 fs->lfs_is64 = false;
436 fs->lfs_dobyteswap = false;
437 break;
438 case LFS_MAGIC_SWAPPED:
439 fs->lfs_is64 = false;
440 fs->lfs_dobyteswap = true;
441 break;
442 case LFS64_MAGIC:
443 fs->lfs_is64 = true;
444 fs->lfs_dobyteswap = false;
445 break;
446 case LFS64_MAGIC_SWAPPED:
447 fs->lfs_is64 = true;
448 fs->lfs_dobyteswap = true;
449 break;
450 default:
451 printf("Superblock magic number (0x%lx) does not match "
452 "any of the expected 0x%lx, 0x%lx, 0x%lx or 0x%lx\n",
453 (unsigned long)magic,
454 (unsigned long)LFS_MAGIC,
455 (unsigned long)LFS_MAGIC_SWAPPED,
456 (unsigned long)LFS64_MAGIC,
457 (unsigned long)LFS64_MAGIC_SWAPPED);
458 return 1;
459 }
460
461 /* checksum */
462 checksum = lfs_sb_cksum(fs);
463 if (lfs_sb_getcksum(fs) != checksum) {
464 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
465 (unsigned long) lfs_sb_getcksum(fs), (unsigned long) checksum);
466 return 1;
467 }
468 return 0;
469 }
470
471 /* Initialize LFS library; load superblocks and choose which to use. */
472 struct lfs *
473 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
474 {
475 struct uvnode *devvp;
476 struct ubuf *bp;
477 int tryalt;
478 struct lfs *fs, *altfs;
479
480 vfs_init();
481
482 devvp = ecalloc(1, sizeof(*devvp));
483 devvp->v_fs = NULL;
484 devvp->v_fd = devfd;
485 devvp->v_strategy_op = raw_vop_strategy;
486 devvp->v_bwrite_op = raw_vop_bwrite;
487 devvp->v_bmap_op = raw_vop_bmap;
488 LIST_INIT(&devvp->v_cleanblkhd);
489 LIST_INIT(&devvp->v_dirtyblkhd);
490
491 tryalt = 0;
492 if (dummy_read) {
493 if (sblkno == 0)
494 sblkno = LFS_LABELPAD / dev_bsize;
495 fs = ecalloc(1, sizeof(*fs));
496 fs->lfs_devvp = devvp;
497 } else {
498 if (sblkno == 0) {
499 sblkno = LFS_LABELPAD / dev_bsize;
500 tryalt = 1;
501 } else if (debug) {
502 printf("No -b flag given, not attempting to verify checkpoint\n");
503 }
504
505 dev_bsize = DEV_BSIZE;
506
507 (void)bread(devvp, sblkno, LFS_SBPAD, 0, &bp);
508 fs = ecalloc(1, sizeof(*fs));
509 __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
510 memcpy(&fs->lfs_dlfs_u, bp->b_data, sizeof(struct dlfs));
511 fs->lfs_devvp = devvp;
512 bp->b_flags |= B_INVAL;
513 brelse(bp, 0);
514
515 /*
516 * Look at the magic number before validating the rest
517 * of the superblock. If the magic number is bad, too,
518 * we don't know where to look for an alternate superblock
519 * either; so bail out now.
520 */
521 switch (fs->lfs_dlfs_u.u_32.dlfs_magic) {
522 case LFS_MAGIC:
523 case LFS_MAGIC_SWAPPED:
524 break;
525
526 case LFS64_MAGIC:
527 case LFS64_MAGIC_SWAPPED:
528 fs->lfs_is64 = true;
529 break;
530
531 default:
532 return NULL;
533 }
534
535
536 dev_bsize = lfs_sb_getfsize(fs) >> lfs_sb_getfsbtodb(fs);
537
538 if (tryalt) {
539 (void)bread(devvp, LFS_FSBTODB(fs, lfs_sb_getsboff(fs, 1)),
540 LFS_SBPAD, 0, &bp);
541 altfs = ecalloc(1, sizeof(*altfs));
542 memcpy(&altfs->lfs_dlfs_u, bp->b_data,
543 sizeof(altfs->lfs_dlfs_u));
544 altfs->lfs_devvp = devvp;
545 bp->b_flags |= B_INVAL;
546 brelse(bp, 0);
547
548 if (check_sb(fs) || lfs_sb_getidaddr(fs) <= 0) {
549 if (debug)
550 printf("Primary superblock is no good, using first alternate\n");
551 free(fs);
552 fs = altfs;
553 } else {
554 /* If both superblocks check out, try verification */
555 if (check_sb(altfs)) {
556 if (debug)
557 printf("First alternate superblock is no good, using primary\n");
558 free(altfs);
559 } else {
560 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
561 free(altfs);
562 } else {
563 free(fs);
564 fs = altfs;
565 }
566 }
567 }
568 }
569 if (check_sb(fs)) {
570 free(fs);
571 return NULL;
572 }
573 }
574
575 /* Compatibility */
576 if (lfs_sb_getversion(fs) < 2) {
577 lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
578 lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
579 lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
580 lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
581 lfs_sb_setfsbtodb(fs, 0);
582 }
583
584 if (!dummy_read) {
585 fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
586 fs->lfs_suflags[0] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
587 fs->lfs_suflags[1] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
588 }
589
590 if (idaddr == 0)
591 idaddr = lfs_sb_getidaddr(fs);
592 else
593 lfs_sb_setidaddr(fs, idaddr);
594 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
595 fs->lfs_ivnode = lfs_raw_vget(fs, LFS_IFILE_INUM,
596 devvp->v_fd, idaddr);
597 if (fs->lfs_ivnode == NULL)
598 return NULL;
599
600 register_vget((void *)fs, lfs_vget);
601
602 return fs;
603 }
604
605 /*
606 * Check partial segment validity between fs->lfs_offset and the given goal.
607 *
608 * If goal == 0, just keep on going until the segments stop making sense,
609 * and return the address of the last valid partial segment.
610 *
611 * If goal != 0, return the address of the first partial segment that failed,
612 * or "goal" if we reached it without failure (the partial segment *at* goal
613 * need not be valid).
614 */
615 daddr_t
616 try_verify(struct lfs *osb, struct uvnode *devvp, daddr_t goal, int debug)
617 {
618 daddr_t daddr, odaddr;
619 SEGSUM *sp;
620 int i, bc, hitclean;
621 struct ubuf *bp;
622 daddr_t nodirop_daddr;
623 u_int64_t serial;
624
625 bc = 0;
626 hitclean = 0;
627 odaddr = -1;
628 daddr = lfs_sb_getoffset(osb);
629 nodirop_daddr = daddr;
630 serial = lfs_sb_getserial(osb);
631 while (daddr != goal) {
632 /*
633 * Don't mistakenly read a superblock, if there is one here.
634 */
635 if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
636 if (daddr == lfs_sb_gets0addr(osb))
637 daddr += lfs_btofsb(osb, LFS_LABELPAD);
638 for (i = 0; i < LFS_MAXNUMSB; i++) {
639 /* XXX dholland 20150828 I think this is wrong */
640 if (lfs_sb_getsboff(osb, i) < daddr)
641 break;
642 if (lfs_sb_getsboff(osb, i) == daddr)
643 daddr += lfs_btofsb(osb, LFS_SBPAD);
644 }
645 }
646
647 /* Read in summary block */
648 bread(devvp, LFS_FSBTODB(osb, daddr), lfs_sb_getsumsize(osb),
649 0, &bp);
650 sp = (SEGSUM *)bp->b_data;
651
652 /*
653 * Check for a valid segment summary belonging to our fs.
654 */
655 if (lfs_ss_getmagic(osb, sp) != SS_MAGIC ||
656 lfs_ss_getident(osb, sp) != lfs_sb_getident(osb) ||
657 lfs_ss_getserial(osb, sp) < serial || /* XXX strengthen this */
658 lfs_ss_getsumsum(osb, sp) !=
659 cksum((char *)sp + lfs_ss_getsumstart(osb),
660 lfs_sb_getsumsize(osb) - lfs_ss_getsumstart(osb))) {
661 brelse(bp, 0);
662 if (debug) {
663 if (lfs_ss_getmagic(osb, sp) != SS_MAGIC)
664 pwarn("pseg at 0x%jx: "
665 "wrong magic number\n",
666 (uintmax_t)daddr);
667 else if (lfs_ss_getident(osb, sp) != lfs_sb_getident(osb))
668 pwarn("pseg at 0x%jx: "
669 "expected ident %jx, got %jx\n",
670 (uintmax_t)daddr,
671 (uintmax_t)lfs_ss_getident(osb, sp),
672 (uintmax_t)lfs_sb_getident(osb));
673 else if (lfs_ss_getserial(osb, sp) >= serial)
674 pwarn("pseg at 0x%jx: "
675 "serial %d < %d\n",
676 (uintmax_t)daddr,
677 (int)lfs_ss_getserial(osb, sp), (int)serial);
678 else
679 pwarn("pseg at 0x%jx: "
680 "summary checksum wrong\n",
681 (uintmax_t)daddr);
682 }
683 break;
684 }
685 if (debug && lfs_ss_getserial(osb, sp) != serial)
686 pwarn("warning, serial=%d ss_serial=%d\n",
687 (int)serial, (int)lfs_ss_getserial(osb, sp));
688 ++serial;
689 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
690 if (bc == 0) {
691 brelse(bp, 0);
692 break;
693 }
694 if (debug)
695 pwarn("summary good: 0x%jx/%d\n", (uintmax_t)daddr,
696 (int)lfs_ss_getserial(osb, sp));
697 assert (bc > 0);
698 odaddr = daddr;
699 daddr += lfs_btofsb(osb, lfs_sb_getsumsize(osb) + bc);
700 if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
701 lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
702 lfs_btofsb(osb, lfs_sb_getsumsize(osb) + lfs_sb_getbsize(osb)) - 1)) {
703 daddr = lfs_ss_getnext(osb, sp);
704 }
705
706 /*
707 * Check for the beginning and ending of a sequence of
708 * dirops. Writes from the cleaner never involve new
709 * information, and are always checkpoints; so don't try
710 * to roll forward through them. Likewise, psegs written
711 * by a previous roll-forward attempt are not interesting.
712 */
713 if (lfs_ss_getflags(osb, sp) & (SS_CLEAN | SS_RFW))
714 hitclean = 1;
715 if (hitclean == 0 && (lfs_ss_getflags(osb, sp) & SS_CONT) == 0)
716 nodirop_daddr = daddr;
717
718 brelse(bp, 0);
719 }
720
721 if (goal == 0)
722 return nodirop_daddr;
723 else
724 return daddr;
725 }
726
727 /* Use try_verify to check whether the newer superblock is valid. */
728 struct lfs *
729 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
730 {
731 daddr_t daddr;
732 struct lfs *osb, *nsb;
733
734 /*
735 * Verify the checkpoint of the newer superblock,
736 * if the timestamp/serial number of the two superblocks is
737 * different.
738 */
739
740 osb = NULL;
741 if (debug)
742 pwarn("sb0 %ju, sb1 %ju",
743 (uintmax_t) lfs_sb_getserial(sb0),
744 (uintmax_t) lfs_sb_getserial(sb1));
745
746 if ((lfs_sb_getversion(sb0) == 1 &&
747 lfs_sb_getotstamp(sb0) != lfs_sb_getotstamp(sb1)) ||
748 (lfs_sb_getversion(sb0) > 1 &&
749 lfs_sb_getserial(sb0) != lfs_sb_getserial(sb1))) {
750 if (lfs_sb_getversion(sb0) == 1) {
751 if (lfs_sb_getotstamp(sb0) > lfs_sb_getotstamp(sb1)) {
752 osb = sb1;
753 nsb = sb0;
754 } else {
755 osb = sb0;
756 nsb = sb1;
757 }
758 } else {
759 if (lfs_sb_getserial(sb0) > lfs_sb_getserial(sb1)) {
760 osb = sb1;
761 nsb = sb0;
762 } else {
763 osb = sb0;
764 nsb = sb1;
765 }
766 }
767 if (debug) {
768 printf("Attempting to verify newer checkpoint...");
769 fflush(stdout);
770 }
771 daddr = try_verify(osb, devvp, lfs_sb_getoffset(nsb), debug);
772
773 if (debug)
774 printf("done.\n");
775 if (daddr == lfs_sb_getoffset(nsb)) {
776 pwarn("** Newer checkpoint verified; recovered %jd seconds of data\n",
777 (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
778 sbdirty();
779 } else {
780 pwarn("** Newer checkpoint invalid; lost %jd seconds of data\n", (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
781 }
782 return (daddr == lfs_sb_getoffset(nsb) ? nsb : osb);
783 }
784 /* Nothing to check */
785 return osb;
786 }
787
788 /* Verify a partial-segment summary; return the number of bytes on disk. */
789 int
790 check_summary(struct lfs *fs, SEGSUM *sp, daddr_t pseg_addr, int debug,
791 struct uvnode *devvp, void (func(daddr_t, FINFO *)))
792 {
793 FINFO *fp;
794 int bc; /* Bytes in partial segment */
795 int nblocks;
796 daddr_t daddr;
797 IINFO *iibase, *iip;
798 struct ubuf *bp;
799 int i, j, k, datac, len;
800 lfs_checkword *datap;
801 u_int32_t ccksum;
802
803 /* We've already checked the sumsum, just do the data bounds and sum */
804
805 /* Count the blocks. */
806 nblocks = howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs));
807 bc = nblocks << (lfs_sb_getversion(fs) > 1 ? lfs_sb_getffshift(fs) : lfs_sb_getbshift(fs));
808 assert(bc >= 0);
809
810 fp = SEGSUM_FINFOBASE(fs, sp);
811 for (i = 0; i < lfs_ss_getnfinfo(fs, sp); i++) {
812 nblocks += lfs_fi_getnblocks(fs, fp);
813 bc += lfs_fi_getlastlength(fs, fp) + ((lfs_fi_getnblocks(fs, fp) - 1)
814 << lfs_sb_getbshift(fs));
815 assert(bc >= 0);
816 fp = NEXT_FINFO(fs, fp);
817 if (((char *)fp) - (char *)sp > lfs_sb_getsumsize(fs))
818 return 0;
819 }
820 datap = emalloc(nblocks * sizeof(*datap));
821 datac = 0;
822
823 iibase = SEGSUM_IINFOSTART(fs, sp);
824
825 iip = iibase;
826 daddr = pseg_addr + lfs_btofsb(fs, lfs_sb_getsumsize(fs));
827 fp = SEGSUM_FINFOBASE(fs, sp);
828 for (i = 0, j = 0;
829 i < lfs_ss_getnfinfo(fs, sp) || j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)); i++) {
830 if (i >= lfs_ss_getnfinfo(fs, sp) && lfs_ii_getblock(fs, iip) != daddr) {
831 pwarn("Not enough inode blocks in pseg at 0x%jx: "
832 "found %d, wanted %d\n",
833 pseg_addr, j, howmany(lfs_ss_getninos(fs, sp),
834 LFS_INOPB(fs)));
835 if (debug)
836 pwarn("iip=0x%jx, daddr=0x%jx\n",
837 (uintmax_t)lfs_ii_getblock(fs, iip),
838 (intmax_t)daddr);
839 break;
840 }
841 while (j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)) && lfs_ii_getblock(fs, iip) == daddr) {
842 bread(devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
843 0, &bp);
844 datap[datac++] = ((lfs_checkword *)bp->b_data)[0];
845 brelse(bp, 0);
846
847 ++j;
848 daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs));
849 iip = NEXTLOWER_IINFO(fs, iip);
850 }
851 if (i < lfs_ss_getnfinfo(fs, sp)) {
852 if (func)
853 func(daddr, fp);
854 for (k = 0; k < lfs_fi_getnblocks(fs, fp); k++) {
855 len = (k == lfs_fi_getnblocks(fs, fp) - 1 ?
856 lfs_fi_getlastlength(fs, fp)
857 : lfs_sb_getbsize(fs));
858 bread(devvp, LFS_FSBTODB(fs, daddr), len,
859 0, &bp);
860 datap[datac++] = ((lfs_checkword *)bp->b_data)[0];
861 brelse(bp, 0);
862 daddr += lfs_btofsb(fs, len);
863 }
864 fp = NEXT_FINFO(fs, fp);
865 }
866 }
867
868 if (datac != nblocks) {
869 pwarn("Partial segment at 0x%jx expected %d blocks counted %d\n",
870 (intmax_t)pseg_addr, nblocks, datac);
871 }
872 ccksum = cksum(datap, nblocks * sizeof(datap[0]));
873 /* Check the data checksum */
874 if (ccksum != lfs_ss_getdatasum(fs, sp)) {
875 pwarn("Partial segment at 0x%jx data checksum"
876 " mismatch: given 0x%x, computed 0x%x\n",
877 (uintmax_t)pseg_addr, lfs_ss_getdatasum(fs, sp), ccksum);
878 free(datap);
879 return 0;
880 }
881 free(datap);
882 assert(bc >= 0);
883 return bc;
884 }
885
886 /* print message and exit */
887 void
888 my_vpanic(int fatal, const char *fmt, va_list ap)
889 {
890 (void) vprintf(fmt, ap);
891 exit(8);
892 }
893
894 void
895 call_panic(const char *fmt, ...)
896 {
897 va_list ap;
898
899 va_start(ap, fmt);
900 panic_func(1, fmt, ap);
901 va_end(ap);
902 }
903
904 /* Allocate a new inode. */
905 struct uvnode *
906 lfs_valloc(struct lfs *fs, ino_t ino)
907 {
908 struct ubuf *bp, *cbp;
909 IFILE *ifp;
910 ino_t new_ino;
911 int error;
912 CLEANERINFO *cip;
913
914 /* Get the head of the freelist. */
915 LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
916
917 /*
918 * Remove the inode from the free list and write the new start
919 * of the free list into the superblock.
920 */
921 LFS_IENTRY(ifp, fs, new_ino, bp);
922 if (lfs_if_getdaddr(fs, ifp) != LFS_UNUSED_DADDR)
923 panic("lfs_valloc: inuse inode %d on the free list", new_ino);
924 LFS_PUT_HEADFREE(fs, cip, cbp, lfs_if_getnextfree(fs, ifp));
925
926 brelse(bp, 0);
927
928 /* Extend IFILE so that the next lfs_valloc will succeed. */
929 if (lfs_sb_getfreehd(fs) == LFS_UNUSED_INUM) {
930 if ((error = extend_ifile(fs)) != 0) {
931 LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
932 return NULL;
933 }
934 }
935
936 /* Set superblock modified bit and increment file count. */
937 sbdirty();
938 lfs_sb_addnfiles(fs, 1);
939
940 return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
941 }
942
943 #ifdef IN_FSCK_LFS
944 void reset_maxino(ino_t);
945 #endif
946
947 /*
948 * Add a new block to the Ifile, to accommodate future file creations.
949 */
950 int
951 extend_ifile(struct lfs *fs)
952 {
953 struct uvnode *vp;
954 struct inode *ip;
955 IFILE64 *ifp64;
956 IFILE32 *ifp32;
957 IFILE_V1 *ifp_v1;
958 struct ubuf *bp, *cbp;
959 daddr_t i, blkno, max;
960 ino_t oldlast;
961 CLEANERINFO *cip;
962
963 vp = fs->lfs_ivnode;
964 ip = VTOI(vp);
965 blkno = lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din));
966
967 lfs_balloc(vp, lfs_dino_getsize(fs, ip->i_din), lfs_sb_getbsize(fs), &bp);
968 lfs_dino_setsize(fs, ip->i_din,
969 lfs_dino_getsize(fs, ip->i_din) + lfs_sb_getbsize(fs));
970 ip->i_state |= IN_MODIFIED;
971
972 i = (blkno - lfs_sb_getsegtabsz(fs) - lfs_sb_getcleansz(fs)) *
973 lfs_sb_getifpb(fs);
974 LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
975 LFS_PUT_HEADFREE(fs, cip, cbp, i);
976 max = i + lfs_sb_getifpb(fs);
977 lfs_sb_subbfree(fs, lfs_btofsb(fs, lfs_sb_getbsize(fs)));
978
979 if (fs->lfs_is64) {
980 for (ifp64 = (IFILE64 *)bp->b_data; i < max; ++ifp64) {
981 ifp64->if_version = 1;
982 ifp64->if_daddr = LFS_UNUSED_DADDR;
983 ifp64->if_nextfree = ++i;
984 }
985 ifp64--;
986 ifp64->if_nextfree = oldlast;
987 } else if (lfs_sb_getversion(fs) > 1) {
988 for (ifp32 = (IFILE32 *)bp->b_data; i < max; ++ifp32) {
989 ifp32->if_version = 1;
990 ifp32->if_daddr = LFS_UNUSED_DADDR;
991 ifp32->if_nextfree = ++i;
992 }
993 ifp32--;
994 ifp32->if_nextfree = oldlast;
995 } else {
996 for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
997 ifp_v1->if_version = 1;
998 ifp_v1->if_daddr = LFS_UNUSED_DADDR;
999 ifp_v1->if_nextfree = ++i;
1000 }
1001 ifp_v1--;
1002 ifp_v1->if_nextfree = oldlast;
1003 }
1004 LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
1005
1006 LFS_BWRITE_LOG(bp);
1007
1008 #ifdef IN_FSCK_LFS
1009 reset_maxino(((lfs_dino_getsize(fs, ip->i_din) >> lfs_sb_getbshift(fs))
1010 - lfs_sb_getsegtabsz(fs)
1011 - lfs_sb_getcleansz(fs)) * lfs_sb_getifpb(fs));
1012 #endif
1013 return 0;
1014 }
1015
1016 /*
1017 * Allocate a block, and to inode and filesystem block accounting for it
1018 * and for any indirect blocks the may need to be created in order for
1019 * this block to be created.
1020 *
1021 * Blocks which have never been accounted for (i.e., which "do not exist")
1022 * have disk address 0, which is translated by ulfs_bmap to the special value
1023 * UNASSIGNED == -1, as in the historical ULFS.
1024 *
1025 * Blocks which have been accounted for but which have not yet been written
1026 * to disk are given the new special disk address UNWRITTEN == -2, so that
1027 * they can be differentiated from completely new blocks.
1028 */
1029 int
1030 lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
1031 {
1032 int offset;
1033 daddr_t daddr, idaddr;
1034 struct ubuf *ibp, *bp;
1035 struct inode *ip;
1036 struct lfs *fs;
1037 struct indir indirs[ULFS_NIADDR+2], *idp;
1038 daddr_t lbn, lastblock;
1039 int bcount;
1040 int error, frags, i, nsize, osize, num;
1041
1042 ip = VTOI(vp);
1043 fs = ip->i_lfs;
1044 offset = lfs_blkoff(fs, startoffset);
1045 lbn = lfs_lblkno(fs, startoffset);
1046
1047 /*
1048 * Three cases: it's a block beyond the end of file, it's a block in
1049 * the file that may or may not have been assigned a disk address or
1050 * we're writing an entire block.
1051 *
1052 * Note, if the daddr is UNWRITTEN, the block already exists in
1053 * the cache (it was read or written earlier). If so, make sure
1054 * we don't count it as a new block or zero out its contents. If
1055 * it did not, make sure we allocate any necessary indirect
1056 * blocks.
1057 *
1058 * If we are writing a block beyond the end of the file, we need to
1059 * check if the old last block was a fragment. If it was, we need
1060 * to rewrite it.
1061 */
1062
1063 if (bpp)
1064 *bpp = NULL;
1065
1066 /* Check for block beyond end of file and fragment extension needed. */
1067 lastblock = lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din));
1068 if (lastblock < ULFS_NDADDR && lastblock < lbn) {
1069 osize = lfs_blksize(fs, ip, lastblock);
1070 if (osize < lfs_sb_getbsize(fs) && osize > 0) {
1071 if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
1072 lastblock,
1073 (bpp ? &bp : NULL))))
1074 return (error);
1075 lfs_dino_setsize(fs, ip->i_din, (lastblock + 1) * lfs_sb_getbsize(fs));
1076 ip->i_state |= IN_CHANGE | IN_UPDATE;
1077 if (bpp)
1078 (void) VOP_BWRITE(bp);
1079 }
1080 }
1081
1082 /*
1083 * If the block we are writing is a direct block, it's the last
1084 * block in the file, and offset + iosize is less than a full
1085 * block, we can write one or more fragments. There are two cases:
1086 * the block is brand new and we should allocate it the correct
1087 * size or it already exists and contains some fragments and
1088 * may need to extend it.
1089 */
1090 if (lbn < ULFS_NDADDR && lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din)) <= lbn) {
1091 osize = lfs_blksize(fs, ip, lbn);
1092 nsize = lfs_fragroundup(fs, offset + iosize);
1093 if (lfs_lblktosize(fs, lbn) >= lfs_dino_getsize(fs, ip->i_din)) {
1094 /* Brand new block or fragment */
1095 frags = lfs_numfrags(fs, nsize);
1096 if (bpp) {
1097 *bpp = bp = getblk(vp, lbn, nsize);
1098 bp->b_blkno = UNWRITTEN;
1099 }
1100 ip->i_lfs_effnblks += frags;
1101 lfs_sb_subbfree(fs, frags);
1102 lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
1103 } else {
1104 if (nsize <= osize) {
1105 /* No need to extend */
1106 if (bpp && (error = bread(vp, lbn, osize,
1107 0, &bp)))
1108 return error;
1109 } else {
1110 /* Extend existing block */
1111 if ((error =
1112 lfs_fragextend(vp, osize, nsize, lbn,
1113 (bpp ? &bp : NULL))))
1114 return error;
1115 }
1116 if (bpp)
1117 *bpp = bp;
1118 }
1119 return 0;
1120 }
1121
1122 error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
1123 if (error)
1124 return (error);
1125
1126 /*
1127 * Do byte accounting all at once, so we can gracefully fail *before*
1128 * we start assigning blocks.
1129 */
1130 frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
1131 bcount = 0;
1132 if (daddr == UNASSIGNED) {
1133 bcount = frags;
1134 }
1135 for (i = 1; i < num; ++i) {
1136 if (!indirs[i].in_exists) {
1137 bcount += frags;
1138 }
1139 }
1140 lfs_sb_subbfree(fs, bcount);
1141 ip->i_lfs_effnblks += bcount;
1142
1143 if (daddr == UNASSIGNED) {
1144 if (num > 0 && lfs_dino_getib(fs, ip->i_din, indirs[0].in_off) == 0) {
1145 lfs_dino_setib(fs, ip->i_din, indirs[0].in_off,
1146 UNWRITTEN);
1147 }
1148
1149 /*
1150 * Create new indirect blocks if necessary
1151 */
1152 if (num > 1) {
1153 idaddr = lfs_dino_getib(fs, ip->i_din, indirs[0].in_off);
1154 for (i = 1; i < num; ++i) {
1155 ibp = getblk(vp, indirs[i].in_lbn,
1156 lfs_sb_getbsize(fs));
1157 if (!indirs[i].in_exists) {
1158 memset(ibp->b_data, 0, ibp->b_bufsize);
1159 ibp->b_blkno = UNWRITTEN;
1160 } else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
1161 ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
1162 ibp->b_flags |= B_READ;
1163 VOP_STRATEGY(ibp);
1164 }
1165 /*
1166 * This block exists, but the next one may not.
1167 * If that is the case mark it UNWRITTEN to
1168 * keep the accounting straight.
1169 */
1170 if (lfs_iblock_get(fs, ibp->b_data,
1171 indirs[i].in_off) == 0)
1172 lfs_iblock_set(fs, ibp->b_data,
1173 indirs[i].in_off, UNWRITTEN);
1174 idaddr = lfs_iblock_get(fs, ibp->b_data,
1175 indirs[i].in_off);
1176 if ((error = VOP_BWRITE(ibp)))
1177 return error;
1178 }
1179 }
1180 }
1181
1182
1183 /*
1184 * Get the existing block from the cache, if requested.
1185 */
1186 if (bpp)
1187 *bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
1188
1189 /*
1190 * The block we are writing may be a brand new block
1191 * in which case we need to do accounting.
1192 *
1193 * We can tell a truly new block because ulfs_bmaparray will say
1194 * it is UNASSIGNED. Once we allocate it we will assign it the
1195 * disk address UNWRITTEN.
1196 */
1197 if (daddr == UNASSIGNED) {
1198 if (bpp) {
1199 /* Note the new address */
1200 bp->b_blkno = UNWRITTEN;
1201 }
1202
1203 switch (num) {
1204 case 0:
1205 lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
1206 break;
1207 case 1:
1208 lfs_dino_setib(fs, ip->i_din, indirs[0].in_off,
1209 UNWRITTEN);
1210 break;
1211 default:
1212 idp = &indirs[num - 1];
1213 if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs), 0, &ibp))
1214 panic("lfs_balloc: bread bno %lld",
1215 (long long)idp->in_lbn);
1216 lfs_iblock_set(fs, ibp->b_data, idp->in_off,
1217 UNWRITTEN);
1218 VOP_BWRITE(ibp);
1219 }
1220 } else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
1221 /*
1222 * Not a brand new block, also not in the cache;
1223 * read it in from disk.
1224 */
1225 if (iosize == lfs_sb_getbsize(fs))
1226 /* Optimization: I/O is unnecessary. */
1227 bp->b_blkno = daddr;
1228 else {
1229 /*
1230 * We need to read the block to preserve the
1231 * existing bytes.
1232 */
1233 bp->b_blkno = daddr;
1234 bp->b_flags |= B_READ;
1235 VOP_STRATEGY(bp);
1236 return 0;
1237 }
1238 }
1239
1240 return (0);
1241 }
1242
1243 int
1244 lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
1245 struct ubuf **bpp)
1246 {
1247 struct inode *ip;
1248 struct lfs *fs;
1249 int frags;
1250 int error;
1251
1252 ip = VTOI(vp);
1253 fs = ip->i_lfs;
1254 frags = (long)lfs_numfrags(fs, nsize - osize);
1255 error = 0;
1256
1257 /*
1258 * If we are not asked to actually return the block, all we need
1259 * to do is allocate space for it. UBC will handle dirtying the
1260 * appropriate things and making sure it all goes to disk.
1261 * Don't bother to read in that case.
1262 */
1263 if (bpp && (error = bread(vp, lbn, osize, 0, bpp))) {
1264 brelse(*bpp, 0);
1265 goto out;
1266 }
1267
1268 lfs_sb_subbfree(fs, frags);
1269 ip->i_lfs_effnblks += frags;
1270 ip->i_state |= IN_CHANGE | IN_UPDATE;
1271
1272 if (bpp) {
1273 (*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
1274 (void)memset((*bpp)->b_data + osize, 0, nsize - osize);
1275 }
1276
1277 out:
1278 return (error);
1279 }
1280