lfs.c revision 1.9 1 /* $NetBSD: lfs.c,v 1.9 2005/03/25 20:16:37 perseant Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1989, 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 * (c) UNIX System Laboratories, Inc.
41 * All or some portions of this file are derived from material licensed
42 * to the University of California by American Telephone and Telegraph
43 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
44 * the permission of UNIX System Laboratories, Inc.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
71 */
72
73
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/buf.h>
78 #include <sys/mount.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #define vnode uvnode
83 #include <ufs/lfs/lfs.h>
84 #undef vnode
85
86 #include <assert.h>
87 #include <err.h>
88 #include <errno.h>
89 #include <stdarg.h>
90 #include <stdio.h>
91 #include <stdlib.h>
92 #include <string.h>
93 #include <unistd.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs.h"
98 #include "segwrite.h"
99
100 #define panic call_panic
101
102 extern u_int32_t cksum(void *, size_t);
103 extern u_int32_t lfs_sb_cksum(struct dlfs *);
104 extern void pwarn(const char *, ...);
105
106 extern struct uvnodelst vnodelist;
107 extern struct uvnodelst getvnodelist;
108 extern int nvnodes;
109
110 int fsdirty = 0;
111 void (*panic_func)(int, const char *, va_list) = my_vpanic;
112
113 /*
114 * LFS buffer and uvnode operations
115 */
116
117 int
118 lfs_vop_strategy(struct ubuf * bp)
119 {
120 int count;
121
122 if (bp->b_flags & B_READ) {
123 count = pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
124 dbtob(bp->b_blkno));
125 if (count == bp->b_bcount)
126 bp->b_flags |= B_DONE;
127 } else {
128 count = pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
129 dbtob(bp->b_blkno));
130 if (count == 0) {
131 perror("pwrite");
132 return -1;
133 }
134 bp->b_flags &= ~B_DELWRI;
135 reassignbuf(bp, bp->b_vp);
136 }
137 return 0;
138 }
139
140 int
141 lfs_vop_bwrite(struct ubuf * bp)
142 {
143 struct lfs *fs;
144
145 fs = bp->b_vp->v_fs;
146 if (!(bp->b_flags & B_DELWRI)) {
147 fs->lfs_avail -= btofsb(fs, bp->b_bcount);
148 }
149 bp->b_flags |= B_DELWRI | B_LOCKED;
150 reassignbuf(bp, bp->b_vp);
151 brelse(bp);
152 return 0;
153 }
154
155 /*
156 * ufs_bmaparray does the bmap conversion, and if requested returns the
157 * array of logical blocks which must be traversed to get to a block.
158 * Each entry contains the offset into that block that gets you to the
159 * next block and the disk address of the block (if it is assigned).
160 */
161 int
162 ufs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
163 {
164 struct inode *ip;
165 struct ubuf *bp;
166 struct indir a[NIADDR + 1], *xap;
167 daddr_t daddr;
168 daddr_t metalbn;
169 int error, num;
170
171 ip = VTOI(vp);
172
173 if (bn >= 0 && bn < NDADDR) {
174 if (nump != NULL)
175 *nump = 0;
176 *bnp = fsbtodb(fs, ip->i_ffs1_db[bn]);
177 if (*bnp == 0)
178 *bnp = -1;
179 return (0);
180 }
181 xap = ap == NULL ? a : ap;
182 if (!nump)
183 nump = #
184 if ((error = ufs_getlbns(fs, vp, bn, xap, nump)) != 0)
185 return (error);
186
187 num = *nump;
188
189 /* Get disk address out of indirect block array */
190 daddr = ip->i_ffs1_ib[xap->in_off];
191
192 for (bp = NULL, ++xap; --num; ++xap) {
193 /* Exit the loop if there is no disk address assigned yet and
194 * the indirect block isn't in the cache, or if we were
195 * looking for an indirect block and we've found it. */
196
197 metalbn = xap->in_lbn;
198 if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
199 break;
200 /*
201 * If we get here, we've either got the block in the cache
202 * or we have a disk address for it, go fetch it.
203 */
204 if (bp)
205 brelse(bp);
206
207 xap->in_exists = 1;
208 bp = getblk(vp, metalbn, fs->lfs_bsize);
209
210 if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
211 bp->b_blkno = fsbtodb(fs, daddr);
212 bp->b_flags |= B_READ;
213 VOP_STRATEGY(bp);
214 }
215 daddr = ((ufs_daddr_t *) bp->b_data)[xap->in_off];
216 }
217 if (bp)
218 brelse(bp);
219
220 daddr = fsbtodb(fs, (ufs_daddr_t) daddr);
221 *bnp = daddr == 0 ? -1 : daddr;
222 return (0);
223 }
224
225 /*
226 * Create an array of logical block number/offset pairs which represent the
227 * path of indirect blocks required to access a data block. The first "pair"
228 * contains the logical block number of the appropriate single, double or
229 * triple indirect block and the offset into the inode indirect block array.
230 * Note, the logical block number of the inode single/double/triple indirect
231 * block appears twice in the array, once with the offset into the i_ffs1_ib and
232 * once with the offset into the page itself.
233 */
234 int
235 ufs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
236 {
237 daddr_t metalbn, realbn;
238 int64_t blockcnt;
239 int lbc;
240 int i, numlevels, off;
241 int lognindir, indir;
242
243 if (nump)
244 *nump = 0;
245 numlevels = 0;
246 realbn = bn;
247 if (bn < 0)
248 bn = -bn;
249
250 lognindir = -1;
251 for (indir = fs->lfs_nindir; indir; indir >>= 1)
252 ++lognindir;
253
254 /* Determine the number of levels of indirection. After this loop is
255 * done, blockcnt indicates the number of data blocks possible at the
256 * given level of indirection, and NIADDR - i is the number of levels
257 * of indirection needed to locate the requested block. */
258
259 bn -= NDADDR;
260 for (lbc = 0, i = NIADDR;; i--, bn -= blockcnt) {
261 if (i == 0)
262 return (EFBIG);
263
264 lbc += lognindir;
265 blockcnt = (int64_t) 1 << lbc;
266
267 if (bn < blockcnt)
268 break;
269 }
270
271 /* Calculate the address of the first meta-block. */
272 if (realbn >= 0)
273 metalbn = -(realbn - bn + NIADDR - i);
274 else
275 metalbn = -(-realbn - bn + NIADDR - i);
276
277 /* At each iteration, off is the offset into the bap array which is an
278 * array of disk addresses at the current level of indirection. The
279 * logical block number and the offset in that block are stored into
280 * the argument array. */
281 ap->in_lbn = metalbn;
282 ap->in_off = off = NIADDR - i;
283 ap->in_exists = 0;
284 ap++;
285 for (++numlevels; i <= NIADDR; i++) {
286 /* If searching for a meta-data block, quit when found. */
287 if (metalbn == realbn)
288 break;
289
290 lbc -= lognindir;
291 blockcnt = (int64_t) 1 << lbc;
292 off = (bn >> lbc) & (fs->lfs_nindir - 1);
293
294 ++numlevels;
295 ap->in_lbn = metalbn;
296 ap->in_off = off;
297 ap->in_exists = 0;
298 ++ap;
299
300 metalbn -= -1 + (off << lbc);
301 }
302 if (nump)
303 *nump = numlevels;
304 return (0);
305 }
306
307 int
308 lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
309 {
310 return ufs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
311 }
312
313 /* Search a block for a specific dinode. */
314 struct ufs1_dinode *
315 lfs_ifind(struct lfs * fs, ino_t ino, struct ubuf * bp)
316 {
317 struct ufs1_dinode *dip = (struct ufs1_dinode *) bp->b_data;
318 struct ufs1_dinode *ldip, *fin;
319
320 fin = dip + INOPB(fs);
321
322 /*
323 * Read the inode block backwards, since later versions of the
324 * inode will supercede earlier ones. Though it is unlikely, it is
325 * possible that the same inode will appear in the same inode block.
326 */
327 for (ldip = fin - 1; ldip >= dip; --ldip)
328 if (ldip->di_inumber == ino)
329 return (ldip);
330 return NULL;
331 }
332
333 /*
334 * lfs_raw_vget makes us a new vnode from the inode at the given disk address.
335 * XXX it currently loses atime information.
336 */
337 struct uvnode *
338 lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, ufs_daddr_t daddr)
339 {
340 struct uvnode *vp;
341 struct inode *ip;
342 struct ufs1_dinode *dip;
343 struct ubuf *bp;
344 int i;
345
346 vp = (struct uvnode *) malloc(sizeof(*vp));
347 memset(vp, 0, sizeof(*vp));
348 vp->v_fd = fd;
349 vp->v_fs = fs;
350 vp->v_usecount = 0;
351 vp->v_strategy_op = lfs_vop_strategy;
352 vp->v_bwrite_op = lfs_vop_bwrite;
353 vp->v_bmap_op = lfs_vop_bmap;
354 LIST_INIT(&vp->v_cleanblkhd);
355 LIST_INIT(&vp->v_dirtyblkhd);
356
357 ip = (struct inode *) malloc(sizeof(*ip));
358 memset(ip, 0, sizeof(*ip));
359
360 ip->i_din.ffs1_din = (struct ufs1_dinode *)
361 malloc(sizeof(struct ufs1_dinode));
362 memset(ip->i_din.ffs1_din, 0, sizeof (struct ufs1_dinode));
363
364 /* Initialize the inode -- from lfs_vcreate. */
365 ip->inode_ext.lfs = malloc(sizeof(struct lfs_inode_ext));
366 memset(ip->inode_ext.lfs, 0, sizeof(struct lfs_inode_ext));
367 vp->v_data = ip;
368 /* ip->i_vnode = vp; */
369 ip->i_number = ino;
370 ip->i_lockf = 0;
371 ip->i_diroff = 0;
372 ip->i_lfs_effnblks = 0;
373 ip->i_flag = 0;
374
375 /* Load inode block and find inode */
376 if (daddr > 0) {
377 bread(fs->lfs_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NULL, &bp);
378 bp->b_flags |= B_AGE;
379 dip = lfs_ifind(fs, ino, bp);
380 if (dip == NULL) {
381 brelse(bp);
382 free(ip);
383 free(vp);
384 return NULL;
385 }
386 memcpy(ip->i_din.ffs1_din, dip, sizeof(*dip));
387 brelse(bp);
388 }
389 ip->i_number = ino;
390 /* ip->i_devvp = fs->lfs_devvp; */
391 ip->i_lfs = fs;
392
393 ip->i_ffs_effnlink = ip->i_ffs1_nlink;
394 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
395 ip->i_lfs_osize = ip->i_ffs1_size;
396 #if 0
397 if (fs->lfs_version > 1) {
398 ip->i_ffs1_atime = ts.tv_sec;
399 ip->i_ffs1_atimensec = ts.tv_nsec;
400 }
401 #endif
402
403 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
404 for (i = 0; i < NDADDR; i++)
405 if (ip->i_ffs1_db[i] != 0)
406 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
407
408 ++nvnodes;
409 LIST_INSERT_HEAD(&getvnodelist, vp, v_getvnodes);
410 LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
411
412 return vp;
413 }
414
415 static struct uvnode *
416 lfs_vget(void *vfs, ino_t ino)
417 {
418 struct lfs *fs = (struct lfs *)vfs;
419 ufs_daddr_t daddr;
420 struct ubuf *bp;
421 IFILE *ifp;
422
423 LFS_IENTRY(ifp, fs, ino, bp);
424 daddr = ifp->if_daddr;
425 brelse(bp);
426 if (daddr == 0)
427 return NULL;
428 return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
429 }
430
431 /* Check superblock magic number and checksum */
432 static int
433 check_sb(struct lfs *fs)
434 {
435 u_int32_t checksum;
436
437 if (fs->lfs_magic != LFS_MAGIC) {
438 printf("Superblock magic number (0x%lx) does not match "
439 "expected 0x%lx\n", (unsigned long) fs->lfs_magic,
440 (unsigned long) LFS_MAGIC);
441 return 1;
442 }
443 /* checksum */
444 checksum = lfs_sb_cksum(&(fs->lfs_dlfs));
445 if (fs->lfs_cksum != checksum) {
446 printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
447 (unsigned long) fs->lfs_cksum, (unsigned long) checksum);
448 return 1;
449 }
450 return 0;
451 }
452
453 /* Initialize LFS library; load superblocks and choose which to use. */
454 struct lfs *
455 lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
456 {
457 struct uvnode *devvp;
458 struct ubuf *bp;
459 int tryalt;
460 struct lfs *fs, *altfs;
461 int error;
462
463 vfs_init();
464
465 devvp = (struct uvnode *) malloc(sizeof(*devvp));
466 memset(devvp, 0, sizeof(*devvp));
467 devvp->v_fs = NULL;
468 devvp->v_fd = devfd;
469 devvp->v_strategy_op = raw_vop_strategy;
470 devvp->v_bwrite_op = raw_vop_bwrite;
471 devvp->v_bmap_op = raw_vop_bmap;
472 LIST_INIT(&devvp->v_cleanblkhd);
473 LIST_INIT(&devvp->v_dirtyblkhd);
474
475 tryalt = 0;
476 if (dummy_read) {
477 if (sblkno == 0)
478 sblkno = btodb(LFS_LABELPAD);
479 fs = (struct lfs *) malloc(sizeof(*fs));
480 memset(fs, 0, sizeof(*fs));
481 fs->lfs_devvp = devvp;
482 } else {
483 if (sblkno == 0) {
484 sblkno = btodb(LFS_LABELPAD);
485 tryalt = 1;
486 } else if (debug) {
487 printf("No -b flag given, not attempting to verify checkpoint\n");
488 }
489 error = bread(devvp, sblkno, LFS_SBPAD, NOCRED, &bp);
490 fs = (struct lfs *) malloc(sizeof(*fs));
491 memset(fs, 0, sizeof(*fs));
492 fs->lfs_dlfs = *((struct dlfs *) bp->b_data);
493 fs->lfs_devvp = devvp;
494 bp->b_flags |= B_INVAL;
495 brelse(bp);
496
497 if (tryalt) {
498 error = bread(devvp, fsbtodb(fs, fs->lfs_sboffs[1]),
499 LFS_SBPAD, NOCRED, &bp);
500 altfs = (struct lfs *) malloc(sizeof(*altfs));
501 memset(altfs, 0, sizeof(*altfs));
502 altfs->lfs_dlfs = *((struct dlfs *) bp->b_data);
503 altfs->lfs_devvp = devvp;
504 bp->b_flags |= B_INVAL;
505 brelse(bp);
506
507 if (check_sb(fs) || fs->lfs_idaddr <= 0) {
508 if (debug)
509 printf("Primary superblock is no good, using first alternate\n");
510 free(fs);
511 fs = altfs;
512 } else {
513 /* If both superblocks check out, try verification */
514 if (check_sb(altfs)) {
515 if (debug)
516 printf("First alternate superblock is no good, using primary\n");
517 free(altfs);
518 } else {
519 if (lfs_verify(fs, altfs, devvp, debug) == fs) {
520 free(altfs);
521 } else {
522 free(fs);
523 fs = altfs;
524 }
525 }
526 }
527 }
528 if (check_sb(fs)) {
529 free(fs);
530 return NULL;
531 }
532 }
533
534 /* Compatibility */
535 if (fs->lfs_version < 2) {
536 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
537 fs->lfs_ibsize = fs->lfs_bsize;
538 fs->lfs_start = fs->lfs_sboffs[0];
539 fs->lfs_tstamp = fs->lfs_otstamp;
540 fs->lfs_fsbtodb = 0;
541 }
542
543 if (!dummy_read) {
544 fs->lfs_suflags = (u_int32_t **) malloc(2 * sizeof(u_int32_t *));
545 fs->lfs_suflags[0] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
546 fs->lfs_suflags[1] = (u_int32_t *) malloc(fs->lfs_nseg * sizeof(u_int32_t));
547 }
548
549 if (idaddr == 0)
550 idaddr = fs->lfs_idaddr;
551 /* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
552 fs->lfs_ivnode = lfs_raw_vget(fs,
553 (dummy_read ? LFS_IFILE_INUM : fs->lfs_ifile), devvp->v_fd,
554 idaddr);
555
556 register_vget((void *)fs, lfs_vget);
557
558 return fs;
559 }
560
561 /*
562 * Check partial segment validity between fs->lfs_offset and the given goal.
563 * If goal == 0, just keep on going until the segments stop making sense.
564 * Return the address of the first partial segment that failed.
565 */
566 ufs_daddr_t
567 try_verify(struct lfs *osb, struct uvnode *devvp, ufs_daddr_t goal, int debug)
568 {
569 ufs_daddr_t daddr, odaddr;
570 SEGSUM *sp;
571 int bc, flag;
572 struct ubuf *bp;
573 ufs_daddr_t nodirop_daddr;
574 u_int64_t serial;
575
576 daddr = osb->lfs_offset;
577 nodirop_daddr = daddr;
578 serial = osb->lfs_serial;
579 while (daddr != goal) {
580 flag = 0;
581 oncemore:
582 /* Read in summary block */
583 bread(devvp, fsbtodb(osb, daddr), osb->lfs_sumsize, NULL, &bp);
584 sp = (SEGSUM *)bp->b_data;
585
586 /*
587 * Could be a superblock instead of a segment summary.
588 * XXX should use gseguse, but right now we need to do more
589 * setup before we can...fix this
590 */
591 if (sp->ss_magic != SS_MAGIC ||
592 sp->ss_ident != osb->lfs_ident ||
593 sp->ss_serial < serial ||
594 sp->ss_sumsum != cksum(&sp->ss_datasum, osb->lfs_sumsize -
595 sizeof(sp->ss_sumsum))) {
596 brelse(bp);
597 if (flag == 0) {
598 flag = 1;
599 daddr += btofsb(osb, LFS_SBPAD);
600 goto oncemore;
601 }
602 break;
603 }
604 ++serial;
605 bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
606 if (bc == 0) {
607 brelse(bp);
608 break;
609 }
610 assert (bc > 0);
611 odaddr = daddr;
612 daddr += btofsb(osb, osb->lfs_sumsize + bc);
613 if (dtosn(osb, odaddr) != dtosn(osb, daddr) ||
614 dtosn(osb, daddr) != dtosn(osb, daddr +
615 btofsb(osb, osb->lfs_sumsize + osb->lfs_bsize))) {
616 daddr = sp->ss_next;
617 }
618 if (!(sp->ss_flags & SS_CONT))
619 nodirop_daddr = daddr;
620 brelse(bp);
621 }
622
623 if (goal == 0)
624 return nodirop_daddr;
625 else
626 return daddr;
627 }
628
629 /* Use try_verify to check whether the newer superblock is valid. */
630 struct lfs *
631 lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
632 {
633 ufs_daddr_t daddr;
634 struct lfs *osb, *nsb;
635
636 /*
637 * Verify the checkpoint of the newer superblock,
638 * if the timestamp/serial number of the two superblocks is
639 * different.
640 */
641
642 if (debug)
643 printf("sb0 %lld, sb1 %lld\n", (long long) sb0->lfs_serial,
644 (long long) sb1->lfs_serial);
645
646 if ((sb0->lfs_version == 1 &&
647 sb0->lfs_otstamp != sb1->lfs_otstamp) ||
648 (sb0->lfs_version > 1 &&
649 sb0->lfs_serial != sb1->lfs_serial)) {
650 if (sb0->lfs_version == 1) {
651 if (sb0->lfs_otstamp > sb1->lfs_otstamp) {
652 osb = sb1;
653 nsb = sb0;
654 } else {
655 osb = sb0;
656 nsb = sb1;
657 }
658 } else {
659 if (sb0->lfs_serial > sb1->lfs_serial) {
660 osb = sb1;
661 nsb = sb0;
662 } else {
663 osb = sb0;
664 nsb = sb1;
665 }
666 }
667 if (debug) {
668 printf("Attempting to verify newer checkpoint...");
669 fflush(stdout);
670 }
671 daddr = try_verify(osb, devvp, nsb->lfs_offset, debug);
672
673 if (debug)
674 printf("done.\n");
675 if (daddr == nsb->lfs_offset) {
676 pwarn("** Newer checkpoint verified, recovered %lld seconds of data\n",
677 (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
678 sbdirty();
679 } else {
680 pwarn("** Newer checkpoint invalid, lost %lld seconds of data\n", (long long) nsb->lfs_tstamp - (long long) osb->lfs_tstamp);
681 }
682 return (daddr == nsb->lfs_offset ? nsb : osb);
683 }
684 /* Nothing to check */
685 return osb;
686 }
687
688 /* Verify a partial-segment summary; return the number of bytes on disk. */
689 int
690 check_summary(struct lfs *fs, SEGSUM *sp, ufs_daddr_t pseg_addr, int debug,
691 struct uvnode *devvp, void (func(ufs_daddr_t, FINFO *)))
692 {
693 FINFO *fp;
694 int bc; /* Bytes in partial segment */
695 int nblocks;
696 ufs_daddr_t seg_addr, daddr;
697 ufs_daddr_t *dp, *idp;
698 struct ubuf *bp;
699 int i, j, k, datac, len;
700 long sn;
701 u_int32_t *datap;
702 u_int32_t ccksum;
703
704 sn = dtosn(fs, pseg_addr);
705 seg_addr = sntod(fs, sn);
706
707 /* We've already checked the sumsum, just do the data bounds and sum */
708
709 /* Count the blocks. */
710 nblocks = howmany(sp->ss_ninos, INOPB(fs));
711 bc = nblocks << (fs->lfs_version > 1 ? fs->lfs_ffshift : fs->lfs_bshift);
712 assert(bc >= 0);
713
714 fp = (FINFO *) (sp + 1);
715 for (i = 0; i < sp->ss_nfinfo; i++) {
716 nblocks += fp->fi_nblocks;
717 bc += fp->fi_lastlength + ((fp->fi_nblocks - 1)
718 << fs->lfs_bshift);
719 assert(bc >= 0);
720 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
721 }
722 datap = (u_int32_t *) malloc(nblocks * sizeof(*datap));
723 datac = 0;
724
725 dp = (ufs_daddr_t *) sp;
726 dp += fs->lfs_sumsize / sizeof(ufs_daddr_t);
727 dp--;
728
729 idp = dp;
730 daddr = pseg_addr + btofsb(fs, fs->lfs_sumsize);
731 fp = (FINFO *) (sp + 1);
732 for (i = 0, j = 0;
733 i < sp->ss_nfinfo || j < howmany(sp->ss_ninos, INOPB(fs)); i++) {
734 if (i >= sp->ss_nfinfo && *idp != daddr) {
735 pwarn("Not enough inode blocks in pseg at 0x%" PRIx32
736 ": found %d, wanted %d\n",
737 pseg_addr, j, howmany(sp->ss_ninos, INOPB(fs)));
738 if (debug)
739 pwarn("*idp=%x, daddr=%" PRIx32 "\n", *idp,
740 daddr);
741 break;
742 }
743 while (j < howmany(sp->ss_ninos, INOPB(fs)) && *idp == daddr) {
744 bread(devvp, fsbtodb(fs, daddr), fs->lfs_ibsize, NOCRED, &bp);
745 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
746 brelse(bp);
747
748 ++j;
749 daddr += btofsb(fs, fs->lfs_ibsize);
750 --idp;
751 }
752 if (i < sp->ss_nfinfo) {
753 if (func)
754 func(daddr, fp);
755 for (k = 0; k < fp->fi_nblocks; k++) {
756 len = (k == fp->fi_nblocks - 1 ?
757 fp->fi_lastlength
758 : fs->lfs_bsize);
759 bread(devvp, fsbtodb(fs, daddr), len, NOCRED, &bp);
760 datap[datac++] = ((u_int32_t *) (bp->b_data))[0];
761 brelse(bp);
762 daddr += btofsb(fs, len);
763 }
764 fp = (FINFO *) (fp->fi_blocks + fp->fi_nblocks);
765 }
766 }
767
768 if (datac != nblocks) {
769 pwarn("Partial segment at 0x%llx expected %d blocks counted %d\n",
770 (long long) pseg_addr, nblocks, datac);
771 }
772 ccksum = cksum(datap, nblocks * sizeof(u_int32_t));
773 /* Check the data checksum */
774 if (ccksum != sp->ss_datasum) {
775 pwarn("Partial segment at 0x%" PRIx32 " data checksum"
776 " mismatch: given 0x%x, computed 0x%x\n",
777 pseg_addr, sp->ss_datasum, ccksum);
778 free(datap);
779 return 0;
780 }
781 free(datap);
782 assert(bc >= 0);
783 return bc;
784 }
785
786 /* print message and exit */
787 void
788 my_vpanic(int fatal, const char *fmt, va_list ap)
789 {
790 (void) vprintf(fmt, ap);
791 exit(8);
792 }
793
794 void
795 call_panic(const char *fmt, ...)
796 {
797 va_list ap;
798
799 va_start(ap, fmt);
800 panic_func(1, fmt, ap);
801 va_end(ap);
802 }
803