segwrite.c revision 1.36 1 1.36 dholland /* $NetBSD: segwrite.c,v 1.36 2015/08/02 18:18:09 dholland Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant *
34 1.1 perseant * Redistribution and use in source and binary forms, with or without
35 1.1 perseant * modification, are permitted provided that the following conditions
36 1.1 perseant * are met:
37 1.1 perseant * 1. Redistributions of source code must retain the above copyright
38 1.1 perseant * notice, this list of conditions and the following disclaimer.
39 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
40 1.1 perseant * notice, this list of conditions and the following disclaimer in the
41 1.1 perseant * documentation and/or other materials provided with the distribution.
42 1.5 agc * 3. Neither the name of the University nor the names of its contributors
43 1.1 perseant * may be used to endorse or promote products derived from this software
44 1.1 perseant * without specific prior written permission.
45 1.1 perseant *
46 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 perseant * SUCH DAMAGE.
57 1.1 perseant *
58 1.1 perseant * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 1.1 perseant */
60 1.1 perseant
61 1.1 perseant /*
62 1.1 perseant * Partial segment writer, taken from the kernel and adapted for userland.
63 1.1 perseant */
64 1.1 perseant #include <sys/types.h>
65 1.1 perseant #include <sys/param.h>
66 1.1 perseant #include <sys/time.h>
67 1.1 perseant #include <sys/buf.h>
68 1.1 perseant #include <sys/mount.h>
69 1.1 perseant
70 1.1 perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
71 1.23 dholland #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
72 1.1 perseant #define vnode uvnode
73 1.1 perseant #define buf ubuf
74 1.1 perseant #define panic call_panic
75 1.1 perseant
76 1.1 perseant #include <ufs/lfs/lfs.h>
77 1.34 dholland #include <ufs/lfs/lfs_accessors.h>
78 1.25 dholland #include <ufs/lfs/lfs_inode.h>
79 1.1 perseant
80 1.1 perseant #include <assert.h>
81 1.1 perseant #include <stdio.h>
82 1.1 perseant #include <stdlib.h>
83 1.1 perseant #include <string.h>
84 1.1 perseant #include <err.h>
85 1.1 perseant #include <errno.h>
86 1.15 christos #include <util.h>
87 1.1 perseant
88 1.1 perseant #include "bufcache.h"
89 1.1 perseant #include "vnode.h"
90 1.10 christos #include "lfs_user.h"
91 1.1 perseant #include "segwrite.h"
92 1.1 perseant
93 1.1 perseant /* Compatibility definitions */
94 1.1 perseant extern off_t locked_queue_bytes;
95 1.1 perseant int locked_queue_count;
96 1.1 perseant off_t written_bytes = 0;
97 1.1 perseant off_t written_data = 0;
98 1.1 perseant off_t written_indir = 0;
99 1.1 perseant off_t written_dev = 0;
100 1.1 perseant int written_inodes = 0;
101 1.1 perseant
102 1.1 perseant /* Global variables */
103 1.1 perseant time_t write_time;
104 1.1 perseant
105 1.1 perseant extern u_int32_t cksum(void *, size_t);
106 1.36 dholland extern u_int32_t lfs_sb_cksum(struct lfs *);
107 1.7 perseant extern int preen;
108 1.1 perseant
109 1.1 perseant /*
110 1.1 perseant * Logical block number match routines used when traversing the dirty block
111 1.1 perseant * chain.
112 1.1 perseant */
113 1.1 perseant int
114 1.1 perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
115 1.1 perseant {
116 1.1 perseant return (bp->b_lblkno >= 0);
117 1.1 perseant }
118 1.1 perseant
119 1.1 perseant int
120 1.1 perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
121 1.1 perseant {
122 1.1 perseant daddr_t lbn;
123 1.1 perseant
124 1.1 perseant lbn = bp->b_lblkno;
125 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
126 1.1 perseant }
127 1.1 perseant
128 1.1 perseant int
129 1.1 perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
130 1.1 perseant {
131 1.1 perseant daddr_t lbn;
132 1.1 perseant
133 1.1 perseant lbn = bp->b_lblkno;
134 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
135 1.1 perseant }
136 1.1 perseant
137 1.1 perseant int
138 1.1 perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
139 1.1 perseant {
140 1.1 perseant daddr_t lbn;
141 1.1 perseant
142 1.1 perseant lbn = bp->b_lblkno;
143 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
144 1.1 perseant }
145 1.1 perseant
146 1.1 perseant /*
147 1.1 perseant * Do a checkpoint.
148 1.1 perseant */
149 1.1 perseant int
150 1.1 perseant lfs_segwrite(struct lfs * fs, int flags)
151 1.1 perseant {
152 1.1 perseant struct inode *ip;
153 1.1 perseant struct segment *sp;
154 1.1 perseant struct uvnode *vp;
155 1.1 perseant int redo;
156 1.1 perseant
157 1.1 perseant lfs_seglock(fs, flags | SEGM_CKP);
158 1.1 perseant sp = fs->lfs_sp;
159 1.1 perseant
160 1.1 perseant lfs_writevnodes(fs, sp, VN_REG);
161 1.1 perseant lfs_writevnodes(fs, sp, VN_DIROP);
162 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
163 1.1 perseant
164 1.1 perseant do {
165 1.1 perseant vp = fs->lfs_ivnode;
166 1.1 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
167 1.1 perseant ip = VTOI(vp);
168 1.32 dholland if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || lfs_sb_getidaddr(fs) <= 0)
169 1.1 perseant lfs_writefile(fs, sp, vp);
170 1.1 perseant
171 1.1 perseant redo = lfs_writeinode(fs, sp, ip);
172 1.1 perseant redo += lfs_writeseg(fs, sp);
173 1.1 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
174 1.1 perseant } while (redo);
175 1.1 perseant
176 1.1 perseant lfs_segunlock(fs);
177 1.1 perseant #if 0
178 1.1 perseant printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
179 1.26 christos written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
180 1.1 perseant printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
181 1.26 christos written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
182 1.1 perseant printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
183 1.26 christos written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
184 1.1 perseant printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
185 1.26 christos written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
186 1.1 perseant printf("wrote %d inodes (%" PRId32 " fsb)\n",
187 1.26 christos written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
188 1.1 perseant #endif
189 1.1 perseant return 0;
190 1.1 perseant }
191 1.1 perseant
192 1.1 perseant /*
193 1.1 perseant * Write the dirty blocks associated with a vnode.
194 1.1 perseant */
195 1.1 perseant void
196 1.1 perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
197 1.1 perseant {
198 1.1 perseant struct ubuf *bp;
199 1.1 perseant struct finfo *fip;
200 1.1 perseant struct inode *ip;
201 1.1 perseant IFILE *ifp;
202 1.1 perseant
203 1.1 perseant ip = VTOI(vp);
204 1.1 perseant
205 1.32 dholland if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
206 1.1 perseant sp->sum_bytes_left < sizeof(struct finfo))
207 1.1 perseant (void) lfs_writeseg(fs, sp);
208 1.1 perseant
209 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
210 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
211 1.1 perseant
212 1.17 ad if (vp->v_uflag & VU_DIROP)
213 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
214 1.1 perseant
215 1.1 perseant fip = sp->fip;
216 1.1 perseant fip->fi_nblocks = 0;
217 1.1 perseant fip->fi_ino = ip->i_number;
218 1.1 perseant LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
219 1.1 perseant fip->fi_version = ifp->if_version;
220 1.16 ad brelse(bp, 0);
221 1.1 perseant
222 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_data);
223 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
224 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
225 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
226 1.1 perseant
227 1.1 perseant fip = sp->fip;
228 1.1 perseant if (fip->fi_nblocks != 0) {
229 1.1 perseant sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
230 1.22 dholland sizeof(ulfs_daddr_t) * (fip->fi_nblocks));
231 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
232 1.1 perseant } else {
233 1.1 perseant sp->sum_bytes_left += FINFOSIZE;
234 1.1 perseant --((SEGSUM *) (sp->segsum))->ss_nfinfo;
235 1.1 perseant }
236 1.1 perseant }
237 1.1 perseant
238 1.1 perseant int
239 1.1 perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
240 1.1 perseant {
241 1.1 perseant struct ubuf *bp, *ibp;
242 1.22 dholland struct ulfs1_dinode *cdp;
243 1.1 perseant IFILE *ifp;
244 1.1 perseant SEGUSE *sup;
245 1.1 perseant daddr_t daddr;
246 1.1 perseant ino_t ino;
247 1.27 christos int i, ndx, fsb = 0;
248 1.1 perseant int redo_ifile = 0;
249 1.1 perseant struct timespec ts;
250 1.1 perseant int gotblk = 0;
251 1.1 perseant
252 1.1 perseant /* Allocate a new inode block if necessary. */
253 1.1 perseant if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
254 1.1 perseant sp->ibp == NULL) {
255 1.1 perseant /* Allocate a new segment if necessary. */
256 1.33 dholland if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
257 1.22 dholland sp->sum_bytes_left < sizeof(ulfs_daddr_t))
258 1.1 perseant (void) lfs_writeseg(fs, sp);
259 1.1 perseant
260 1.1 perseant /* Get next inode block. */
261 1.32 dholland daddr = lfs_sb_getoffset(fs);
262 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
263 1.1 perseant sp->ibp = *sp->cbpp++ =
264 1.26 christos getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
265 1.33 dholland lfs_sb_getibsize(fs));
266 1.1 perseant sp->ibp->b_flags |= B_GATHERED;
267 1.1 perseant gotblk++;
268 1.1 perseant
269 1.1 perseant /* Zero out inode numbers */
270 1.26 christos for (i = 0; i < LFS_INOPB(fs); ++i)
271 1.22 dholland ((struct ulfs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
272 1.1 perseant
273 1.1 perseant ++sp->start_bpp;
274 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
275 1.1 perseant /* Set remaining space counters. */
276 1.32 dholland sp->seg_bytes_left -= lfs_sb_getibsize(fs);
277 1.22 dholland sp->sum_bytes_left -= sizeof(ulfs_daddr_t);
278 1.32 dholland ndx = lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t) -
279 1.26 christos sp->ninodes / LFS_INOPB(fs) - 1;
280 1.22 dholland ((ulfs_daddr_t *) (sp->segsum))[ndx] = daddr;
281 1.1 perseant }
282 1.1 perseant /* Update the inode times and copy the inode onto the inode page. */
283 1.1 perseant ts.tv_nsec = 0;
284 1.1 perseant ts.tv_sec = write_time;
285 1.1 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
286 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
287 1.1 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
288 1.1 perseant
289 1.1 perseant /*
290 1.1 perseant * If this is the Ifile, and we've already written the Ifile in this
291 1.1 perseant * partial segment, just overwrite it (it's not on disk yet) and
292 1.1 perseant * continue.
293 1.1 perseant *
294 1.1 perseant * XXX we know that the bp that we get the second time around has
295 1.1 perseant * already been gathered.
296 1.1 perseant */
297 1.1 perseant if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
298 1.3 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
299 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
300 1.1 perseant return 0;
301 1.1 perseant }
302 1.1 perseant bp = sp->ibp;
303 1.26 christos cdp = ((struct ulfs1_dinode *) bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
304 1.3 fvdl *cdp = *ip->i_din.ffs1_din;
305 1.1 perseant
306 1.1 perseant /* If all blocks are goig to disk, update the "size on disk" */
307 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
308 1.1 perseant
309 1.1 perseant if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
310 1.22 dholland sp->idp = ((struct ulfs1_dinode *) bp->b_data) +
311 1.26 christos (sp->ninodes % LFS_INOPB(fs));
312 1.1 perseant if (gotblk) {
313 1.1 perseant LFS_LOCK_BUF(bp);
314 1.12 jnemeth assert(!(bp->b_flags & B_INVAL));
315 1.16 ad brelse(bp, 0);
316 1.1 perseant }
317 1.1 perseant /* Increment inode count in segment summary block. */
318 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_ninos;
319 1.1 perseant
320 1.1 perseant /* If this page is full, set flag to allocate a new page. */
321 1.26 christos if (++sp->ninodes % LFS_INOPB(fs) == 0)
322 1.1 perseant sp->ibp = NULL;
323 1.1 perseant
324 1.1 perseant /*
325 1.1 perseant * If updating the ifile, update the super-block. Update the disk
326 1.1 perseant * address and access times for this inode in the ifile.
327 1.1 perseant */
328 1.1 perseant ino = ip->i_number;
329 1.1 perseant if (ino == LFS_IFILE_INUM) {
330 1.32 dholland daddr = lfs_sb_getidaddr(fs);
331 1.32 dholland lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, bp->b_blkno));
332 1.13 perseant sbdirty();
333 1.1 perseant } else {
334 1.1 perseant LFS_IENTRY(ifp, fs, ino, ibp);
335 1.1 perseant daddr = ifp->if_daddr;
336 1.26 christos ifp->if_daddr = LFS_DBTOFSB(fs, bp->b_blkno) + fsb;
337 1.27 christos (void)LFS_BWRITE_LOG(ibp); /* Ifile */
338 1.1 perseant }
339 1.1 perseant
340 1.1 perseant /*
341 1.1 perseant * Account the inode: it no longer belongs to its former segment,
342 1.1 perseant * though it will not belong to the new segment until that segment
343 1.1 perseant * is actually written.
344 1.1 perseant */
345 1.1 perseant if (daddr != LFS_UNUSED_DADDR) {
346 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
347 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
348 1.24 dholland sup->su_nbytes -= LFS_DINODE1_SIZE;
349 1.1 perseant redo_ifile =
350 1.1 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
351 1.1 perseant if (redo_ifile)
352 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
353 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
354 1.1 perseant }
355 1.1 perseant return redo_ifile;
356 1.1 perseant }
357 1.1 perseant
358 1.1 perseant int
359 1.1 perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
360 1.1 perseant {
361 1.1 perseant struct lfs *fs;
362 1.1 perseant int version;
363 1.1 perseant int j, blksinblk;
364 1.1 perseant
365 1.1 perseant /*
366 1.1 perseant * If full, finish this segment. We may be doing I/O, so
367 1.1 perseant * release and reacquire the splbio().
368 1.1 perseant */
369 1.1 perseant fs = sp->fs;
370 1.32 dholland blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
371 1.22 dholland if (sp->sum_bytes_left < sizeof(ulfs_daddr_t) * blksinblk ||
372 1.1 perseant sp->seg_bytes_left < bp->b_bcount) {
373 1.1 perseant lfs_updatemeta(sp);
374 1.1 perseant
375 1.1 perseant version = sp->fip->fi_version;
376 1.1 perseant (void) lfs_writeseg(fs, sp);
377 1.1 perseant
378 1.1 perseant sp->fip->fi_version = version;
379 1.1 perseant sp->fip->fi_ino = VTOI(sp->vp)->i_number;
380 1.1 perseant /* Add the current file to the segment summary. */
381 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
382 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
383 1.1 perseant
384 1.1 perseant return 1;
385 1.1 perseant }
386 1.1 perseant /* Insert into the buffer list, update the FINFO block. */
387 1.1 perseant bp->b_flags |= B_GATHERED;
388 1.1 perseant /* bp->b_flags &= ~B_DONE; */
389 1.1 perseant
390 1.1 perseant *sp->cbpp++ = bp;
391 1.1 perseant for (j = 0; j < blksinblk; j++)
392 1.1 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
393 1.1 perseant
394 1.22 dholland sp->sum_bytes_left -= sizeof(ulfs_daddr_t) * blksinblk;
395 1.1 perseant sp->seg_bytes_left -= bp->b_bcount;
396 1.1 perseant return 0;
397 1.1 perseant }
398 1.1 perseant
399 1.1 perseant int
400 1.1 perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
401 1.1 perseant {
402 1.1 perseant struct ubuf *bp, *nbp;
403 1.1 perseant int count = 0;
404 1.1 perseant
405 1.1 perseant sp->vp = vp;
406 1.1 perseant loop:
407 1.1 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
408 1.1 perseant nbp = LIST_NEXT(bp, b_vnbufs);
409 1.1 perseant
410 1.1 perseant assert(bp->b_flags & B_DELWRI);
411 1.1 perseant if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
412 1.1 perseant continue;
413 1.1 perseant }
414 1.1 perseant if (lfs_gatherblock(sp, bp)) {
415 1.1 perseant goto loop;
416 1.1 perseant }
417 1.1 perseant count++;
418 1.1 perseant }
419 1.1 perseant
420 1.1 perseant lfs_updatemeta(sp);
421 1.1 perseant sp->vp = NULL;
422 1.1 perseant return count;
423 1.1 perseant }
424 1.1 perseant
425 1.1 perseant
426 1.1 perseant /*
427 1.1 perseant * Change the given block's address to ndaddr, finding its previous
428 1.22 dholland * location using ulfs_bmaparray().
429 1.1 perseant *
430 1.1 perseant * Account for this change in the segment table.
431 1.1 perseant */
432 1.1 perseant void
433 1.1 perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
434 1.22 dholland ulfs_daddr_t ndaddr, int size)
435 1.1 perseant {
436 1.1 perseant SEGUSE *sup;
437 1.1 perseant struct ubuf *bp;
438 1.22 dholland struct indir a[ULFS_NIADDR + 2], *ap;
439 1.1 perseant struct inode *ip;
440 1.1 perseant struct uvnode *vp;
441 1.1 perseant daddr_t daddr, ooff;
442 1.1 perseant int num, error;
443 1.20 mlelstv int osize;
444 1.20 mlelstv int frags, ofrags;
445 1.1 perseant
446 1.1 perseant vp = sp->vp;
447 1.1 perseant ip = VTOI(vp);
448 1.1 perseant
449 1.22 dholland error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
450 1.1 perseant if (error)
451 1.30 christos errx(EXIT_FAILURE, "%s: ulfs_bmaparray returned %d looking up lbn %"
452 1.30 christos PRId64 "", __func__, error, lbn);
453 1.1 perseant if (daddr > 0)
454 1.26 christos daddr = LFS_DBTOFSB(fs, daddr);
455 1.1 perseant
456 1.26 christos frags = lfs_numfrags(fs, size);
457 1.1 perseant switch (num) {
458 1.1 perseant case 0:
459 1.3 fvdl ooff = ip->i_ffs1_db[lbn];
460 1.1 perseant if (ooff == UNWRITTEN)
461 1.20 mlelstv ip->i_ffs1_blocks += frags;
462 1.1 perseant else {
463 1.1 perseant /* possible fragment truncation or extension */
464 1.26 christos ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
465 1.20 mlelstv ip->i_ffs1_blocks += (frags - ofrags);
466 1.1 perseant }
467 1.3 fvdl ip->i_ffs1_db[lbn] = ndaddr;
468 1.1 perseant break;
469 1.1 perseant case 1:
470 1.3 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
471 1.1 perseant if (ooff == UNWRITTEN)
472 1.20 mlelstv ip->i_ffs1_blocks += frags;
473 1.3 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
474 1.1 perseant break;
475 1.1 perseant default:
476 1.1 perseant ap = &a[num - 1];
477 1.32 dholland if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 0, &bp))
478 1.30 christos errx(EXIT_FAILURE, "%s: bread bno %" PRId64, __func__,
479 1.1 perseant ap->in_lbn);
480 1.1 perseant
481 1.22 dholland ooff = ((ulfs_daddr_t *) bp->b_data)[ap->in_off];
482 1.1 perseant if (ooff == UNWRITTEN)
483 1.20 mlelstv ip->i_ffs1_blocks += frags;
484 1.22 dholland ((ulfs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
485 1.1 perseant (void) VOP_BWRITE(bp);
486 1.1 perseant }
487 1.1 perseant
488 1.1 perseant /*
489 1.1 perseant * Update segment usage information, based on old size
490 1.1 perseant * and location.
491 1.1 perseant */
492 1.1 perseant if (daddr > 0) {
493 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
494 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
495 1.1 perseant osize = ip->i_lfs_fragsize[lbn];
496 1.1 perseant else
497 1.32 dholland osize = lfs_sb_getbsize(fs);
498 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
499 1.1 perseant sup->su_nbytes -= osize;
500 1.1 perseant if (!(bp->b_flags & B_GATHERED))
501 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
502 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
503 1.1 perseant }
504 1.1 perseant /*
505 1.1 perseant * Now that this block has a new address, and its old
506 1.1 perseant * segment no longer owns it, we can forget about its
507 1.1 perseant * old size.
508 1.1 perseant */
509 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
510 1.1 perseant ip->i_lfs_fragsize[lbn] = size;
511 1.1 perseant }
512 1.1 perseant
513 1.1 perseant /*
514 1.1 perseant * Update the metadata that points to the blocks listed in the FINFO
515 1.1 perseant * array.
516 1.1 perseant */
517 1.1 perseant void
518 1.1 perseant lfs_updatemeta(struct segment * sp)
519 1.1 perseant {
520 1.1 perseant struct ubuf *sbp;
521 1.1 perseant struct lfs *fs;
522 1.1 perseant struct uvnode *vp;
523 1.1 perseant daddr_t lbn;
524 1.1 perseant int i, nblocks, num;
525 1.20 mlelstv int frags;
526 1.1 perseant int bytesleft, size;
527 1.1 perseant
528 1.1 perseant vp = sp->vp;
529 1.1 perseant nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
530 1.1 perseant
531 1.1 perseant if (vp == NULL || nblocks == 0)
532 1.1 perseant return;
533 1.1 perseant
534 1.1 perseant /*
535 1.1 perseant * This count may be high due to oversize blocks from lfs_gop_write.
536 1.1 perseant * Correct for this. (XXX we should be able to keep track of these.)
537 1.1 perseant */
538 1.1 perseant fs = sp->fs;
539 1.1 perseant for (i = 0; i < nblocks; i++) {
540 1.1 perseant if (sp->start_bpp[i] == NULL) {
541 1.1 perseant printf("nblocks = %d, not %d\n", i, nblocks);
542 1.1 perseant nblocks = i;
543 1.1 perseant break;
544 1.1 perseant }
545 1.32 dholland num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
546 1.1 perseant nblocks -= num - 1;
547 1.1 perseant }
548 1.1 perseant
549 1.1 perseant /*
550 1.1 perseant * Sort the blocks.
551 1.1 perseant */
552 1.32 dholland lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
553 1.1 perseant
554 1.1 perseant /*
555 1.1 perseant * Record the length of the last block in case it's a fragment.
556 1.1 perseant * If there are indirect blocks present, they sort last. An
557 1.1 perseant * indirect block will be lfs_bsize and its presence indicates
558 1.1 perseant * that you cannot have fragments.
559 1.1 perseant */
560 1.1 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
561 1.33 dholland lfs_sb_getbmask(fs)) + 1;
562 1.1 perseant
563 1.1 perseant /*
564 1.1 perseant * Assign disk addresses, and update references to the logical
565 1.1 perseant * block and the segment usage information.
566 1.1 perseant */
567 1.1 perseant for (i = nblocks; i--; ++sp->start_bpp) {
568 1.1 perseant sbp = *sp->start_bpp;
569 1.1 perseant lbn = *sp->start_lbp;
570 1.1 perseant
571 1.32 dholland sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
572 1.1 perseant
573 1.1 perseant /*
574 1.1 perseant * If we write a frag in the wrong place, the cleaner won't
575 1.1 perseant * be able to correctly identify its size later, and the
576 1.1 perseant * segment will be uncleanable. (Even worse, it will assume
577 1.1 perseant * that the indirect block that actually ends the list
578 1.1 perseant * is of a smaller size!)
579 1.1 perseant */
580 1.33 dholland if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
581 1.30 christos errx(EXIT_FAILURE, "%s: fragment is not last block", __func__);
582 1.1 perseant
583 1.1 perseant /*
584 1.1 perseant * For each subblock in this possibly oversized block,
585 1.1 perseant * update its address on disk.
586 1.1 perseant */
587 1.1 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
588 1.32 dholland bytesleft -= lfs_sb_getbsize(fs)) {
589 1.32 dholland size = MIN(bytesleft, lfs_sb_getbsize(fs));
590 1.26 christos frags = lfs_numfrags(fs, size);
591 1.1 perseant lbn = *sp->start_lbp++;
592 1.32 dholland lfs_update_single(fs, sp, lbn, lfs_sb_getoffset(fs), size);
593 1.32 dholland lfs_sb_addoffset(fs, frags);
594 1.1 perseant }
595 1.1 perseant
596 1.1 perseant }
597 1.1 perseant }
598 1.1 perseant
599 1.1 perseant /*
600 1.1 perseant * Start a new segment.
601 1.1 perseant */
602 1.1 perseant int
603 1.1 perseant lfs_initseg(struct lfs * fs)
604 1.1 perseant {
605 1.1 perseant struct segment *sp;
606 1.1 perseant SEGUSE *sup;
607 1.1 perseant SEGSUM *ssp;
608 1.1 perseant struct ubuf *bp, *sbp;
609 1.1 perseant int repeat;
610 1.1 perseant
611 1.1 perseant sp = fs->lfs_sp;
612 1.1 perseant
613 1.1 perseant repeat = 0;
614 1.1 perseant
615 1.1 perseant /* Advance to the next segment. */
616 1.1 perseant if (!LFS_PARTIAL_FITS(fs)) {
617 1.1 perseant /* lfs_avail eats the remaining space */
618 1.32 dholland lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
619 1.32 dholland lfs_sb_getcurseg(fs)));
620 1.1 perseant lfs_newseg(fs);
621 1.1 perseant repeat = 1;
622 1.32 dholland lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
623 1.1 perseant
624 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
625 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
626 1.1 perseant
627 1.1 perseant /*
628 1.1 perseant * If the segment contains a superblock, update the offset
629 1.1 perseant * and summary address to skip over it.
630 1.1 perseant */
631 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
632 1.1 perseant if (sup->su_flags & SEGUSE_SUPERBLOCK) {
633 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
634 1.1 perseant sp->seg_bytes_left -= LFS_SBPAD;
635 1.1 perseant }
636 1.16 ad brelse(bp, 0);
637 1.1 perseant /* Segment zero could also contain the labelpad */
638 1.35 dholland if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
639 1.33 dholland lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
640 1.33 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
641 1.33 dholland sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
642 1.1 perseant }
643 1.1 perseant } else {
644 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
645 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
646 1.32 dholland (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
647 1.1 perseant }
648 1.32 dholland lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
649 1.1 perseant
650 1.1 perseant sp->fs = fs;
651 1.1 perseant sp->ibp = NULL;
652 1.1 perseant sp->idp = NULL;
653 1.1 perseant sp->ninodes = 0;
654 1.1 perseant sp->ndupino = 0;
655 1.1 perseant
656 1.1 perseant /* Get a new buffer for SEGSUM and enter it into the buffer list. */
657 1.1 perseant sp->cbpp = sp->bpp;
658 1.8 perseant sbp = *sp->cbpp = getblk(fs->lfs_devvp,
659 1.32 dholland LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs));
660 1.1 perseant sp->segsum = sbp->b_data;
661 1.32 dholland memset(sp->segsum, 0, lfs_sb_getsumsize(fs));
662 1.1 perseant sp->start_bpp = ++sp->cbpp;
663 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
664 1.1 perseant
665 1.1 perseant /* Set point to SEGSUM, initialize it. */
666 1.1 perseant ssp = sp->segsum;
667 1.32 dholland ssp->ss_next = lfs_sb_getnextseg(fs);
668 1.1 perseant ssp->ss_nfinfo = ssp->ss_ninos = 0;
669 1.1 perseant ssp->ss_magic = SS_MAGIC;
670 1.1 perseant
671 1.1 perseant /* Set pointer to first FINFO, initialize it. */
672 1.1 perseant sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
673 1.1 perseant sp->fip->fi_nblocks = 0;
674 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
675 1.1 perseant sp->fip->fi_lastlength = 0;
676 1.1 perseant
677 1.32 dholland sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
678 1.32 dholland sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
679 1.1 perseant
680 1.1 perseant LFS_LOCK_BUF(sbp);
681 1.16 ad brelse(sbp, 0);
682 1.1 perseant return repeat;
683 1.1 perseant }
684 1.1 perseant
685 1.1 perseant /*
686 1.1 perseant * Return the next segment to write.
687 1.1 perseant */
688 1.1 perseant void
689 1.1 perseant lfs_newseg(struct lfs * fs)
690 1.1 perseant {
691 1.1 perseant CLEANERINFO *cip;
692 1.1 perseant SEGUSE *sup;
693 1.1 perseant struct ubuf *bp;
694 1.1 perseant int curseg, isdirty, sn;
695 1.1 perseant
696 1.32 dholland LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
697 1.1 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
698 1.1 perseant sup->su_nbytes = 0;
699 1.1 perseant sup->su_nsums = 0;
700 1.1 perseant sup->su_ninos = 0;
701 1.32 dholland LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
702 1.1 perseant
703 1.1 perseant LFS_CLEANERINFO(cip, fs, bp);
704 1.1 perseant --cip->clean;
705 1.1 perseant ++cip->dirty;
706 1.33 dholland lfs_sb_setnclean(fs, cip->clean);
707 1.1 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
708 1.1 perseant
709 1.32 dholland lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
710 1.32 dholland lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
711 1.32 dholland for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
712 1.33 dholland sn = (sn + 1) % lfs_sb_getnseg(fs);
713 1.1 perseant if (sn == curseg)
714 1.30 christos errx(EXIT_FAILURE, "%s: no clean segments", __func__);
715 1.1 perseant LFS_SEGENTRY(sup, fs, sn, bp);
716 1.1 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
717 1.16 ad brelse(bp, 0);
718 1.1 perseant
719 1.1 perseant if (!isdirty)
720 1.1 perseant break;
721 1.1 perseant }
722 1.1 perseant
723 1.1 perseant ++fs->lfs_nactive;
724 1.32 dholland lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
725 1.1 perseant }
726 1.1 perseant
727 1.1 perseant
728 1.1 perseant int
729 1.1 perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
730 1.1 perseant {
731 1.1 perseant struct ubuf **bpp, *bp;
732 1.1 perseant SEGUSE *sup;
733 1.1 perseant SEGSUM *ssp;
734 1.1 perseant char *datap, *dp;
735 1.1 perseant int i;
736 1.1 perseant int do_again, nblocks, byteoffset;
737 1.1 perseant size_t el_size;
738 1.1 perseant u_short ninos;
739 1.1 perseant struct uvnode *devvp;
740 1.1 perseant
741 1.1 perseant /*
742 1.1 perseant * If there are no buffers other than the segment summary to write
743 1.1 perseant * and it is not a checkpoint, don't do anything. On a checkpoint,
744 1.1 perseant * even if there aren't any buffers, you need to write the superblock.
745 1.1 perseant */
746 1.13 perseant nblocks = sp->cbpp - sp->bpp;
747 1.13 perseant #if 0
748 1.13 perseant printf("write %d blocks at 0x%x\n",
749 1.26 christos nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
750 1.13 perseant #endif
751 1.13 perseant if (nblocks == 1)
752 1.1 perseant return 0;
753 1.1 perseant
754 1.8 perseant devvp = fs->lfs_devvp;
755 1.1 perseant
756 1.1 perseant /* Update the segment usage information. */
757 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
758 1.13 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
759 1.1 perseant
760 1.1 perseant /* Loop through all blocks, except the segment summary. */
761 1.1 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
762 1.1 perseant if ((*bpp)->b_vp != devvp) {
763 1.1 perseant sup->su_nbytes += (*bpp)->b_bcount;
764 1.1 perseant }
765 1.26 christos assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
766 1.1 perseant }
767 1.1 perseant
768 1.1 perseant ssp = (SEGSUM *) sp->segsum;
769 1.14 perseant ssp->ss_flags |= SS_RFW;
770 1.1 perseant
771 1.26 christos ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
772 1.24 dholland sup->su_nbytes += ssp->ss_ninos * LFS_DINODE1_SIZE;
773 1.1 perseant
774 1.35 dholland if (lfs_sb_getversion(fs) == 1)
775 1.1 perseant sup->su_olastmod = write_time;
776 1.1 perseant else
777 1.1 perseant sup->su_lastmod = write_time;
778 1.1 perseant sup->su_ninos += ninos;
779 1.1 perseant ++sup->su_nsums;
780 1.33 dholland lfs_sb_adddmeta(fs, (lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + lfs_btofsb(fs, ninos *
781 1.33 dholland lfs_sb_getibsize(fs))));
782 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
783 1.1 perseant
784 1.1 perseant do_again = !(bp->b_flags & B_GATHERED);
785 1.1 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
786 1.1 perseant
787 1.1 perseant /*
788 1.1 perseant * Compute checksum across data and then across summary; the first
789 1.1 perseant * block (the summary block) is skipped. Set the create time here
790 1.1 perseant * so that it's guaranteed to be later than the inode mod times.
791 1.1 perseant */
792 1.35 dholland if (lfs_sb_getversion(fs) == 1)
793 1.1 perseant el_size = sizeof(u_long);
794 1.1 perseant else
795 1.1 perseant el_size = sizeof(u_int32_t);
796 1.15 christos datap = dp = emalloc(nblocks * el_size);
797 1.1 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
798 1.1 perseant ++bpp;
799 1.1 perseant /* Loop through gop_write cluster blocks */
800 1.1 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
801 1.32 dholland byteoffset += lfs_sb_getbsize(fs)) {
802 1.1 perseant memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
803 1.1 perseant dp += el_size;
804 1.1 perseant }
805 1.2 perseant bremfree(*bpp);
806 1.1 perseant (*bpp)->b_flags |= B_BUSY;
807 1.1 perseant }
808 1.35 dholland if (lfs_sb_getversion(fs) == 1)
809 1.1 perseant ssp->ss_ocreate = write_time;
810 1.1 perseant else {
811 1.1 perseant ssp->ss_create = write_time;
812 1.32 dholland lfs_sb_addserial(fs, 1);
813 1.32 dholland ssp->ss_serial = lfs_sb_getserial(fs);
814 1.33 dholland ssp->ss_ident = lfs_sb_getident(fs);
815 1.1 perseant }
816 1.1 perseant /* Set the summary block busy too */
817 1.1 perseant bremfree(*(sp->bpp));
818 1.1 perseant (*(sp->bpp))->b_flags |= B_BUSY;
819 1.1 perseant
820 1.1 perseant ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
821 1.1 perseant ssp->ss_sumsum =
822 1.32 dholland cksum(&ssp->ss_datasum, lfs_sb_getsumsize(fs) - sizeof(ssp->ss_sumsum));
823 1.1 perseant free(datap);
824 1.1 perseant datap = dp = NULL;
825 1.32 dholland lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
826 1.32 dholland lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
827 1.1 perseant
828 1.1 perseant if (devvp == NULL)
829 1.30 christos errx(EXIT_FAILURE, "devvp is NULL");
830 1.1 perseant for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
831 1.1 perseant bp = *bpp;
832 1.1 perseant #if 0
833 1.2 perseant printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
834 1.1 perseant nblocks - i, bp, bp->b_flags, bp->b_blkno);
835 1.1 perseant printf(" vp = %p\n", bp->b_vp);
836 1.8 perseant if (bp->b_vp != fs->lfs_devvp)
837 1.1 perseant printf(" ino = %d lbn = %" PRId64 "\n",
838 1.1 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
839 1.1 perseant #endif
840 1.8 perseant if (bp->b_vp == fs->lfs_devvp)
841 1.1 perseant written_dev += bp->b_bcount;
842 1.1 perseant else {
843 1.1 perseant if (bp->b_lblkno >= 0)
844 1.1 perseant written_data += bp->b_bcount;
845 1.1 perseant else
846 1.1 perseant written_indir += bp->b_bcount;
847 1.1 perseant }
848 1.2 perseant bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
849 1.2 perseant B_LOCKED);
850 1.1 perseant bwrite(bp);
851 1.1 perseant written_bytes += bp->b_bcount;
852 1.1 perseant }
853 1.1 perseant written_inodes += ninos;
854 1.1 perseant
855 1.1 perseant return (lfs_initseg(fs) || do_again);
856 1.1 perseant }
857 1.1 perseant
858 1.1 perseant /*
859 1.1 perseant * Our own copy of shellsort. XXX use qsort or heapsort.
860 1.1 perseant */
861 1.1 perseant void
862 1.22 dholland lfs_shellsort(struct ubuf ** bp_array, ulfs_daddr_t * lb_array, int nmemb, int size)
863 1.1 perseant {
864 1.1 perseant static int __rsshell_increments[] = {4, 1, 0};
865 1.1 perseant int incr, *incrp, t1, t2;
866 1.1 perseant struct ubuf *bp_temp;
867 1.1 perseant
868 1.1 perseant for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
869 1.1 perseant for (t1 = incr; t1 < nmemb; ++t1)
870 1.1 perseant for (t2 = t1 - incr; t2 >= 0;)
871 1.1 perseant if ((u_int32_t) bp_array[t2]->b_lblkno >
872 1.1 perseant (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
873 1.1 perseant bp_temp = bp_array[t2];
874 1.1 perseant bp_array[t2] = bp_array[t2 + incr];
875 1.1 perseant bp_array[t2 + incr] = bp_temp;
876 1.1 perseant t2 -= incr;
877 1.1 perseant } else
878 1.1 perseant break;
879 1.1 perseant
880 1.1 perseant /* Reform the list of logical blocks */
881 1.1 perseant incr = 0;
882 1.1 perseant for (t1 = 0; t1 < nmemb; t1++) {
883 1.1 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
884 1.1 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
885 1.1 perseant }
886 1.1 perseant }
887 1.1 perseant }
888 1.1 perseant
889 1.1 perseant
890 1.1 perseant /*
891 1.1 perseant * lfs_seglock --
892 1.1 perseant * Single thread the segment writer.
893 1.1 perseant */
894 1.1 perseant int
895 1.1 perseant lfs_seglock(struct lfs * fs, unsigned long flags)
896 1.1 perseant {
897 1.1 perseant struct segment *sp;
898 1.32 dholland size_t allocsize;
899 1.1 perseant
900 1.1 perseant if (fs->lfs_seglock) {
901 1.1 perseant ++fs->lfs_seglock;
902 1.1 perseant fs->lfs_sp->seg_flags |= flags;
903 1.1 perseant return 0;
904 1.1 perseant }
905 1.1 perseant fs->lfs_seglock = 1;
906 1.1 perseant
907 1.15 christos sp = fs->lfs_sp = emalloc(sizeof(*sp));
908 1.32 dholland allocsize = lfs_sb_getssize(fs) * sizeof(struct ubuf *);
909 1.32 dholland sp->bpp = emalloc(allocsize);
910 1.6 heas if (!sp->bpp)
911 1.32 dholland err(!preen, "Could not allocate %zu bytes", allocsize);
912 1.1 perseant sp->seg_flags = flags;
913 1.1 perseant sp->vp = NULL;
914 1.1 perseant sp->seg_iocount = 0;
915 1.1 perseant (void) lfs_initseg(fs);
916 1.1 perseant
917 1.1 perseant return 0;
918 1.1 perseant }
919 1.1 perseant
920 1.1 perseant /*
921 1.1 perseant * lfs_segunlock --
922 1.1 perseant * Single thread the segment writer.
923 1.1 perseant */
924 1.1 perseant void
925 1.1 perseant lfs_segunlock(struct lfs * fs)
926 1.1 perseant {
927 1.1 perseant struct segment *sp;
928 1.1 perseant struct ubuf *bp;
929 1.1 perseant
930 1.1 perseant sp = fs->lfs_sp;
931 1.1 perseant
932 1.1 perseant if (fs->lfs_seglock == 1) {
933 1.1 perseant if (sp->bpp != sp->cbpp) {
934 1.1 perseant /* Free allocated segment summary */
935 1.32 dholland lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
936 1.1 perseant bp = *sp->bpp;
937 1.1 perseant bremfree(bp);
938 1.1 perseant bp->b_flags |= B_DONE | B_INVAL;
939 1.1 perseant bp->b_flags &= ~B_DELWRI;
940 1.1 perseant reassignbuf(bp, bp->b_vp);
941 1.1 perseant bp->b_flags |= B_BUSY; /* XXX */
942 1.16 ad brelse(bp, 0);
943 1.1 perseant } else
944 1.1 perseant printf("unlock to 0 with no summary");
945 1.1 perseant
946 1.1 perseant free(sp->bpp);
947 1.1 perseant sp->bpp = NULL;
948 1.1 perseant free(sp);
949 1.1 perseant fs->lfs_sp = NULL;
950 1.1 perseant
951 1.1 perseant fs->lfs_nactive = 0;
952 1.1 perseant
953 1.1 perseant /* Since we *know* everything's on disk, write both sbs */
954 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
955 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
956 1.1 perseant
957 1.1 perseant --fs->lfs_seglock;
958 1.1 perseant fs->lfs_lockpid = 0;
959 1.1 perseant } else if (fs->lfs_seglock == 0) {
960 1.30 christos errx(EXIT_FAILURE, "Seglock not held");
961 1.1 perseant } else {
962 1.1 perseant --fs->lfs_seglock;
963 1.1 perseant }
964 1.1 perseant }
965 1.1 perseant
966 1.1 perseant int
967 1.1 perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
968 1.1 perseant {
969 1.1 perseant struct inode *ip;
970 1.1 perseant struct uvnode *vp;
971 1.1 perseant int inodes_written = 0;
972 1.1 perseant
973 1.1 perseant LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
974 1.1 perseant if (vp->v_bmap_op != lfs_vop_bmap)
975 1.1 perseant continue;
976 1.1 perseant
977 1.1 perseant ip = VTOI(vp);
978 1.1 perseant
979 1.17 ad if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
980 1.17 ad (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
981 1.1 perseant continue;
982 1.1 perseant }
983 1.1 perseant /*
984 1.1 perseant * Write the inode/file if dirty and it's not the IFILE.
985 1.1 perseant */
986 1.1 perseant if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
987 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
988 1.1 perseant lfs_writefile(fs, sp, vp);
989 1.1 perseant (void) lfs_writeinode(fs, sp, ip);
990 1.1 perseant inodes_written++;
991 1.1 perseant }
992 1.1 perseant }
993 1.1 perseant return inodes_written;
994 1.1 perseant }
995 1.1 perseant
996 1.1 perseant void
997 1.22 dholland lfs_writesuper(struct lfs *fs, ulfs_daddr_t daddr)
998 1.1 perseant {
999 1.1 perseant struct ubuf *bp;
1000 1.1 perseant
1001 1.1 perseant /* Set timestamp of this version of the superblock */
1002 1.35 dholland if (lfs_sb_getversion(fs) == 1)
1003 1.32 dholland lfs_sb_setotstamp(fs, write_time);
1004 1.32 dholland lfs_sb_settstamp(fs, write_time);
1005 1.1 perseant
1006 1.36 dholland __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
1007 1.36 dholland
1008 1.1 perseant /* Checksum the superblock and copy it into a buffer. */
1009 1.36 dholland lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
1010 1.1 perseant assert(daddr > 0);
1011 1.26 christos bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
1012 1.36 dholland memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
1013 1.1 perseant memset(bp->b_data + sizeof(struct dlfs), 0,
1014 1.1 perseant LFS_SBPAD - sizeof(struct dlfs));
1015 1.1 perseant
1016 1.1 perseant bwrite(bp);
1017 1.1 perseant }
1018