Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.39
      1  1.39  dholland /* $NetBSD: segwrite.c,v 1.39 2015/08/12 18:26:27 dholland Exp $ */
      2   1.1  perseant /*-
      3   1.1  perseant  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4   1.1  perseant  * All rights reserved.
      5   1.1  perseant  *
      6   1.1  perseant  * This code is derived from software contributed to The NetBSD Foundation
      7   1.1  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8   1.1  perseant  *
      9   1.1  perseant  * Redistribution and use in source and binary forms, with or without
     10   1.1  perseant  * modification, are permitted provided that the following conditions
     11   1.1  perseant  * are met:
     12   1.1  perseant  * 1. Redistributions of source code must retain the above copyright
     13   1.1  perseant  *    notice, this list of conditions and the following disclaimer.
     14   1.1  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1  perseant  *    notice, this list of conditions and the following disclaimer in the
     16   1.1  perseant  *    documentation and/or other materials provided with the distribution.
     17   1.1  perseant  *
     18   1.1  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19   1.1  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20   1.1  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21   1.1  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22   1.1  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23   1.1  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24   1.1  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25   1.1  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26   1.1  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27   1.1  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28   1.1  perseant  * POSSIBILITY OF SUCH DAMAGE.
     29   1.1  perseant  */
     30   1.1  perseant /*
     31   1.1  perseant  * Copyright (c) 1991, 1993
     32   1.1  perseant  *	The Regents of the University of California.  All rights reserved.
     33   1.1  perseant  *
     34   1.1  perseant  * Redistribution and use in source and binary forms, with or without
     35   1.1  perseant  * modification, are permitted provided that the following conditions
     36   1.1  perseant  * are met:
     37   1.1  perseant  * 1. Redistributions of source code must retain the above copyright
     38   1.1  perseant  *    notice, this list of conditions and the following disclaimer.
     39   1.1  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     40   1.1  perseant  *    notice, this list of conditions and the following disclaimer in the
     41   1.1  perseant  *    documentation and/or other materials provided with the distribution.
     42   1.5       agc  * 3. Neither the name of the University nor the names of its contributors
     43   1.1  perseant  *    may be used to endorse or promote products derived from this software
     44   1.1  perseant  *    without specific prior written permission.
     45   1.1  perseant  *
     46   1.1  perseant  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     47   1.1  perseant  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     48   1.1  perseant  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     49   1.1  perseant  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     50   1.1  perseant  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     51   1.1  perseant  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     52   1.1  perseant  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     53   1.1  perseant  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     54   1.1  perseant  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     55   1.1  perseant  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     56   1.1  perseant  * SUCH DAMAGE.
     57   1.1  perseant  *
     58   1.1  perseant  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     59   1.1  perseant  */
     60   1.1  perseant 
     61   1.1  perseant /*
     62   1.1  perseant  * Partial segment writer, taken from the kernel and adapted for userland.
     63   1.1  perseant  */
     64   1.1  perseant #include <sys/types.h>
     65   1.1  perseant #include <sys/param.h>
     66   1.1  perseant #include <sys/time.h>
     67   1.1  perseant #include <sys/buf.h>
     68   1.1  perseant #include <sys/mount.h>
     69   1.1  perseant 
     70   1.1  perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
     71  1.23  dholland #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
     72   1.1  perseant #define vnode uvnode
     73   1.1  perseant #define buf ubuf
     74   1.1  perseant #define panic call_panic
     75   1.1  perseant 
     76   1.1  perseant #include <ufs/lfs/lfs.h>
     77  1.34  dholland #include <ufs/lfs/lfs_accessors.h>
     78  1.25  dholland #include <ufs/lfs/lfs_inode.h>
     79   1.1  perseant 
     80   1.1  perseant #include <assert.h>
     81   1.1  perseant #include <stdio.h>
     82   1.1  perseant #include <stdlib.h>
     83   1.1  perseant #include <string.h>
     84   1.1  perseant #include <err.h>
     85   1.1  perseant #include <errno.h>
     86  1.15  christos #include <util.h>
     87   1.1  perseant 
     88   1.1  perseant #include "bufcache.h"
     89   1.1  perseant #include "vnode.h"
     90  1.10  christos #include "lfs_user.h"
     91   1.1  perseant #include "segwrite.h"
     92   1.1  perseant 
     93   1.1  perseant /* Compatibility definitions */
     94   1.1  perseant extern off_t locked_queue_bytes;
     95   1.1  perseant int locked_queue_count;
     96   1.1  perseant off_t written_bytes = 0;
     97   1.1  perseant off_t written_data = 0;
     98   1.1  perseant off_t written_indir = 0;
     99   1.1  perseant off_t written_dev = 0;
    100   1.1  perseant int written_inodes = 0;
    101   1.1  perseant 
    102   1.1  perseant /* Global variables */
    103   1.1  perseant time_t write_time;
    104   1.1  perseant 
    105   1.1  perseant extern u_int32_t cksum(void *, size_t);
    106  1.36  dholland extern u_int32_t lfs_sb_cksum(struct lfs *);
    107   1.7  perseant extern int preen;
    108   1.1  perseant 
    109   1.1  perseant /*
    110   1.1  perseant  * Logical block number match routines used when traversing the dirty block
    111   1.1  perseant  * chain.
    112   1.1  perseant  */
    113   1.1  perseant int
    114   1.1  perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
    115   1.1  perseant {
    116   1.1  perseant 	return (bp->b_lblkno >= 0);
    117   1.1  perseant }
    118   1.1  perseant 
    119   1.1  perseant int
    120   1.1  perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    121   1.1  perseant {
    122   1.1  perseant 	daddr_t lbn;
    123   1.1  perseant 
    124   1.1  perseant 	lbn = bp->b_lblkno;
    125  1.26  christos 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
    126   1.1  perseant }
    127   1.1  perseant 
    128   1.1  perseant int
    129   1.1  perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    130   1.1  perseant {
    131   1.1  perseant 	daddr_t lbn;
    132   1.1  perseant 
    133   1.1  perseant 	lbn = bp->b_lblkno;
    134  1.26  christos 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
    135   1.1  perseant }
    136   1.1  perseant 
    137   1.1  perseant int
    138   1.1  perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    139   1.1  perseant {
    140   1.1  perseant 	daddr_t lbn;
    141   1.1  perseant 
    142   1.1  perseant 	lbn = bp->b_lblkno;
    143  1.26  christos 	return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
    144   1.1  perseant }
    145   1.1  perseant 
    146   1.1  perseant /*
    147   1.1  perseant  * Do a checkpoint.
    148   1.1  perseant  */
    149   1.1  perseant int
    150   1.1  perseant lfs_segwrite(struct lfs * fs, int flags)
    151   1.1  perseant {
    152   1.1  perseant 	struct inode *ip;
    153   1.1  perseant 	struct segment *sp;
    154   1.1  perseant 	struct uvnode *vp;
    155  1.39  dholland 	SEGSUM *ssp;
    156   1.1  perseant 	int redo;
    157   1.1  perseant 
    158   1.1  perseant 	lfs_seglock(fs, flags | SEGM_CKP);
    159   1.1  perseant 	sp = fs->lfs_sp;
    160   1.1  perseant 
    161   1.1  perseant 	lfs_writevnodes(fs, sp, VN_REG);
    162   1.1  perseant 	lfs_writevnodes(fs, sp, VN_DIROP);
    163  1.39  dholland 	ssp = (SEGSUM *)sp->segsum;
    164  1.39  dholland 	lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
    165   1.1  perseant 
    166   1.1  perseant 	do {
    167   1.1  perseant 		vp = fs->lfs_ivnode;
    168   1.1  perseant 		fs->lfs_flags &= ~LFS_IFDIRTY;
    169   1.1  perseant 		ip = VTOI(vp);
    170  1.32  dholland 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || lfs_sb_getidaddr(fs) <= 0)
    171   1.1  perseant 			lfs_writefile(fs, sp, vp);
    172   1.1  perseant 
    173   1.1  perseant 		redo = lfs_writeinode(fs, sp, ip);
    174   1.1  perseant 		redo += lfs_writeseg(fs, sp);
    175   1.1  perseant 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    176   1.1  perseant 	} while (redo);
    177   1.1  perseant 
    178   1.1  perseant 	lfs_segunlock(fs);
    179   1.1  perseant #if 0
    180   1.1  perseant 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    181  1.26  christos 		written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
    182   1.1  perseant 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    183  1.26  christos 		written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
    184   1.1  perseant 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    185  1.26  christos 		written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
    186   1.1  perseant 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    187  1.26  christos 		written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
    188   1.1  perseant 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    189  1.26  christos 		written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
    190   1.1  perseant #endif
    191   1.1  perseant 	return 0;
    192   1.1  perseant }
    193   1.1  perseant 
    194   1.1  perseant /*
    195   1.1  perseant  * Write the dirty blocks associated with a vnode.
    196   1.1  perseant  */
    197   1.1  perseant void
    198   1.1  perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    199   1.1  perseant {
    200   1.1  perseant 	struct ubuf *bp;
    201   1.1  perseant 	struct finfo *fip;
    202   1.1  perseant 	struct inode *ip;
    203   1.1  perseant 	IFILE *ifp;
    204  1.39  dholland 	SEGSUM *ssp;
    205   1.1  perseant 
    206   1.1  perseant 	ip = VTOI(vp);
    207   1.1  perseant 
    208  1.32  dholland 	if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
    209   1.1  perseant 	    sp->sum_bytes_left < sizeof(struct finfo))
    210   1.1  perseant 		(void) lfs_writeseg(fs, sp);
    211   1.1  perseant 
    212   1.1  perseant 	sp->sum_bytes_left -= FINFOSIZE;
    213  1.39  dholland 	ssp = (SEGSUM *)sp->segsum;
    214  1.39  dholland 	lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
    215   1.1  perseant 
    216  1.39  dholland 	if (vp->v_uflag & VU_DIROP) {
    217  1.39  dholland 		lfs_ss_setflags(fs, ssp,
    218  1.39  dholland 				lfs_ss_getflags(fs, ssp) | (SS_DIROP | SS_CONT));
    219  1.39  dholland 	}
    220   1.1  perseant 
    221   1.1  perseant 	fip = sp->fip;
    222   1.1  perseant 	fip->fi_nblocks = 0;
    223   1.1  perseant 	fip->fi_ino = ip->i_number;
    224   1.1  perseant 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    225  1.38  dholland 	fip->fi_version = lfs_if_getversion(fs, ifp);
    226  1.16        ad 	brelse(bp, 0);
    227   1.1  perseant 
    228   1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_data);
    229   1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_indir);
    230   1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    231   1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    232   1.1  perseant 
    233   1.1  perseant 	fip = sp->fip;
    234   1.1  perseant 	if (fip->fi_nblocks != 0) {
    235  1.39  dholland 		sp->fip = NEXT_FINFO(fs, fip);
    236   1.1  perseant 		sp->start_lbp = &sp->fip->fi_blocks[0];
    237   1.1  perseant 	} else {
    238   1.1  perseant 		sp->sum_bytes_left += FINFOSIZE;
    239  1.39  dholland 		lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
    240   1.1  perseant 	}
    241   1.1  perseant }
    242   1.1  perseant 
    243   1.1  perseant int
    244   1.1  perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    245   1.1  perseant {
    246   1.1  perseant 	struct ubuf *bp, *ibp;
    247  1.22  dholland 	struct ulfs1_dinode *cdp;
    248   1.1  perseant 	IFILE *ifp;
    249   1.1  perseant 	SEGUSE *sup;
    250  1.39  dholland 	SEGSUM *ssp;
    251   1.1  perseant 	daddr_t daddr;
    252   1.1  perseant 	ino_t ino;
    253  1.27  christos 	int i, ndx, fsb = 0;
    254   1.1  perseant 	int redo_ifile = 0;
    255   1.1  perseant 	struct timespec ts;
    256   1.1  perseant 	int gotblk = 0;
    257   1.1  perseant 
    258   1.1  perseant 	/* Allocate a new inode block if necessary. */
    259   1.1  perseant 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    260   1.1  perseant 	    sp->ibp == NULL) {
    261   1.1  perseant 		/* Allocate a new segment if necessary. */
    262  1.33  dholland 		if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
    263  1.22  dholland 		    sp->sum_bytes_left < sizeof(ulfs_daddr_t))
    264   1.1  perseant 			(void) lfs_writeseg(fs, sp);
    265   1.1  perseant 
    266   1.1  perseant 		/* Get next inode block. */
    267  1.32  dholland 		daddr = lfs_sb_getoffset(fs);
    268  1.32  dholland 		lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
    269   1.1  perseant 		sp->ibp = *sp->cbpp++ =
    270  1.26  christos 		    getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
    271  1.33  dholland 		    lfs_sb_getibsize(fs));
    272   1.1  perseant 		sp->ibp->b_flags |= B_GATHERED;
    273   1.1  perseant 		gotblk++;
    274   1.1  perseant 
    275   1.1  perseant 		/* Zero out inode numbers */
    276  1.26  christos 		for (i = 0; i < LFS_INOPB(fs); ++i)
    277  1.22  dholland 			((struct ulfs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    278   1.1  perseant 
    279   1.1  perseant 		++sp->start_bpp;
    280  1.32  dholland 		lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
    281   1.1  perseant 		/* Set remaining space counters. */
    282  1.32  dholland 		sp->seg_bytes_left -= lfs_sb_getibsize(fs);
    283  1.22  dholland 		sp->sum_bytes_left -= sizeof(ulfs_daddr_t);
    284  1.32  dholland 		ndx = lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t) -
    285  1.26  christos 		    sp->ninodes / LFS_INOPB(fs) - 1;
    286  1.22  dholland 		((ulfs_daddr_t *) (sp->segsum))[ndx] = daddr;
    287   1.1  perseant 	}
    288   1.1  perseant 	/* Update the inode times and copy the inode onto the inode page. */
    289   1.1  perseant 	ts.tv_nsec = 0;
    290   1.1  perseant 	ts.tv_sec = write_time;
    291   1.1  perseant 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    292   1.1  perseant 	if (ip->i_number != LFS_IFILE_INUM)
    293   1.1  perseant 		LFS_ITIMES(ip, &ts, &ts, &ts);
    294   1.1  perseant 
    295   1.1  perseant 	/*
    296   1.1  perseant 	 * If this is the Ifile, and we've already written the Ifile in this
    297   1.1  perseant 	 * partial segment, just overwrite it (it's not on disk yet) and
    298   1.1  perseant 	 * continue.
    299   1.1  perseant 	 *
    300   1.1  perseant 	 * XXX we know that the bp that we get the second time around has
    301   1.1  perseant 	 * already been gathered.
    302   1.1  perseant 	 */
    303   1.1  perseant 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    304   1.3      fvdl 		*(sp->idp) = *ip->i_din.ffs1_din;
    305   1.3      fvdl 		ip->i_lfs_osize = ip->i_ffs1_size;
    306   1.1  perseant 		return 0;
    307   1.1  perseant 	}
    308   1.1  perseant 	bp = sp->ibp;
    309  1.26  christos 	cdp = ((struct ulfs1_dinode *) bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
    310   1.3      fvdl 	*cdp = *ip->i_din.ffs1_din;
    311   1.1  perseant 
    312   1.1  perseant 	/* If all blocks are goig to disk, update the "size on disk" */
    313   1.3      fvdl 	ip->i_lfs_osize = ip->i_ffs1_size;
    314   1.1  perseant 
    315   1.1  perseant 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    316  1.22  dholland 		sp->idp = ((struct ulfs1_dinode *) bp->b_data) +
    317  1.26  christos 		    (sp->ninodes % LFS_INOPB(fs));
    318   1.1  perseant 	if (gotblk) {
    319   1.1  perseant 		LFS_LOCK_BUF(bp);
    320  1.12   jnemeth 		assert(!(bp->b_flags & B_INVAL));
    321  1.16        ad 		brelse(bp, 0);
    322   1.1  perseant 	}
    323   1.1  perseant 	/* Increment inode count in segment summary block. */
    324  1.39  dholland 	ssp = (SEGSUM *)sp->segsum;
    325  1.39  dholland 	lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
    326   1.1  perseant 
    327   1.1  perseant 	/* If this page is full, set flag to allocate a new page. */
    328  1.26  christos 	if (++sp->ninodes % LFS_INOPB(fs) == 0)
    329   1.1  perseant 		sp->ibp = NULL;
    330   1.1  perseant 
    331   1.1  perseant 	/*
    332   1.1  perseant 	 * If updating the ifile, update the super-block.  Update the disk
    333  1.38  dholland 	 * address for this inode in the ifile.
    334   1.1  perseant 	 */
    335   1.1  perseant 	ino = ip->i_number;
    336   1.1  perseant 	if (ino == LFS_IFILE_INUM) {
    337  1.32  dholland 		daddr = lfs_sb_getidaddr(fs);
    338  1.32  dholland 		lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, bp->b_blkno));
    339  1.13  perseant 		sbdirty();
    340   1.1  perseant 	} else {
    341   1.1  perseant 		LFS_IENTRY(ifp, fs, ino, ibp);
    342  1.38  dholland 		daddr = lfs_if_getdaddr(fs, ifp);
    343  1.38  dholland 		lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, bp->b_blkno) + fsb);
    344  1.27  christos 		(void)LFS_BWRITE_LOG(ibp);	/* Ifile */
    345   1.1  perseant 	}
    346   1.1  perseant 
    347   1.1  perseant 	/*
    348   1.1  perseant 	 * Account the inode: it no longer belongs to its former segment,
    349   1.1  perseant 	 * though it will not belong to the new segment until that segment
    350   1.1  perseant 	 * is actually written.
    351   1.1  perseant 	 */
    352   1.1  perseant 	if (daddr != LFS_UNUSED_DADDR) {
    353  1.26  christos 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
    354   1.1  perseant 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    355  1.24  dholland 		sup->su_nbytes -= LFS_DINODE1_SIZE;
    356   1.1  perseant 		redo_ifile =
    357   1.1  perseant 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    358   1.1  perseant 		if (redo_ifile)
    359   1.1  perseant 			fs->lfs_flags |= LFS_IFDIRTY;
    360   1.1  perseant 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    361   1.1  perseant 	}
    362   1.1  perseant 	return redo_ifile;
    363   1.1  perseant }
    364   1.1  perseant 
    365   1.1  perseant int
    366   1.1  perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    367   1.1  perseant {
    368   1.1  perseant 	struct lfs *fs;
    369  1.39  dholland 	SEGSUM *ssp;
    370   1.1  perseant 	int version;
    371   1.1  perseant 	int j, blksinblk;
    372   1.1  perseant 
    373   1.1  perseant 	/*
    374   1.1  perseant 	 * If full, finish this segment.  We may be doing I/O, so
    375   1.1  perseant 	 * release and reacquire the splbio().
    376   1.1  perseant 	 */
    377   1.1  perseant 	fs = sp->fs;
    378  1.32  dholland 	blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
    379  1.22  dholland 	if (sp->sum_bytes_left < sizeof(ulfs_daddr_t) * blksinblk ||
    380   1.1  perseant 	    sp->seg_bytes_left < bp->b_bcount) {
    381   1.1  perseant 		lfs_updatemeta(sp);
    382   1.1  perseant 
    383   1.1  perseant 		version = sp->fip->fi_version;
    384   1.1  perseant 		(void) lfs_writeseg(fs, sp);
    385   1.1  perseant 
    386   1.1  perseant 		sp->fip->fi_version = version;
    387   1.1  perseant 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    388   1.1  perseant 		/* Add the current file to the segment summary. */
    389  1.39  dholland 		ssp = (SEGSUM *)sp->segsum;
    390  1.39  dholland 		lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
    391   1.1  perseant 		sp->sum_bytes_left -= FINFOSIZE;
    392   1.1  perseant 
    393   1.1  perseant 		return 1;
    394   1.1  perseant 	}
    395   1.1  perseant 	/* Insert into the buffer list, update the FINFO block. */
    396   1.1  perseant 	bp->b_flags |= B_GATHERED;
    397   1.1  perseant 	/* bp->b_flags &= ~B_DONE; */
    398   1.1  perseant 
    399   1.1  perseant 	*sp->cbpp++ = bp;
    400   1.1  perseant 	for (j = 0; j < blksinblk; j++)
    401   1.1  perseant 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    402   1.1  perseant 
    403  1.22  dholland 	sp->sum_bytes_left -= sizeof(ulfs_daddr_t) * blksinblk;
    404   1.1  perseant 	sp->seg_bytes_left -= bp->b_bcount;
    405   1.1  perseant 	return 0;
    406   1.1  perseant }
    407   1.1  perseant 
    408   1.1  perseant int
    409   1.1  perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    410   1.1  perseant {
    411   1.1  perseant 	struct ubuf *bp, *nbp;
    412   1.1  perseant 	int count = 0;
    413   1.1  perseant 
    414   1.1  perseant 	sp->vp = vp;
    415   1.1  perseant loop:
    416   1.1  perseant 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    417   1.1  perseant 		nbp = LIST_NEXT(bp, b_vnbufs);
    418   1.1  perseant 
    419   1.1  perseant 		assert(bp->b_flags & B_DELWRI);
    420   1.1  perseant 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    421   1.1  perseant 			continue;
    422   1.1  perseant 		}
    423   1.1  perseant 		if (lfs_gatherblock(sp, bp)) {
    424   1.1  perseant 			goto loop;
    425   1.1  perseant 		}
    426   1.1  perseant 		count++;
    427   1.1  perseant 	}
    428   1.1  perseant 
    429   1.1  perseant 	lfs_updatemeta(sp);
    430   1.1  perseant 	sp->vp = NULL;
    431   1.1  perseant 	return count;
    432   1.1  perseant }
    433   1.1  perseant 
    434   1.1  perseant 
    435   1.1  perseant /*
    436   1.1  perseant  * Change the given block's address to ndaddr, finding its previous
    437  1.22  dholland  * location using ulfs_bmaparray().
    438   1.1  perseant  *
    439   1.1  perseant  * Account for this change in the segment table.
    440   1.1  perseant  */
    441   1.1  perseant void
    442   1.1  perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    443  1.22  dholland     ulfs_daddr_t ndaddr, int size)
    444   1.1  perseant {
    445   1.1  perseant 	SEGUSE *sup;
    446   1.1  perseant 	struct ubuf *bp;
    447  1.22  dholland 	struct indir a[ULFS_NIADDR + 2], *ap;
    448   1.1  perseant 	struct inode *ip;
    449   1.1  perseant 	struct uvnode *vp;
    450   1.1  perseant 	daddr_t daddr, ooff;
    451   1.1  perseant 	int num, error;
    452  1.20   mlelstv 	int osize;
    453  1.20   mlelstv 	int frags, ofrags;
    454   1.1  perseant 
    455   1.1  perseant 	vp = sp->vp;
    456   1.1  perseant 	ip = VTOI(vp);
    457   1.1  perseant 
    458  1.22  dholland 	error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    459   1.1  perseant 	if (error)
    460  1.30  christos 		errx(EXIT_FAILURE, "%s: ulfs_bmaparray returned %d looking up lbn %"
    461  1.30  christos 		    PRId64 "", __func__, error, lbn);
    462   1.1  perseant 	if (daddr > 0)
    463  1.26  christos 		daddr = LFS_DBTOFSB(fs, daddr);
    464   1.1  perseant 
    465  1.26  christos 	frags = lfs_numfrags(fs, size);
    466   1.1  perseant 	switch (num) {
    467   1.1  perseant 	case 0:
    468   1.3      fvdl 		ooff = ip->i_ffs1_db[lbn];
    469   1.1  perseant 		if (ooff == UNWRITTEN)
    470  1.20   mlelstv 			ip->i_ffs1_blocks += frags;
    471   1.1  perseant 		else {
    472   1.1  perseant 			/* possible fragment truncation or extension */
    473  1.26  christos 			ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
    474  1.20   mlelstv 			ip->i_ffs1_blocks += (frags - ofrags);
    475   1.1  perseant 		}
    476   1.3      fvdl 		ip->i_ffs1_db[lbn] = ndaddr;
    477   1.1  perseant 		break;
    478   1.1  perseant 	case 1:
    479   1.3      fvdl 		ooff = ip->i_ffs1_ib[a[0].in_off];
    480   1.1  perseant 		if (ooff == UNWRITTEN)
    481  1.20   mlelstv 			ip->i_ffs1_blocks += frags;
    482   1.3      fvdl 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    483   1.1  perseant 		break;
    484   1.1  perseant 	default:
    485   1.1  perseant 		ap = &a[num - 1];
    486  1.32  dholland 		if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 0, &bp))
    487  1.30  christos 			errx(EXIT_FAILURE, "%s: bread bno %" PRId64, __func__,
    488   1.1  perseant 			    ap->in_lbn);
    489   1.1  perseant 
    490  1.22  dholland 		ooff = ((ulfs_daddr_t *) bp->b_data)[ap->in_off];
    491   1.1  perseant 		if (ooff == UNWRITTEN)
    492  1.20   mlelstv 			ip->i_ffs1_blocks += frags;
    493  1.22  dholland 		((ulfs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    494   1.1  perseant 		(void) VOP_BWRITE(bp);
    495   1.1  perseant 	}
    496   1.1  perseant 
    497   1.1  perseant 	/*
    498   1.1  perseant 	 * Update segment usage information, based on old size
    499   1.1  perseant 	 * and location.
    500   1.1  perseant 	 */
    501   1.1  perseant 	if (daddr > 0) {
    502  1.26  christos 		u_int32_t oldsn = lfs_dtosn(fs, daddr);
    503  1.22  dholland 		if (lbn >= 0 && lbn < ULFS_NDADDR)
    504   1.1  perseant 			osize = ip->i_lfs_fragsize[lbn];
    505   1.1  perseant 		else
    506  1.32  dholland 			osize = lfs_sb_getbsize(fs);
    507   1.1  perseant 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    508   1.1  perseant 		sup->su_nbytes -= osize;
    509   1.1  perseant 		if (!(bp->b_flags & B_GATHERED))
    510   1.1  perseant 			fs->lfs_flags |= LFS_IFDIRTY;
    511   1.1  perseant 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    512   1.1  perseant 	}
    513   1.1  perseant 	/*
    514   1.1  perseant 	 * Now that this block has a new address, and its old
    515   1.1  perseant 	 * segment no longer owns it, we can forget about its
    516   1.1  perseant 	 * old size.
    517   1.1  perseant 	 */
    518  1.22  dholland 	if (lbn >= 0 && lbn < ULFS_NDADDR)
    519   1.1  perseant 		ip->i_lfs_fragsize[lbn] = size;
    520   1.1  perseant }
    521   1.1  perseant 
    522   1.1  perseant /*
    523   1.1  perseant  * Update the metadata that points to the blocks listed in the FINFO
    524   1.1  perseant  * array.
    525   1.1  perseant  */
    526   1.1  perseant void
    527   1.1  perseant lfs_updatemeta(struct segment * sp)
    528   1.1  perseant {
    529   1.1  perseant 	struct ubuf *sbp;
    530   1.1  perseant 	struct lfs *fs;
    531   1.1  perseant 	struct uvnode *vp;
    532   1.1  perseant 	daddr_t lbn;
    533   1.1  perseant 	int i, nblocks, num;
    534  1.20   mlelstv 	int frags;
    535   1.1  perseant 	int bytesleft, size;
    536   1.1  perseant 
    537   1.1  perseant 	vp = sp->vp;
    538   1.1  perseant 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    539   1.1  perseant 
    540   1.1  perseant 	if (vp == NULL || nblocks == 0)
    541   1.1  perseant 		return;
    542   1.1  perseant 
    543   1.1  perseant 	/*
    544   1.1  perseant 	 * This count may be high due to oversize blocks from lfs_gop_write.
    545   1.1  perseant 	 * Correct for this. (XXX we should be able to keep track of these.)
    546   1.1  perseant 	 */
    547   1.1  perseant 	fs = sp->fs;
    548   1.1  perseant 	for (i = 0; i < nblocks; i++) {
    549   1.1  perseant 		if (sp->start_bpp[i] == NULL) {
    550   1.1  perseant 			printf("nblocks = %d, not %d\n", i, nblocks);
    551   1.1  perseant 			nblocks = i;
    552   1.1  perseant 			break;
    553   1.1  perseant 		}
    554  1.32  dholland 		num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
    555   1.1  perseant 		nblocks -= num - 1;
    556   1.1  perseant 	}
    557   1.1  perseant 
    558   1.1  perseant 	/*
    559   1.1  perseant 	 * Sort the blocks.
    560   1.1  perseant 	 */
    561  1.32  dholland 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
    562   1.1  perseant 
    563   1.1  perseant 	/*
    564   1.1  perseant 	 * Record the length of the last block in case it's a fragment.
    565   1.1  perseant 	 * If there are indirect blocks present, they sort last.  An
    566   1.1  perseant 	 * indirect block will be lfs_bsize and its presence indicates
    567   1.1  perseant 	 * that you cannot have fragments.
    568   1.1  perseant 	 */
    569   1.1  perseant 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    570  1.33  dholland 	    lfs_sb_getbmask(fs)) + 1;
    571   1.1  perseant 
    572   1.1  perseant 	/*
    573   1.1  perseant 	 * Assign disk addresses, and update references to the logical
    574   1.1  perseant 	 * block and the segment usage information.
    575   1.1  perseant 	 */
    576   1.1  perseant 	for (i = nblocks; i--; ++sp->start_bpp) {
    577   1.1  perseant 		sbp = *sp->start_bpp;
    578   1.1  perseant 		lbn = *sp->start_lbp;
    579   1.1  perseant 
    580  1.32  dholland 		sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
    581   1.1  perseant 
    582   1.1  perseant 		/*
    583   1.1  perseant 		 * If we write a frag in the wrong place, the cleaner won't
    584   1.1  perseant 		 * be able to correctly identify its size later, and the
    585   1.1  perseant 		 * segment will be uncleanable.	 (Even worse, it will assume
    586   1.1  perseant 		 * that the indirect block that actually ends the list
    587   1.1  perseant 		 * is of a smaller size!)
    588   1.1  perseant 		 */
    589  1.33  dholland 		if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
    590  1.30  christos 			errx(EXIT_FAILURE, "%s: fragment is not last block", __func__);
    591   1.1  perseant 
    592   1.1  perseant 		/*
    593   1.1  perseant 		 * For each subblock in this possibly oversized block,
    594   1.1  perseant 		 * update its address on disk.
    595   1.1  perseant 		 */
    596   1.1  perseant 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    597  1.32  dholland 		    bytesleft -= lfs_sb_getbsize(fs)) {
    598  1.32  dholland 			size = MIN(bytesleft, lfs_sb_getbsize(fs));
    599  1.26  christos 			frags = lfs_numfrags(fs, size);
    600   1.1  perseant 			lbn = *sp->start_lbp++;
    601  1.32  dholland 			lfs_update_single(fs, sp, lbn, lfs_sb_getoffset(fs), size);
    602  1.32  dholland 			lfs_sb_addoffset(fs, frags);
    603   1.1  perseant 		}
    604   1.1  perseant 
    605   1.1  perseant 	}
    606   1.1  perseant }
    607   1.1  perseant 
    608   1.1  perseant /*
    609   1.1  perseant  * Start a new segment.
    610   1.1  perseant  */
    611   1.1  perseant int
    612   1.1  perseant lfs_initseg(struct lfs * fs)
    613   1.1  perseant {
    614   1.1  perseant 	struct segment *sp;
    615   1.1  perseant 	SEGUSE *sup;
    616   1.1  perseant 	SEGSUM *ssp;
    617   1.1  perseant 	struct ubuf *bp, *sbp;
    618   1.1  perseant 	int repeat;
    619   1.1  perseant 
    620   1.1  perseant 	sp = fs->lfs_sp;
    621   1.1  perseant 
    622   1.1  perseant 	repeat = 0;
    623   1.1  perseant 
    624   1.1  perseant 	/* Advance to the next segment. */
    625   1.1  perseant 	if (!LFS_PARTIAL_FITS(fs)) {
    626   1.1  perseant 		/* lfs_avail eats the remaining space */
    627  1.32  dholland 		lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
    628  1.32  dholland 		    lfs_sb_getcurseg(fs)));
    629   1.1  perseant 		lfs_newseg(fs);
    630   1.1  perseant 		repeat = 1;
    631  1.32  dholland 		lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
    632   1.1  perseant 
    633  1.32  dholland 		sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
    634  1.32  dholland 		sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
    635   1.1  perseant 
    636   1.1  perseant 		/*
    637   1.1  perseant 		 * If the segment contains a superblock, update the offset
    638   1.1  perseant 		 * and summary address to skip over it.
    639   1.1  perseant 		 */
    640   1.1  perseant 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    641   1.1  perseant 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    642  1.32  dholland 			lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
    643   1.1  perseant 			sp->seg_bytes_left -= LFS_SBPAD;
    644   1.1  perseant 		}
    645  1.16        ad 		brelse(bp, 0);
    646   1.1  perseant 		/* Segment zero could also contain the labelpad */
    647  1.35  dholland 		if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
    648  1.33  dholland 		    lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
    649  1.33  dholland 			lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
    650  1.33  dholland 			sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
    651   1.1  perseant 		}
    652   1.1  perseant 	} else {
    653  1.32  dholland 		sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
    654  1.32  dholland 		sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
    655  1.32  dholland 		    (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
    656   1.1  perseant 	}
    657  1.32  dholland 	lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
    658   1.1  perseant 
    659   1.1  perseant 	sp->fs = fs;
    660   1.1  perseant 	sp->ibp = NULL;
    661   1.1  perseant 	sp->idp = NULL;
    662   1.1  perseant 	sp->ninodes = 0;
    663   1.1  perseant 	sp->ndupino = 0;
    664   1.1  perseant 
    665   1.1  perseant 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    666   1.1  perseant 	sp->cbpp = sp->bpp;
    667   1.8  perseant 	sbp = *sp->cbpp = getblk(fs->lfs_devvp,
    668  1.32  dholland 	    LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs));
    669   1.1  perseant 	sp->segsum = sbp->b_data;
    670  1.32  dholland 	memset(sp->segsum, 0, lfs_sb_getsumsize(fs));
    671   1.1  perseant 	sp->start_bpp = ++sp->cbpp;
    672  1.32  dholland 	lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
    673   1.1  perseant 
    674   1.1  perseant 	/* Set point to SEGSUM, initialize it. */
    675   1.1  perseant 	ssp = sp->segsum;
    676  1.39  dholland 	lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
    677  1.39  dholland 	lfs_ss_setnfinfo(fs, ssp, 0);
    678  1.39  dholland 	lfs_ss_setninos(fs, ssp, 0);
    679  1.39  dholland 	lfs_ss_setmagic(fs, ssp, SS_MAGIC);
    680   1.1  perseant 
    681   1.1  perseant 	/* Set pointer to first FINFO, initialize it. */
    682  1.39  dholland 	sp->fip = SEGSUM_FINFOBASE(fs, ssp);
    683   1.1  perseant 	sp->fip->fi_nblocks = 0;
    684   1.1  perseant 	sp->start_lbp = &sp->fip->fi_blocks[0];
    685   1.1  perseant 	sp->fip->fi_lastlength = 0;
    686   1.1  perseant 
    687  1.32  dholland 	sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
    688  1.32  dholland 	sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
    689   1.1  perseant 
    690   1.1  perseant 	LFS_LOCK_BUF(sbp);
    691  1.16        ad 	brelse(sbp, 0);
    692   1.1  perseant 	return repeat;
    693   1.1  perseant }
    694   1.1  perseant 
    695   1.1  perseant /*
    696   1.1  perseant  * Return the next segment to write.
    697   1.1  perseant  */
    698   1.1  perseant void
    699   1.1  perseant lfs_newseg(struct lfs * fs)
    700   1.1  perseant {
    701   1.1  perseant 	CLEANERINFO *cip;
    702   1.1  perseant 	SEGUSE *sup;
    703   1.1  perseant 	struct ubuf *bp;
    704   1.1  perseant 	int curseg, isdirty, sn;
    705   1.1  perseant 
    706  1.32  dholland 	LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
    707   1.1  perseant 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    708   1.1  perseant 	sup->su_nbytes = 0;
    709   1.1  perseant 	sup->su_nsums = 0;
    710   1.1  perseant 	sup->su_ninos = 0;
    711  1.32  dholland 	LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
    712   1.1  perseant 
    713   1.1  perseant 	LFS_CLEANERINFO(cip, fs, bp);
    714  1.37  dholland 	lfs_ci_shiftcleantodirty(fs, cip, 1);
    715  1.37  dholland 	lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
    716   1.1  perseant 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    717   1.1  perseant 
    718  1.32  dholland 	lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
    719  1.32  dholland 	lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
    720  1.32  dholland 	for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
    721  1.33  dholland 		sn = (sn + 1) % lfs_sb_getnseg(fs);
    722   1.1  perseant 		if (sn == curseg)
    723  1.30  christos 			errx(EXIT_FAILURE, "%s: no clean segments", __func__);
    724   1.1  perseant 		LFS_SEGENTRY(sup, fs, sn, bp);
    725   1.1  perseant 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    726  1.16        ad 		brelse(bp, 0);
    727   1.1  perseant 
    728   1.1  perseant 		if (!isdirty)
    729   1.1  perseant 			break;
    730   1.1  perseant 	}
    731   1.1  perseant 
    732   1.1  perseant 	++fs->lfs_nactive;
    733  1.32  dholland 	lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
    734   1.1  perseant }
    735   1.1  perseant 
    736   1.1  perseant 
    737   1.1  perseant int
    738   1.1  perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
    739   1.1  perseant {
    740   1.1  perseant 	struct ubuf **bpp, *bp;
    741   1.1  perseant 	SEGUSE *sup;
    742   1.1  perseant 	SEGSUM *ssp;
    743   1.1  perseant 	char *datap, *dp;
    744   1.1  perseant 	int i;
    745   1.1  perseant 	int do_again, nblocks, byteoffset;
    746   1.1  perseant 	size_t el_size;
    747   1.1  perseant 	u_short ninos;
    748  1.39  dholland 	size_t sumstart;
    749   1.1  perseant 	struct uvnode *devvp;
    750   1.1  perseant 
    751   1.1  perseant 	/*
    752   1.1  perseant 	 * If there are no buffers other than the segment summary to write
    753   1.1  perseant 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    754   1.1  perseant 	 * even if there aren't any buffers, you need to write the superblock.
    755   1.1  perseant 	 */
    756  1.13  perseant 	nblocks = sp->cbpp - sp->bpp;
    757  1.13  perseant #if 0
    758  1.13  perseant 	printf("write %d blocks at 0x%x\n",
    759  1.26  christos 		nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
    760  1.13  perseant #endif
    761  1.13  perseant 	if (nblocks == 1)
    762   1.1  perseant 		return 0;
    763   1.1  perseant 
    764   1.8  perseant 	devvp = fs->lfs_devvp;
    765   1.1  perseant 
    766   1.1  perseant 	/* Update the segment usage information. */
    767   1.1  perseant 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    768  1.13  perseant 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    769   1.1  perseant 
    770   1.1  perseant 	/* Loop through all blocks, except the segment summary. */
    771   1.1  perseant 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    772   1.1  perseant 		if ((*bpp)->b_vp != devvp) {
    773   1.1  perseant 			sup->su_nbytes += (*bpp)->b_bcount;
    774   1.1  perseant 		}
    775  1.26  christos 		assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
    776   1.1  perseant 	}
    777   1.1  perseant 
    778   1.1  perseant 	ssp = (SEGSUM *) sp->segsum;
    779  1.39  dholland 	lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RFW);
    780   1.1  perseant 
    781  1.39  dholland 	ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
    782  1.39  dholland 	sup->su_nbytes += lfs_ss_getninos(fs, ssp) * LFS_DINODE1_SIZE;
    783   1.1  perseant 
    784  1.35  dholland 	if (lfs_sb_getversion(fs) == 1)
    785   1.1  perseant 		sup->su_olastmod = write_time;
    786   1.1  perseant 	else
    787   1.1  perseant 		sup->su_lastmod = write_time;
    788   1.1  perseant 	sup->su_ninos += ninos;
    789   1.1  perseant 	++sup->su_nsums;
    790  1.33  dholland 	lfs_sb_adddmeta(fs, (lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + lfs_btofsb(fs, ninos *
    791  1.33  dholland 		lfs_sb_getibsize(fs))));
    792  1.32  dholland 	lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
    793   1.1  perseant 
    794   1.1  perseant 	do_again = !(bp->b_flags & B_GATHERED);
    795   1.1  perseant 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    796   1.1  perseant 
    797   1.1  perseant 	/*
    798   1.1  perseant 	 * Compute checksum across data and then across summary; the first
    799   1.1  perseant 	 * block (the summary block) is skipped.  Set the create time here
    800   1.1  perseant 	 * so that it's guaranteed to be later than the inode mod times.
    801   1.1  perseant 	 */
    802  1.35  dholland 	if (lfs_sb_getversion(fs) == 1)
    803   1.1  perseant 		el_size = sizeof(u_long);
    804   1.1  perseant 	else
    805   1.1  perseant 		el_size = sizeof(u_int32_t);
    806  1.15  christos 	datap = dp = emalloc(nblocks * el_size);
    807   1.1  perseant 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    808   1.1  perseant 		++bpp;
    809   1.1  perseant 		/* Loop through gop_write cluster blocks */
    810   1.1  perseant 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    811  1.32  dholland 		    byteoffset += lfs_sb_getbsize(fs)) {
    812   1.1  perseant 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    813   1.1  perseant 			dp += el_size;
    814   1.1  perseant 		}
    815   1.2  perseant 		bremfree(*bpp);
    816   1.1  perseant 		(*bpp)->b_flags |= B_BUSY;
    817   1.1  perseant 	}
    818  1.35  dholland 	if (lfs_sb_getversion(fs) == 1)
    819  1.39  dholland 		lfs_ss_setocreate(fs, ssp, write_time);
    820   1.1  perseant 	else {
    821  1.39  dholland 		lfs_ss_setcreate(fs, ssp, write_time);
    822  1.32  dholland 		lfs_sb_addserial(fs, 1);
    823  1.39  dholland 		lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
    824  1.39  dholland 		lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
    825   1.1  perseant 	}
    826   1.1  perseant 	/* Set the summary block busy too */
    827   1.1  perseant 	bremfree(*(sp->bpp));
    828   1.1  perseant 	(*(sp->bpp))->b_flags |= B_BUSY;
    829   1.1  perseant 
    830  1.39  dholland 	lfs_ss_setdatasum(fs, ssp, cksum(datap, (nblocks - 1) * el_size));
    831  1.39  dholland 	sumstart = lfs_ss_getsumstart(fs);
    832  1.39  dholland 	lfs_ss_setsumsum(fs, ssp,
    833  1.39  dholland 	    cksum((char *)ssp + sumstart, lfs_sb_getsumsize(fs) - sumstart));
    834   1.1  perseant 	free(datap);
    835   1.1  perseant 	datap = dp = NULL;
    836  1.32  dholland 	lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
    837  1.32  dholland 	    lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
    838   1.1  perseant 
    839   1.1  perseant 	if (devvp == NULL)
    840  1.30  christos 		errx(EXIT_FAILURE, "devvp is NULL");
    841   1.1  perseant 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    842   1.1  perseant 		bp = *bpp;
    843   1.1  perseant #if 0
    844   1.2  perseant 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    845   1.1  perseant 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    846   1.1  perseant 		printf("  vp = %p\n", bp->b_vp);
    847   1.8  perseant 		if (bp->b_vp != fs->lfs_devvp)
    848   1.1  perseant 			printf("  ino = %d lbn = %" PRId64 "\n",
    849   1.1  perseant 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    850   1.1  perseant #endif
    851   1.8  perseant 		if (bp->b_vp == fs->lfs_devvp)
    852   1.1  perseant 			written_dev += bp->b_bcount;
    853   1.1  perseant 		else {
    854   1.1  perseant 			if (bp->b_lblkno >= 0)
    855   1.1  perseant 				written_data += bp->b_bcount;
    856   1.1  perseant 			else
    857   1.1  perseant 				written_indir += bp->b_bcount;
    858   1.1  perseant 		}
    859   1.2  perseant 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    860   1.2  perseant 				 B_LOCKED);
    861   1.1  perseant 		bwrite(bp);
    862   1.1  perseant 		written_bytes += bp->b_bcount;
    863   1.1  perseant 	}
    864   1.1  perseant 	written_inodes += ninos;
    865   1.1  perseant 
    866   1.1  perseant 	return (lfs_initseg(fs) || do_again);
    867   1.1  perseant }
    868   1.1  perseant 
    869   1.1  perseant /*
    870   1.1  perseant  * Our own copy of shellsort.  XXX use qsort or heapsort.
    871   1.1  perseant  */
    872   1.1  perseant void
    873  1.22  dholland lfs_shellsort(struct ubuf ** bp_array, ulfs_daddr_t * lb_array, int nmemb, int size)
    874   1.1  perseant {
    875   1.1  perseant 	static int __rsshell_increments[] = {4, 1, 0};
    876   1.1  perseant 	int incr, *incrp, t1, t2;
    877   1.1  perseant 	struct ubuf *bp_temp;
    878   1.1  perseant 
    879   1.1  perseant 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    880   1.1  perseant 		for (t1 = incr; t1 < nmemb; ++t1)
    881   1.1  perseant 			for (t2 = t1 - incr; t2 >= 0;)
    882   1.1  perseant 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    883   1.1  perseant 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    884   1.1  perseant 					bp_temp = bp_array[t2];
    885   1.1  perseant 					bp_array[t2] = bp_array[t2 + incr];
    886   1.1  perseant 					bp_array[t2 + incr] = bp_temp;
    887   1.1  perseant 					t2 -= incr;
    888   1.1  perseant 				} else
    889   1.1  perseant 					break;
    890   1.1  perseant 
    891   1.1  perseant 	/* Reform the list of logical blocks */
    892   1.1  perseant 	incr = 0;
    893   1.1  perseant 	for (t1 = 0; t1 < nmemb; t1++) {
    894   1.1  perseant 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    895   1.1  perseant 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    896   1.1  perseant 		}
    897   1.1  perseant 	}
    898   1.1  perseant }
    899   1.1  perseant 
    900   1.1  perseant 
    901   1.1  perseant /*
    902   1.1  perseant  * lfs_seglock --
    903   1.1  perseant  *	Single thread the segment writer.
    904   1.1  perseant  */
    905   1.1  perseant int
    906   1.1  perseant lfs_seglock(struct lfs * fs, unsigned long flags)
    907   1.1  perseant {
    908   1.1  perseant 	struct segment *sp;
    909  1.32  dholland 	size_t allocsize;
    910   1.1  perseant 
    911   1.1  perseant 	if (fs->lfs_seglock) {
    912   1.1  perseant 		++fs->lfs_seglock;
    913   1.1  perseant 		fs->lfs_sp->seg_flags |= flags;
    914   1.1  perseant 		return 0;
    915   1.1  perseant 	}
    916   1.1  perseant 	fs->lfs_seglock = 1;
    917   1.1  perseant 
    918  1.15  christos 	sp = fs->lfs_sp = emalloc(sizeof(*sp));
    919  1.32  dholland 	allocsize = lfs_sb_getssize(fs) * sizeof(struct ubuf *);
    920  1.32  dholland 	sp->bpp = emalloc(allocsize);
    921   1.6      heas 	if (!sp->bpp)
    922  1.32  dholland 		err(!preen, "Could not allocate %zu bytes", allocsize);
    923   1.1  perseant 	sp->seg_flags = flags;
    924   1.1  perseant 	sp->vp = NULL;
    925   1.1  perseant 	sp->seg_iocount = 0;
    926   1.1  perseant 	(void) lfs_initseg(fs);
    927   1.1  perseant 
    928   1.1  perseant 	return 0;
    929   1.1  perseant }
    930   1.1  perseant 
    931   1.1  perseant /*
    932   1.1  perseant  * lfs_segunlock --
    933   1.1  perseant  *	Single thread the segment writer.
    934   1.1  perseant  */
    935   1.1  perseant void
    936   1.1  perseant lfs_segunlock(struct lfs * fs)
    937   1.1  perseant {
    938   1.1  perseant 	struct segment *sp;
    939   1.1  perseant 	struct ubuf *bp;
    940   1.1  perseant 
    941   1.1  perseant 	sp = fs->lfs_sp;
    942   1.1  perseant 
    943   1.1  perseant 	if (fs->lfs_seglock == 1) {
    944   1.1  perseant 		if (sp->bpp != sp->cbpp) {
    945   1.1  perseant 			/* Free allocated segment summary */
    946  1.32  dholland 			lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
    947   1.1  perseant 			bp = *sp->bpp;
    948   1.1  perseant 			bremfree(bp);
    949   1.1  perseant 			bp->b_flags |= B_DONE | B_INVAL;
    950   1.1  perseant 			bp->b_flags &= ~B_DELWRI;
    951   1.1  perseant 			reassignbuf(bp, bp->b_vp);
    952   1.1  perseant 			bp->b_flags |= B_BUSY; /* XXX */
    953  1.16        ad 			brelse(bp, 0);
    954   1.1  perseant 		} else
    955   1.1  perseant 			printf("unlock to 0 with no summary");
    956   1.1  perseant 
    957   1.1  perseant 		free(sp->bpp);
    958   1.1  perseant 		sp->bpp = NULL;
    959   1.1  perseant 		free(sp);
    960   1.1  perseant 		fs->lfs_sp = NULL;
    961   1.1  perseant 
    962   1.1  perseant 		fs->lfs_nactive = 0;
    963   1.1  perseant 
    964   1.1  perseant 		/* Since we *know* everything's on disk, write both sbs */
    965  1.33  dholland 		lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
    966  1.33  dholland 		lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
    967   1.1  perseant 
    968   1.1  perseant 		--fs->lfs_seglock;
    969   1.1  perseant 		fs->lfs_lockpid = 0;
    970   1.1  perseant 	} else if (fs->lfs_seglock == 0) {
    971  1.30  christos 		errx(EXIT_FAILURE, "Seglock not held");
    972   1.1  perseant 	} else {
    973   1.1  perseant 		--fs->lfs_seglock;
    974   1.1  perseant 	}
    975   1.1  perseant }
    976   1.1  perseant 
    977   1.1  perseant int
    978   1.1  perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    979   1.1  perseant {
    980   1.1  perseant 	struct inode *ip;
    981   1.1  perseant 	struct uvnode *vp;
    982   1.1  perseant 	int inodes_written = 0;
    983   1.1  perseant 
    984   1.1  perseant 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    985   1.1  perseant 		if (vp->v_bmap_op != lfs_vop_bmap)
    986   1.1  perseant 			continue;
    987   1.1  perseant 
    988   1.1  perseant 		ip = VTOI(vp);
    989   1.1  perseant 
    990  1.17        ad 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
    991  1.17        ad 		    (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
    992   1.1  perseant 			continue;
    993   1.1  perseant 		}
    994   1.1  perseant 		/*
    995   1.1  perseant 		 * Write the inode/file if dirty and it's not the IFILE.
    996   1.1  perseant 		 */
    997   1.1  perseant 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    998   1.1  perseant 			if (ip->i_number != LFS_IFILE_INUM)
    999   1.1  perseant 				lfs_writefile(fs, sp, vp);
   1000   1.1  perseant 			(void) lfs_writeinode(fs, sp, ip);
   1001   1.1  perseant 			inodes_written++;
   1002   1.1  perseant 		}
   1003   1.1  perseant 	}
   1004   1.1  perseant 	return inodes_written;
   1005   1.1  perseant }
   1006   1.1  perseant 
   1007   1.1  perseant void
   1008  1.22  dholland lfs_writesuper(struct lfs *fs, ulfs_daddr_t daddr)
   1009   1.1  perseant {
   1010   1.1  perseant 	struct ubuf *bp;
   1011   1.1  perseant 
   1012   1.1  perseant 	/* Set timestamp of this version of the superblock */
   1013  1.35  dholland 	if (lfs_sb_getversion(fs) == 1)
   1014  1.32  dholland 		lfs_sb_setotstamp(fs, write_time);
   1015  1.32  dholland 	lfs_sb_settstamp(fs, write_time);
   1016   1.1  perseant 
   1017  1.36  dholland 	__CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
   1018  1.36  dholland 
   1019   1.1  perseant 	/* Checksum the superblock and copy it into a buffer. */
   1020  1.36  dholland 	lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
   1021   1.1  perseant 	assert(daddr > 0);
   1022  1.26  christos 	bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
   1023  1.36  dholland 	memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
   1024   1.1  perseant 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1025   1.1  perseant 	    LFS_SBPAD - sizeof(struct dlfs));
   1026   1.1  perseant 
   1027   1.1  perseant 	bwrite(bp);
   1028   1.1  perseant }
   1029