segwrite.c revision 1.39 1 1.39 dholland /* $NetBSD: segwrite.c,v 1.39 2015/08/12 18:26:27 dholland Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant *
34 1.1 perseant * Redistribution and use in source and binary forms, with or without
35 1.1 perseant * modification, are permitted provided that the following conditions
36 1.1 perseant * are met:
37 1.1 perseant * 1. Redistributions of source code must retain the above copyright
38 1.1 perseant * notice, this list of conditions and the following disclaimer.
39 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
40 1.1 perseant * notice, this list of conditions and the following disclaimer in the
41 1.1 perseant * documentation and/or other materials provided with the distribution.
42 1.5 agc * 3. Neither the name of the University nor the names of its contributors
43 1.1 perseant * may be used to endorse or promote products derived from this software
44 1.1 perseant * without specific prior written permission.
45 1.1 perseant *
46 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 perseant * SUCH DAMAGE.
57 1.1 perseant *
58 1.1 perseant * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 1.1 perseant */
60 1.1 perseant
61 1.1 perseant /*
62 1.1 perseant * Partial segment writer, taken from the kernel and adapted for userland.
63 1.1 perseant */
64 1.1 perseant #include <sys/types.h>
65 1.1 perseant #include <sys/param.h>
66 1.1 perseant #include <sys/time.h>
67 1.1 perseant #include <sys/buf.h>
68 1.1 perseant #include <sys/mount.h>
69 1.1 perseant
70 1.1 perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
71 1.23 dholland #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
72 1.1 perseant #define vnode uvnode
73 1.1 perseant #define buf ubuf
74 1.1 perseant #define panic call_panic
75 1.1 perseant
76 1.1 perseant #include <ufs/lfs/lfs.h>
77 1.34 dholland #include <ufs/lfs/lfs_accessors.h>
78 1.25 dholland #include <ufs/lfs/lfs_inode.h>
79 1.1 perseant
80 1.1 perseant #include <assert.h>
81 1.1 perseant #include <stdio.h>
82 1.1 perseant #include <stdlib.h>
83 1.1 perseant #include <string.h>
84 1.1 perseant #include <err.h>
85 1.1 perseant #include <errno.h>
86 1.15 christos #include <util.h>
87 1.1 perseant
88 1.1 perseant #include "bufcache.h"
89 1.1 perseant #include "vnode.h"
90 1.10 christos #include "lfs_user.h"
91 1.1 perseant #include "segwrite.h"
92 1.1 perseant
93 1.1 perseant /* Compatibility definitions */
94 1.1 perseant extern off_t locked_queue_bytes;
95 1.1 perseant int locked_queue_count;
96 1.1 perseant off_t written_bytes = 0;
97 1.1 perseant off_t written_data = 0;
98 1.1 perseant off_t written_indir = 0;
99 1.1 perseant off_t written_dev = 0;
100 1.1 perseant int written_inodes = 0;
101 1.1 perseant
102 1.1 perseant /* Global variables */
103 1.1 perseant time_t write_time;
104 1.1 perseant
105 1.1 perseant extern u_int32_t cksum(void *, size_t);
106 1.36 dholland extern u_int32_t lfs_sb_cksum(struct lfs *);
107 1.7 perseant extern int preen;
108 1.1 perseant
109 1.1 perseant /*
110 1.1 perseant * Logical block number match routines used when traversing the dirty block
111 1.1 perseant * chain.
112 1.1 perseant */
113 1.1 perseant int
114 1.1 perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
115 1.1 perseant {
116 1.1 perseant return (bp->b_lblkno >= 0);
117 1.1 perseant }
118 1.1 perseant
119 1.1 perseant int
120 1.1 perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
121 1.1 perseant {
122 1.1 perseant daddr_t lbn;
123 1.1 perseant
124 1.1 perseant lbn = bp->b_lblkno;
125 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
126 1.1 perseant }
127 1.1 perseant
128 1.1 perseant int
129 1.1 perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
130 1.1 perseant {
131 1.1 perseant daddr_t lbn;
132 1.1 perseant
133 1.1 perseant lbn = bp->b_lblkno;
134 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
135 1.1 perseant }
136 1.1 perseant
137 1.1 perseant int
138 1.1 perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
139 1.1 perseant {
140 1.1 perseant daddr_t lbn;
141 1.1 perseant
142 1.1 perseant lbn = bp->b_lblkno;
143 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
144 1.1 perseant }
145 1.1 perseant
146 1.1 perseant /*
147 1.1 perseant * Do a checkpoint.
148 1.1 perseant */
149 1.1 perseant int
150 1.1 perseant lfs_segwrite(struct lfs * fs, int flags)
151 1.1 perseant {
152 1.1 perseant struct inode *ip;
153 1.1 perseant struct segment *sp;
154 1.1 perseant struct uvnode *vp;
155 1.39 dholland SEGSUM *ssp;
156 1.1 perseant int redo;
157 1.1 perseant
158 1.1 perseant lfs_seglock(fs, flags | SEGM_CKP);
159 1.1 perseant sp = fs->lfs_sp;
160 1.1 perseant
161 1.1 perseant lfs_writevnodes(fs, sp, VN_REG);
162 1.1 perseant lfs_writevnodes(fs, sp, VN_DIROP);
163 1.39 dholland ssp = (SEGSUM *)sp->segsum;
164 1.39 dholland lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
165 1.1 perseant
166 1.1 perseant do {
167 1.1 perseant vp = fs->lfs_ivnode;
168 1.1 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
169 1.1 perseant ip = VTOI(vp);
170 1.32 dholland if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || lfs_sb_getidaddr(fs) <= 0)
171 1.1 perseant lfs_writefile(fs, sp, vp);
172 1.1 perseant
173 1.1 perseant redo = lfs_writeinode(fs, sp, ip);
174 1.1 perseant redo += lfs_writeseg(fs, sp);
175 1.1 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
176 1.1 perseant } while (redo);
177 1.1 perseant
178 1.1 perseant lfs_segunlock(fs);
179 1.1 perseant #if 0
180 1.1 perseant printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
181 1.26 christos written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
182 1.1 perseant printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
183 1.26 christos written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
184 1.1 perseant printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
185 1.26 christos written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
186 1.1 perseant printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
187 1.26 christos written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
188 1.1 perseant printf("wrote %d inodes (%" PRId32 " fsb)\n",
189 1.26 christos written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
190 1.1 perseant #endif
191 1.1 perseant return 0;
192 1.1 perseant }
193 1.1 perseant
194 1.1 perseant /*
195 1.1 perseant * Write the dirty blocks associated with a vnode.
196 1.1 perseant */
197 1.1 perseant void
198 1.1 perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
199 1.1 perseant {
200 1.1 perseant struct ubuf *bp;
201 1.1 perseant struct finfo *fip;
202 1.1 perseant struct inode *ip;
203 1.1 perseant IFILE *ifp;
204 1.39 dholland SEGSUM *ssp;
205 1.1 perseant
206 1.1 perseant ip = VTOI(vp);
207 1.1 perseant
208 1.32 dholland if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
209 1.1 perseant sp->sum_bytes_left < sizeof(struct finfo))
210 1.1 perseant (void) lfs_writeseg(fs, sp);
211 1.1 perseant
212 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
213 1.39 dholland ssp = (SEGSUM *)sp->segsum;
214 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
215 1.1 perseant
216 1.39 dholland if (vp->v_uflag & VU_DIROP) {
217 1.39 dholland lfs_ss_setflags(fs, ssp,
218 1.39 dholland lfs_ss_getflags(fs, ssp) | (SS_DIROP | SS_CONT));
219 1.39 dholland }
220 1.1 perseant
221 1.1 perseant fip = sp->fip;
222 1.1 perseant fip->fi_nblocks = 0;
223 1.1 perseant fip->fi_ino = ip->i_number;
224 1.1 perseant LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
225 1.38 dholland fip->fi_version = lfs_if_getversion(fs, ifp);
226 1.16 ad brelse(bp, 0);
227 1.1 perseant
228 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_data);
229 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
230 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
231 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
232 1.1 perseant
233 1.1 perseant fip = sp->fip;
234 1.1 perseant if (fip->fi_nblocks != 0) {
235 1.39 dholland sp->fip = NEXT_FINFO(fs, fip);
236 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
237 1.1 perseant } else {
238 1.1 perseant sp->sum_bytes_left += FINFOSIZE;
239 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
240 1.1 perseant }
241 1.1 perseant }
242 1.1 perseant
243 1.1 perseant int
244 1.1 perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
245 1.1 perseant {
246 1.1 perseant struct ubuf *bp, *ibp;
247 1.22 dholland struct ulfs1_dinode *cdp;
248 1.1 perseant IFILE *ifp;
249 1.1 perseant SEGUSE *sup;
250 1.39 dholland SEGSUM *ssp;
251 1.1 perseant daddr_t daddr;
252 1.1 perseant ino_t ino;
253 1.27 christos int i, ndx, fsb = 0;
254 1.1 perseant int redo_ifile = 0;
255 1.1 perseant struct timespec ts;
256 1.1 perseant int gotblk = 0;
257 1.1 perseant
258 1.1 perseant /* Allocate a new inode block if necessary. */
259 1.1 perseant if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
260 1.1 perseant sp->ibp == NULL) {
261 1.1 perseant /* Allocate a new segment if necessary. */
262 1.33 dholland if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
263 1.22 dholland sp->sum_bytes_left < sizeof(ulfs_daddr_t))
264 1.1 perseant (void) lfs_writeseg(fs, sp);
265 1.1 perseant
266 1.1 perseant /* Get next inode block. */
267 1.32 dholland daddr = lfs_sb_getoffset(fs);
268 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
269 1.1 perseant sp->ibp = *sp->cbpp++ =
270 1.26 christos getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
271 1.33 dholland lfs_sb_getibsize(fs));
272 1.1 perseant sp->ibp->b_flags |= B_GATHERED;
273 1.1 perseant gotblk++;
274 1.1 perseant
275 1.1 perseant /* Zero out inode numbers */
276 1.26 christos for (i = 0; i < LFS_INOPB(fs); ++i)
277 1.22 dholland ((struct ulfs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
278 1.1 perseant
279 1.1 perseant ++sp->start_bpp;
280 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
281 1.1 perseant /* Set remaining space counters. */
282 1.32 dholland sp->seg_bytes_left -= lfs_sb_getibsize(fs);
283 1.22 dholland sp->sum_bytes_left -= sizeof(ulfs_daddr_t);
284 1.32 dholland ndx = lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t) -
285 1.26 christos sp->ninodes / LFS_INOPB(fs) - 1;
286 1.22 dholland ((ulfs_daddr_t *) (sp->segsum))[ndx] = daddr;
287 1.1 perseant }
288 1.1 perseant /* Update the inode times and copy the inode onto the inode page. */
289 1.1 perseant ts.tv_nsec = 0;
290 1.1 perseant ts.tv_sec = write_time;
291 1.1 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
292 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
293 1.1 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
294 1.1 perseant
295 1.1 perseant /*
296 1.1 perseant * If this is the Ifile, and we've already written the Ifile in this
297 1.1 perseant * partial segment, just overwrite it (it's not on disk yet) and
298 1.1 perseant * continue.
299 1.1 perseant *
300 1.1 perseant * XXX we know that the bp that we get the second time around has
301 1.1 perseant * already been gathered.
302 1.1 perseant */
303 1.1 perseant if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
304 1.3 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
305 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
306 1.1 perseant return 0;
307 1.1 perseant }
308 1.1 perseant bp = sp->ibp;
309 1.26 christos cdp = ((struct ulfs1_dinode *) bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
310 1.3 fvdl *cdp = *ip->i_din.ffs1_din;
311 1.1 perseant
312 1.1 perseant /* If all blocks are goig to disk, update the "size on disk" */
313 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
314 1.1 perseant
315 1.1 perseant if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
316 1.22 dholland sp->idp = ((struct ulfs1_dinode *) bp->b_data) +
317 1.26 christos (sp->ninodes % LFS_INOPB(fs));
318 1.1 perseant if (gotblk) {
319 1.1 perseant LFS_LOCK_BUF(bp);
320 1.12 jnemeth assert(!(bp->b_flags & B_INVAL));
321 1.16 ad brelse(bp, 0);
322 1.1 perseant }
323 1.1 perseant /* Increment inode count in segment summary block. */
324 1.39 dholland ssp = (SEGSUM *)sp->segsum;
325 1.39 dholland lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
326 1.1 perseant
327 1.1 perseant /* If this page is full, set flag to allocate a new page. */
328 1.26 christos if (++sp->ninodes % LFS_INOPB(fs) == 0)
329 1.1 perseant sp->ibp = NULL;
330 1.1 perseant
331 1.1 perseant /*
332 1.1 perseant * If updating the ifile, update the super-block. Update the disk
333 1.38 dholland * address for this inode in the ifile.
334 1.1 perseant */
335 1.1 perseant ino = ip->i_number;
336 1.1 perseant if (ino == LFS_IFILE_INUM) {
337 1.32 dholland daddr = lfs_sb_getidaddr(fs);
338 1.32 dholland lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, bp->b_blkno));
339 1.13 perseant sbdirty();
340 1.1 perseant } else {
341 1.1 perseant LFS_IENTRY(ifp, fs, ino, ibp);
342 1.38 dholland daddr = lfs_if_getdaddr(fs, ifp);
343 1.38 dholland lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, bp->b_blkno) + fsb);
344 1.27 christos (void)LFS_BWRITE_LOG(ibp); /* Ifile */
345 1.1 perseant }
346 1.1 perseant
347 1.1 perseant /*
348 1.1 perseant * Account the inode: it no longer belongs to its former segment,
349 1.1 perseant * though it will not belong to the new segment until that segment
350 1.1 perseant * is actually written.
351 1.1 perseant */
352 1.1 perseant if (daddr != LFS_UNUSED_DADDR) {
353 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
354 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
355 1.24 dholland sup->su_nbytes -= LFS_DINODE1_SIZE;
356 1.1 perseant redo_ifile =
357 1.1 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
358 1.1 perseant if (redo_ifile)
359 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
360 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
361 1.1 perseant }
362 1.1 perseant return redo_ifile;
363 1.1 perseant }
364 1.1 perseant
365 1.1 perseant int
366 1.1 perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
367 1.1 perseant {
368 1.1 perseant struct lfs *fs;
369 1.39 dholland SEGSUM *ssp;
370 1.1 perseant int version;
371 1.1 perseant int j, blksinblk;
372 1.1 perseant
373 1.1 perseant /*
374 1.1 perseant * If full, finish this segment. We may be doing I/O, so
375 1.1 perseant * release and reacquire the splbio().
376 1.1 perseant */
377 1.1 perseant fs = sp->fs;
378 1.32 dholland blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
379 1.22 dholland if (sp->sum_bytes_left < sizeof(ulfs_daddr_t) * blksinblk ||
380 1.1 perseant sp->seg_bytes_left < bp->b_bcount) {
381 1.1 perseant lfs_updatemeta(sp);
382 1.1 perseant
383 1.1 perseant version = sp->fip->fi_version;
384 1.1 perseant (void) lfs_writeseg(fs, sp);
385 1.1 perseant
386 1.1 perseant sp->fip->fi_version = version;
387 1.1 perseant sp->fip->fi_ino = VTOI(sp->vp)->i_number;
388 1.1 perseant /* Add the current file to the segment summary. */
389 1.39 dholland ssp = (SEGSUM *)sp->segsum;
390 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
391 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
392 1.1 perseant
393 1.1 perseant return 1;
394 1.1 perseant }
395 1.1 perseant /* Insert into the buffer list, update the FINFO block. */
396 1.1 perseant bp->b_flags |= B_GATHERED;
397 1.1 perseant /* bp->b_flags &= ~B_DONE; */
398 1.1 perseant
399 1.1 perseant *sp->cbpp++ = bp;
400 1.1 perseant for (j = 0; j < blksinblk; j++)
401 1.1 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
402 1.1 perseant
403 1.22 dholland sp->sum_bytes_left -= sizeof(ulfs_daddr_t) * blksinblk;
404 1.1 perseant sp->seg_bytes_left -= bp->b_bcount;
405 1.1 perseant return 0;
406 1.1 perseant }
407 1.1 perseant
408 1.1 perseant int
409 1.1 perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
410 1.1 perseant {
411 1.1 perseant struct ubuf *bp, *nbp;
412 1.1 perseant int count = 0;
413 1.1 perseant
414 1.1 perseant sp->vp = vp;
415 1.1 perseant loop:
416 1.1 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
417 1.1 perseant nbp = LIST_NEXT(bp, b_vnbufs);
418 1.1 perseant
419 1.1 perseant assert(bp->b_flags & B_DELWRI);
420 1.1 perseant if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
421 1.1 perseant continue;
422 1.1 perseant }
423 1.1 perseant if (lfs_gatherblock(sp, bp)) {
424 1.1 perseant goto loop;
425 1.1 perseant }
426 1.1 perseant count++;
427 1.1 perseant }
428 1.1 perseant
429 1.1 perseant lfs_updatemeta(sp);
430 1.1 perseant sp->vp = NULL;
431 1.1 perseant return count;
432 1.1 perseant }
433 1.1 perseant
434 1.1 perseant
435 1.1 perseant /*
436 1.1 perseant * Change the given block's address to ndaddr, finding its previous
437 1.22 dholland * location using ulfs_bmaparray().
438 1.1 perseant *
439 1.1 perseant * Account for this change in the segment table.
440 1.1 perseant */
441 1.1 perseant void
442 1.1 perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
443 1.22 dholland ulfs_daddr_t ndaddr, int size)
444 1.1 perseant {
445 1.1 perseant SEGUSE *sup;
446 1.1 perseant struct ubuf *bp;
447 1.22 dholland struct indir a[ULFS_NIADDR + 2], *ap;
448 1.1 perseant struct inode *ip;
449 1.1 perseant struct uvnode *vp;
450 1.1 perseant daddr_t daddr, ooff;
451 1.1 perseant int num, error;
452 1.20 mlelstv int osize;
453 1.20 mlelstv int frags, ofrags;
454 1.1 perseant
455 1.1 perseant vp = sp->vp;
456 1.1 perseant ip = VTOI(vp);
457 1.1 perseant
458 1.22 dholland error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
459 1.1 perseant if (error)
460 1.30 christos errx(EXIT_FAILURE, "%s: ulfs_bmaparray returned %d looking up lbn %"
461 1.30 christos PRId64 "", __func__, error, lbn);
462 1.1 perseant if (daddr > 0)
463 1.26 christos daddr = LFS_DBTOFSB(fs, daddr);
464 1.1 perseant
465 1.26 christos frags = lfs_numfrags(fs, size);
466 1.1 perseant switch (num) {
467 1.1 perseant case 0:
468 1.3 fvdl ooff = ip->i_ffs1_db[lbn];
469 1.1 perseant if (ooff == UNWRITTEN)
470 1.20 mlelstv ip->i_ffs1_blocks += frags;
471 1.1 perseant else {
472 1.1 perseant /* possible fragment truncation or extension */
473 1.26 christos ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
474 1.20 mlelstv ip->i_ffs1_blocks += (frags - ofrags);
475 1.1 perseant }
476 1.3 fvdl ip->i_ffs1_db[lbn] = ndaddr;
477 1.1 perseant break;
478 1.1 perseant case 1:
479 1.3 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
480 1.1 perseant if (ooff == UNWRITTEN)
481 1.20 mlelstv ip->i_ffs1_blocks += frags;
482 1.3 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
483 1.1 perseant break;
484 1.1 perseant default:
485 1.1 perseant ap = &a[num - 1];
486 1.32 dholland if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 0, &bp))
487 1.30 christos errx(EXIT_FAILURE, "%s: bread bno %" PRId64, __func__,
488 1.1 perseant ap->in_lbn);
489 1.1 perseant
490 1.22 dholland ooff = ((ulfs_daddr_t *) bp->b_data)[ap->in_off];
491 1.1 perseant if (ooff == UNWRITTEN)
492 1.20 mlelstv ip->i_ffs1_blocks += frags;
493 1.22 dholland ((ulfs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
494 1.1 perseant (void) VOP_BWRITE(bp);
495 1.1 perseant }
496 1.1 perseant
497 1.1 perseant /*
498 1.1 perseant * Update segment usage information, based on old size
499 1.1 perseant * and location.
500 1.1 perseant */
501 1.1 perseant if (daddr > 0) {
502 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
503 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
504 1.1 perseant osize = ip->i_lfs_fragsize[lbn];
505 1.1 perseant else
506 1.32 dholland osize = lfs_sb_getbsize(fs);
507 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
508 1.1 perseant sup->su_nbytes -= osize;
509 1.1 perseant if (!(bp->b_flags & B_GATHERED))
510 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
511 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
512 1.1 perseant }
513 1.1 perseant /*
514 1.1 perseant * Now that this block has a new address, and its old
515 1.1 perseant * segment no longer owns it, we can forget about its
516 1.1 perseant * old size.
517 1.1 perseant */
518 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
519 1.1 perseant ip->i_lfs_fragsize[lbn] = size;
520 1.1 perseant }
521 1.1 perseant
522 1.1 perseant /*
523 1.1 perseant * Update the metadata that points to the blocks listed in the FINFO
524 1.1 perseant * array.
525 1.1 perseant */
526 1.1 perseant void
527 1.1 perseant lfs_updatemeta(struct segment * sp)
528 1.1 perseant {
529 1.1 perseant struct ubuf *sbp;
530 1.1 perseant struct lfs *fs;
531 1.1 perseant struct uvnode *vp;
532 1.1 perseant daddr_t lbn;
533 1.1 perseant int i, nblocks, num;
534 1.20 mlelstv int frags;
535 1.1 perseant int bytesleft, size;
536 1.1 perseant
537 1.1 perseant vp = sp->vp;
538 1.1 perseant nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
539 1.1 perseant
540 1.1 perseant if (vp == NULL || nblocks == 0)
541 1.1 perseant return;
542 1.1 perseant
543 1.1 perseant /*
544 1.1 perseant * This count may be high due to oversize blocks from lfs_gop_write.
545 1.1 perseant * Correct for this. (XXX we should be able to keep track of these.)
546 1.1 perseant */
547 1.1 perseant fs = sp->fs;
548 1.1 perseant for (i = 0; i < nblocks; i++) {
549 1.1 perseant if (sp->start_bpp[i] == NULL) {
550 1.1 perseant printf("nblocks = %d, not %d\n", i, nblocks);
551 1.1 perseant nblocks = i;
552 1.1 perseant break;
553 1.1 perseant }
554 1.32 dholland num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
555 1.1 perseant nblocks -= num - 1;
556 1.1 perseant }
557 1.1 perseant
558 1.1 perseant /*
559 1.1 perseant * Sort the blocks.
560 1.1 perseant */
561 1.32 dholland lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
562 1.1 perseant
563 1.1 perseant /*
564 1.1 perseant * Record the length of the last block in case it's a fragment.
565 1.1 perseant * If there are indirect blocks present, they sort last. An
566 1.1 perseant * indirect block will be lfs_bsize and its presence indicates
567 1.1 perseant * that you cannot have fragments.
568 1.1 perseant */
569 1.1 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
570 1.33 dholland lfs_sb_getbmask(fs)) + 1;
571 1.1 perseant
572 1.1 perseant /*
573 1.1 perseant * Assign disk addresses, and update references to the logical
574 1.1 perseant * block and the segment usage information.
575 1.1 perseant */
576 1.1 perseant for (i = nblocks; i--; ++sp->start_bpp) {
577 1.1 perseant sbp = *sp->start_bpp;
578 1.1 perseant lbn = *sp->start_lbp;
579 1.1 perseant
580 1.32 dholland sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
581 1.1 perseant
582 1.1 perseant /*
583 1.1 perseant * If we write a frag in the wrong place, the cleaner won't
584 1.1 perseant * be able to correctly identify its size later, and the
585 1.1 perseant * segment will be uncleanable. (Even worse, it will assume
586 1.1 perseant * that the indirect block that actually ends the list
587 1.1 perseant * is of a smaller size!)
588 1.1 perseant */
589 1.33 dholland if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
590 1.30 christos errx(EXIT_FAILURE, "%s: fragment is not last block", __func__);
591 1.1 perseant
592 1.1 perseant /*
593 1.1 perseant * For each subblock in this possibly oversized block,
594 1.1 perseant * update its address on disk.
595 1.1 perseant */
596 1.1 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
597 1.32 dholland bytesleft -= lfs_sb_getbsize(fs)) {
598 1.32 dholland size = MIN(bytesleft, lfs_sb_getbsize(fs));
599 1.26 christos frags = lfs_numfrags(fs, size);
600 1.1 perseant lbn = *sp->start_lbp++;
601 1.32 dholland lfs_update_single(fs, sp, lbn, lfs_sb_getoffset(fs), size);
602 1.32 dholland lfs_sb_addoffset(fs, frags);
603 1.1 perseant }
604 1.1 perseant
605 1.1 perseant }
606 1.1 perseant }
607 1.1 perseant
608 1.1 perseant /*
609 1.1 perseant * Start a new segment.
610 1.1 perseant */
611 1.1 perseant int
612 1.1 perseant lfs_initseg(struct lfs * fs)
613 1.1 perseant {
614 1.1 perseant struct segment *sp;
615 1.1 perseant SEGUSE *sup;
616 1.1 perseant SEGSUM *ssp;
617 1.1 perseant struct ubuf *bp, *sbp;
618 1.1 perseant int repeat;
619 1.1 perseant
620 1.1 perseant sp = fs->lfs_sp;
621 1.1 perseant
622 1.1 perseant repeat = 0;
623 1.1 perseant
624 1.1 perseant /* Advance to the next segment. */
625 1.1 perseant if (!LFS_PARTIAL_FITS(fs)) {
626 1.1 perseant /* lfs_avail eats the remaining space */
627 1.32 dholland lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
628 1.32 dholland lfs_sb_getcurseg(fs)));
629 1.1 perseant lfs_newseg(fs);
630 1.1 perseant repeat = 1;
631 1.32 dholland lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
632 1.1 perseant
633 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
634 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
635 1.1 perseant
636 1.1 perseant /*
637 1.1 perseant * If the segment contains a superblock, update the offset
638 1.1 perseant * and summary address to skip over it.
639 1.1 perseant */
640 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
641 1.1 perseant if (sup->su_flags & SEGUSE_SUPERBLOCK) {
642 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
643 1.1 perseant sp->seg_bytes_left -= LFS_SBPAD;
644 1.1 perseant }
645 1.16 ad brelse(bp, 0);
646 1.1 perseant /* Segment zero could also contain the labelpad */
647 1.35 dholland if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
648 1.33 dholland lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
649 1.33 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
650 1.33 dholland sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
651 1.1 perseant }
652 1.1 perseant } else {
653 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
654 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
655 1.32 dholland (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
656 1.1 perseant }
657 1.32 dholland lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
658 1.1 perseant
659 1.1 perseant sp->fs = fs;
660 1.1 perseant sp->ibp = NULL;
661 1.1 perseant sp->idp = NULL;
662 1.1 perseant sp->ninodes = 0;
663 1.1 perseant sp->ndupino = 0;
664 1.1 perseant
665 1.1 perseant /* Get a new buffer for SEGSUM and enter it into the buffer list. */
666 1.1 perseant sp->cbpp = sp->bpp;
667 1.8 perseant sbp = *sp->cbpp = getblk(fs->lfs_devvp,
668 1.32 dholland LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs));
669 1.1 perseant sp->segsum = sbp->b_data;
670 1.32 dholland memset(sp->segsum, 0, lfs_sb_getsumsize(fs));
671 1.1 perseant sp->start_bpp = ++sp->cbpp;
672 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
673 1.1 perseant
674 1.1 perseant /* Set point to SEGSUM, initialize it. */
675 1.1 perseant ssp = sp->segsum;
676 1.39 dholland lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
677 1.39 dholland lfs_ss_setnfinfo(fs, ssp, 0);
678 1.39 dholland lfs_ss_setninos(fs, ssp, 0);
679 1.39 dholland lfs_ss_setmagic(fs, ssp, SS_MAGIC);
680 1.1 perseant
681 1.1 perseant /* Set pointer to first FINFO, initialize it. */
682 1.39 dholland sp->fip = SEGSUM_FINFOBASE(fs, ssp);
683 1.1 perseant sp->fip->fi_nblocks = 0;
684 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
685 1.1 perseant sp->fip->fi_lastlength = 0;
686 1.1 perseant
687 1.32 dholland sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
688 1.32 dholland sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
689 1.1 perseant
690 1.1 perseant LFS_LOCK_BUF(sbp);
691 1.16 ad brelse(sbp, 0);
692 1.1 perseant return repeat;
693 1.1 perseant }
694 1.1 perseant
695 1.1 perseant /*
696 1.1 perseant * Return the next segment to write.
697 1.1 perseant */
698 1.1 perseant void
699 1.1 perseant lfs_newseg(struct lfs * fs)
700 1.1 perseant {
701 1.1 perseant CLEANERINFO *cip;
702 1.1 perseant SEGUSE *sup;
703 1.1 perseant struct ubuf *bp;
704 1.1 perseant int curseg, isdirty, sn;
705 1.1 perseant
706 1.32 dholland LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
707 1.1 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
708 1.1 perseant sup->su_nbytes = 0;
709 1.1 perseant sup->su_nsums = 0;
710 1.1 perseant sup->su_ninos = 0;
711 1.32 dholland LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
712 1.1 perseant
713 1.1 perseant LFS_CLEANERINFO(cip, fs, bp);
714 1.37 dholland lfs_ci_shiftcleantodirty(fs, cip, 1);
715 1.37 dholland lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
716 1.1 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
717 1.1 perseant
718 1.32 dholland lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
719 1.32 dholland lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
720 1.32 dholland for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
721 1.33 dholland sn = (sn + 1) % lfs_sb_getnseg(fs);
722 1.1 perseant if (sn == curseg)
723 1.30 christos errx(EXIT_FAILURE, "%s: no clean segments", __func__);
724 1.1 perseant LFS_SEGENTRY(sup, fs, sn, bp);
725 1.1 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
726 1.16 ad brelse(bp, 0);
727 1.1 perseant
728 1.1 perseant if (!isdirty)
729 1.1 perseant break;
730 1.1 perseant }
731 1.1 perseant
732 1.1 perseant ++fs->lfs_nactive;
733 1.32 dholland lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
734 1.1 perseant }
735 1.1 perseant
736 1.1 perseant
737 1.1 perseant int
738 1.1 perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
739 1.1 perseant {
740 1.1 perseant struct ubuf **bpp, *bp;
741 1.1 perseant SEGUSE *sup;
742 1.1 perseant SEGSUM *ssp;
743 1.1 perseant char *datap, *dp;
744 1.1 perseant int i;
745 1.1 perseant int do_again, nblocks, byteoffset;
746 1.1 perseant size_t el_size;
747 1.1 perseant u_short ninos;
748 1.39 dholland size_t sumstart;
749 1.1 perseant struct uvnode *devvp;
750 1.1 perseant
751 1.1 perseant /*
752 1.1 perseant * If there are no buffers other than the segment summary to write
753 1.1 perseant * and it is not a checkpoint, don't do anything. On a checkpoint,
754 1.1 perseant * even if there aren't any buffers, you need to write the superblock.
755 1.1 perseant */
756 1.13 perseant nblocks = sp->cbpp - sp->bpp;
757 1.13 perseant #if 0
758 1.13 perseant printf("write %d blocks at 0x%x\n",
759 1.26 christos nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
760 1.13 perseant #endif
761 1.13 perseant if (nblocks == 1)
762 1.1 perseant return 0;
763 1.1 perseant
764 1.8 perseant devvp = fs->lfs_devvp;
765 1.1 perseant
766 1.1 perseant /* Update the segment usage information. */
767 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
768 1.13 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
769 1.1 perseant
770 1.1 perseant /* Loop through all blocks, except the segment summary. */
771 1.1 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
772 1.1 perseant if ((*bpp)->b_vp != devvp) {
773 1.1 perseant sup->su_nbytes += (*bpp)->b_bcount;
774 1.1 perseant }
775 1.26 christos assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
776 1.1 perseant }
777 1.1 perseant
778 1.1 perseant ssp = (SEGSUM *) sp->segsum;
779 1.39 dholland lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RFW);
780 1.1 perseant
781 1.39 dholland ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
782 1.39 dholland sup->su_nbytes += lfs_ss_getninos(fs, ssp) * LFS_DINODE1_SIZE;
783 1.1 perseant
784 1.35 dholland if (lfs_sb_getversion(fs) == 1)
785 1.1 perseant sup->su_olastmod = write_time;
786 1.1 perseant else
787 1.1 perseant sup->su_lastmod = write_time;
788 1.1 perseant sup->su_ninos += ninos;
789 1.1 perseant ++sup->su_nsums;
790 1.33 dholland lfs_sb_adddmeta(fs, (lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + lfs_btofsb(fs, ninos *
791 1.33 dholland lfs_sb_getibsize(fs))));
792 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
793 1.1 perseant
794 1.1 perseant do_again = !(bp->b_flags & B_GATHERED);
795 1.1 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
796 1.1 perseant
797 1.1 perseant /*
798 1.1 perseant * Compute checksum across data and then across summary; the first
799 1.1 perseant * block (the summary block) is skipped. Set the create time here
800 1.1 perseant * so that it's guaranteed to be later than the inode mod times.
801 1.1 perseant */
802 1.35 dholland if (lfs_sb_getversion(fs) == 1)
803 1.1 perseant el_size = sizeof(u_long);
804 1.1 perseant else
805 1.1 perseant el_size = sizeof(u_int32_t);
806 1.15 christos datap = dp = emalloc(nblocks * el_size);
807 1.1 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
808 1.1 perseant ++bpp;
809 1.1 perseant /* Loop through gop_write cluster blocks */
810 1.1 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
811 1.32 dholland byteoffset += lfs_sb_getbsize(fs)) {
812 1.1 perseant memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
813 1.1 perseant dp += el_size;
814 1.1 perseant }
815 1.2 perseant bremfree(*bpp);
816 1.1 perseant (*bpp)->b_flags |= B_BUSY;
817 1.1 perseant }
818 1.35 dholland if (lfs_sb_getversion(fs) == 1)
819 1.39 dholland lfs_ss_setocreate(fs, ssp, write_time);
820 1.1 perseant else {
821 1.39 dholland lfs_ss_setcreate(fs, ssp, write_time);
822 1.32 dholland lfs_sb_addserial(fs, 1);
823 1.39 dholland lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
824 1.39 dholland lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
825 1.1 perseant }
826 1.1 perseant /* Set the summary block busy too */
827 1.1 perseant bremfree(*(sp->bpp));
828 1.1 perseant (*(sp->bpp))->b_flags |= B_BUSY;
829 1.1 perseant
830 1.39 dholland lfs_ss_setdatasum(fs, ssp, cksum(datap, (nblocks - 1) * el_size));
831 1.39 dholland sumstart = lfs_ss_getsumstart(fs);
832 1.39 dholland lfs_ss_setsumsum(fs, ssp,
833 1.39 dholland cksum((char *)ssp + sumstart, lfs_sb_getsumsize(fs) - sumstart));
834 1.1 perseant free(datap);
835 1.1 perseant datap = dp = NULL;
836 1.32 dholland lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
837 1.32 dholland lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
838 1.1 perseant
839 1.1 perseant if (devvp == NULL)
840 1.30 christos errx(EXIT_FAILURE, "devvp is NULL");
841 1.1 perseant for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
842 1.1 perseant bp = *bpp;
843 1.1 perseant #if 0
844 1.2 perseant printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
845 1.1 perseant nblocks - i, bp, bp->b_flags, bp->b_blkno);
846 1.1 perseant printf(" vp = %p\n", bp->b_vp);
847 1.8 perseant if (bp->b_vp != fs->lfs_devvp)
848 1.1 perseant printf(" ino = %d lbn = %" PRId64 "\n",
849 1.1 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
850 1.1 perseant #endif
851 1.8 perseant if (bp->b_vp == fs->lfs_devvp)
852 1.1 perseant written_dev += bp->b_bcount;
853 1.1 perseant else {
854 1.1 perseant if (bp->b_lblkno >= 0)
855 1.1 perseant written_data += bp->b_bcount;
856 1.1 perseant else
857 1.1 perseant written_indir += bp->b_bcount;
858 1.1 perseant }
859 1.2 perseant bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
860 1.2 perseant B_LOCKED);
861 1.1 perseant bwrite(bp);
862 1.1 perseant written_bytes += bp->b_bcount;
863 1.1 perseant }
864 1.1 perseant written_inodes += ninos;
865 1.1 perseant
866 1.1 perseant return (lfs_initseg(fs) || do_again);
867 1.1 perseant }
868 1.1 perseant
869 1.1 perseant /*
870 1.1 perseant * Our own copy of shellsort. XXX use qsort or heapsort.
871 1.1 perseant */
872 1.1 perseant void
873 1.22 dholland lfs_shellsort(struct ubuf ** bp_array, ulfs_daddr_t * lb_array, int nmemb, int size)
874 1.1 perseant {
875 1.1 perseant static int __rsshell_increments[] = {4, 1, 0};
876 1.1 perseant int incr, *incrp, t1, t2;
877 1.1 perseant struct ubuf *bp_temp;
878 1.1 perseant
879 1.1 perseant for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
880 1.1 perseant for (t1 = incr; t1 < nmemb; ++t1)
881 1.1 perseant for (t2 = t1 - incr; t2 >= 0;)
882 1.1 perseant if ((u_int32_t) bp_array[t2]->b_lblkno >
883 1.1 perseant (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
884 1.1 perseant bp_temp = bp_array[t2];
885 1.1 perseant bp_array[t2] = bp_array[t2 + incr];
886 1.1 perseant bp_array[t2 + incr] = bp_temp;
887 1.1 perseant t2 -= incr;
888 1.1 perseant } else
889 1.1 perseant break;
890 1.1 perseant
891 1.1 perseant /* Reform the list of logical blocks */
892 1.1 perseant incr = 0;
893 1.1 perseant for (t1 = 0; t1 < nmemb; t1++) {
894 1.1 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
895 1.1 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
896 1.1 perseant }
897 1.1 perseant }
898 1.1 perseant }
899 1.1 perseant
900 1.1 perseant
901 1.1 perseant /*
902 1.1 perseant * lfs_seglock --
903 1.1 perseant * Single thread the segment writer.
904 1.1 perseant */
905 1.1 perseant int
906 1.1 perseant lfs_seglock(struct lfs * fs, unsigned long flags)
907 1.1 perseant {
908 1.1 perseant struct segment *sp;
909 1.32 dholland size_t allocsize;
910 1.1 perseant
911 1.1 perseant if (fs->lfs_seglock) {
912 1.1 perseant ++fs->lfs_seglock;
913 1.1 perseant fs->lfs_sp->seg_flags |= flags;
914 1.1 perseant return 0;
915 1.1 perseant }
916 1.1 perseant fs->lfs_seglock = 1;
917 1.1 perseant
918 1.15 christos sp = fs->lfs_sp = emalloc(sizeof(*sp));
919 1.32 dholland allocsize = lfs_sb_getssize(fs) * sizeof(struct ubuf *);
920 1.32 dholland sp->bpp = emalloc(allocsize);
921 1.6 heas if (!sp->bpp)
922 1.32 dholland err(!preen, "Could not allocate %zu bytes", allocsize);
923 1.1 perseant sp->seg_flags = flags;
924 1.1 perseant sp->vp = NULL;
925 1.1 perseant sp->seg_iocount = 0;
926 1.1 perseant (void) lfs_initseg(fs);
927 1.1 perseant
928 1.1 perseant return 0;
929 1.1 perseant }
930 1.1 perseant
931 1.1 perseant /*
932 1.1 perseant * lfs_segunlock --
933 1.1 perseant * Single thread the segment writer.
934 1.1 perseant */
935 1.1 perseant void
936 1.1 perseant lfs_segunlock(struct lfs * fs)
937 1.1 perseant {
938 1.1 perseant struct segment *sp;
939 1.1 perseant struct ubuf *bp;
940 1.1 perseant
941 1.1 perseant sp = fs->lfs_sp;
942 1.1 perseant
943 1.1 perseant if (fs->lfs_seglock == 1) {
944 1.1 perseant if (sp->bpp != sp->cbpp) {
945 1.1 perseant /* Free allocated segment summary */
946 1.32 dholland lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
947 1.1 perseant bp = *sp->bpp;
948 1.1 perseant bremfree(bp);
949 1.1 perseant bp->b_flags |= B_DONE | B_INVAL;
950 1.1 perseant bp->b_flags &= ~B_DELWRI;
951 1.1 perseant reassignbuf(bp, bp->b_vp);
952 1.1 perseant bp->b_flags |= B_BUSY; /* XXX */
953 1.16 ad brelse(bp, 0);
954 1.1 perseant } else
955 1.1 perseant printf("unlock to 0 with no summary");
956 1.1 perseant
957 1.1 perseant free(sp->bpp);
958 1.1 perseant sp->bpp = NULL;
959 1.1 perseant free(sp);
960 1.1 perseant fs->lfs_sp = NULL;
961 1.1 perseant
962 1.1 perseant fs->lfs_nactive = 0;
963 1.1 perseant
964 1.1 perseant /* Since we *know* everything's on disk, write both sbs */
965 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
966 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
967 1.1 perseant
968 1.1 perseant --fs->lfs_seglock;
969 1.1 perseant fs->lfs_lockpid = 0;
970 1.1 perseant } else if (fs->lfs_seglock == 0) {
971 1.30 christos errx(EXIT_FAILURE, "Seglock not held");
972 1.1 perseant } else {
973 1.1 perseant --fs->lfs_seglock;
974 1.1 perseant }
975 1.1 perseant }
976 1.1 perseant
977 1.1 perseant int
978 1.1 perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
979 1.1 perseant {
980 1.1 perseant struct inode *ip;
981 1.1 perseant struct uvnode *vp;
982 1.1 perseant int inodes_written = 0;
983 1.1 perseant
984 1.1 perseant LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
985 1.1 perseant if (vp->v_bmap_op != lfs_vop_bmap)
986 1.1 perseant continue;
987 1.1 perseant
988 1.1 perseant ip = VTOI(vp);
989 1.1 perseant
990 1.17 ad if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
991 1.17 ad (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
992 1.1 perseant continue;
993 1.1 perseant }
994 1.1 perseant /*
995 1.1 perseant * Write the inode/file if dirty and it's not the IFILE.
996 1.1 perseant */
997 1.1 perseant if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
998 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
999 1.1 perseant lfs_writefile(fs, sp, vp);
1000 1.1 perseant (void) lfs_writeinode(fs, sp, ip);
1001 1.1 perseant inodes_written++;
1002 1.1 perseant }
1003 1.1 perseant }
1004 1.1 perseant return inodes_written;
1005 1.1 perseant }
1006 1.1 perseant
1007 1.1 perseant void
1008 1.22 dholland lfs_writesuper(struct lfs *fs, ulfs_daddr_t daddr)
1009 1.1 perseant {
1010 1.1 perseant struct ubuf *bp;
1011 1.1 perseant
1012 1.1 perseant /* Set timestamp of this version of the superblock */
1013 1.35 dholland if (lfs_sb_getversion(fs) == 1)
1014 1.32 dholland lfs_sb_setotstamp(fs, write_time);
1015 1.32 dholland lfs_sb_settstamp(fs, write_time);
1016 1.1 perseant
1017 1.36 dholland __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
1018 1.36 dholland
1019 1.1 perseant /* Checksum the superblock and copy it into a buffer. */
1020 1.36 dholland lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
1021 1.1 perseant assert(daddr > 0);
1022 1.26 christos bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
1023 1.36 dholland memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
1024 1.1 perseant memset(bp->b_data + sizeof(struct dlfs), 0,
1025 1.1 perseant LFS_SBPAD - sizeof(struct dlfs));
1026 1.1 perseant
1027 1.1 perseant bwrite(bp);
1028 1.1 perseant }
1029