segwrite.c revision 1.4 1 1.4 yamt /* $NetBSD: segwrite.c,v 1.4 2003/07/12 11:41:15 yamt Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant * 3. All advertising materials mentioning features or use of this software
18 1.1 perseant * must display the following acknowledgement:
19 1.1 perseant * This product includes software developed by the NetBSD
20 1.1 perseant * Foundation, Inc. and its contributors.
21 1.1 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 perseant * contributors may be used to endorse or promote products derived
23 1.1 perseant * from this software without specific prior written permission.
24 1.1 perseant *
25 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
36 1.1 perseant */
37 1.1 perseant /*
38 1.1 perseant * Copyright (c) 1991, 1993
39 1.1 perseant * The Regents of the University of California. All rights reserved.
40 1.1 perseant *
41 1.1 perseant * Redistribution and use in source and binary forms, with or without
42 1.1 perseant * modification, are permitted provided that the following conditions
43 1.1 perseant * are met:
44 1.1 perseant * 1. Redistributions of source code must retain the above copyright
45 1.1 perseant * notice, this list of conditions and the following disclaimer.
46 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 perseant * notice, this list of conditions and the following disclaimer in the
48 1.1 perseant * documentation and/or other materials provided with the distribution.
49 1.1 perseant * 3. All advertising materials mentioning features or use of this software
50 1.1 perseant * must display the following acknowledgement:
51 1.1 perseant * This product includes software developed by the University of
52 1.1 perseant * California, Berkeley and its contributors.
53 1.1 perseant * 4. Neither the name of the University nor the names of its contributors
54 1.1 perseant * may be used to endorse or promote products derived from this software
55 1.1 perseant * without specific prior written permission.
56 1.1 perseant *
57 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 perseant * SUCH DAMAGE.
68 1.1 perseant *
69 1.1 perseant * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
70 1.1 perseant */
71 1.1 perseant
72 1.1 perseant /*
73 1.1 perseant * Partial segment writer, taken from the kernel and adapted for userland.
74 1.1 perseant */
75 1.1 perseant #include <sys/types.h>
76 1.1 perseant #include <sys/param.h>
77 1.1 perseant #include <sys/time.h>
78 1.1 perseant #include <sys/buf.h>
79 1.1 perseant #include <sys/mount.h>
80 1.1 perseant
81 1.1 perseant #include <ufs/ufs/inode.h>
82 1.1 perseant #include <ufs/ufs/ufsmount.h>
83 1.1 perseant
84 1.1 perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
85 1.1 perseant #undef simple_lock
86 1.1 perseant #define simple_lock(x)
87 1.1 perseant #undef simple_unlock
88 1.1 perseant #define simple_unlock(x)
89 1.1 perseant #define vnode uvnode
90 1.1 perseant #define buf ubuf
91 1.1 perseant #define panic call_panic
92 1.1 perseant
93 1.1 perseant #include <ufs/lfs/lfs.h>
94 1.1 perseant
95 1.1 perseant #include <assert.h>
96 1.1 perseant #include <stdio.h>
97 1.1 perseant #include <stdlib.h>
98 1.1 perseant #include <string.h>
99 1.1 perseant #include <err.h>
100 1.1 perseant #include <errno.h>
101 1.1 perseant
102 1.1 perseant #include "bufcache.h"
103 1.1 perseant #include "vnode.h"
104 1.1 perseant #include "lfs.h"
105 1.1 perseant #include "segwrite.h"
106 1.1 perseant
107 1.1 perseant /* Compatibility definitions */
108 1.1 perseant extern off_t locked_queue_bytes;
109 1.1 perseant int locked_queue_count;
110 1.1 perseant off_t written_bytes = 0;
111 1.1 perseant off_t written_data = 0;
112 1.1 perseant off_t written_indir = 0;
113 1.1 perseant off_t written_dev = 0;
114 1.1 perseant int written_inodes = 0;
115 1.1 perseant
116 1.1 perseant /* Global variables */
117 1.1 perseant time_t write_time;
118 1.1 perseant
119 1.1 perseant extern u_int32_t cksum(void *, size_t);
120 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
121 1.1 perseant
122 1.1 perseant /*
123 1.1 perseant * Logical block number match routines used when traversing the dirty block
124 1.1 perseant * chain.
125 1.1 perseant */
126 1.1 perseant int
127 1.1 perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
128 1.1 perseant {
129 1.1 perseant return (bp->b_lblkno >= 0);
130 1.1 perseant }
131 1.1 perseant
132 1.1 perseant int
133 1.1 perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
134 1.1 perseant {
135 1.1 perseant daddr_t lbn;
136 1.1 perseant
137 1.1 perseant lbn = bp->b_lblkno;
138 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
139 1.1 perseant }
140 1.1 perseant
141 1.1 perseant int
142 1.1 perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
143 1.1 perseant {
144 1.1 perseant daddr_t lbn;
145 1.1 perseant
146 1.1 perseant lbn = bp->b_lblkno;
147 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
148 1.1 perseant }
149 1.1 perseant
150 1.1 perseant int
151 1.1 perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
152 1.1 perseant {
153 1.1 perseant daddr_t lbn;
154 1.1 perseant
155 1.1 perseant lbn = bp->b_lblkno;
156 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
157 1.1 perseant }
158 1.1 perseant
159 1.1 perseant /*
160 1.1 perseant * Do a checkpoint.
161 1.1 perseant */
162 1.1 perseant int
163 1.1 perseant lfs_segwrite(struct lfs * fs, int flags)
164 1.1 perseant {
165 1.1 perseant struct inode *ip;
166 1.1 perseant struct segment *sp;
167 1.1 perseant struct uvnode *vp;
168 1.1 perseant int redo;
169 1.1 perseant
170 1.1 perseant lfs_seglock(fs, flags | SEGM_CKP);
171 1.1 perseant sp = fs->lfs_sp;
172 1.1 perseant
173 1.1 perseant lfs_writevnodes(fs, sp, VN_REG);
174 1.1 perseant lfs_writevnodes(fs, sp, VN_DIROP);
175 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
176 1.1 perseant
177 1.1 perseant do {
178 1.1 perseant vp = fs->lfs_ivnode;
179 1.1 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
180 1.1 perseant ip = VTOI(vp);
181 1.1 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
182 1.1 perseant lfs_writefile(fs, sp, vp);
183 1.1 perseant
184 1.1 perseant redo = lfs_writeinode(fs, sp, ip);
185 1.1 perseant redo += lfs_writeseg(fs, sp);
186 1.1 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
187 1.1 perseant } while (redo);
188 1.1 perseant
189 1.1 perseant lfs_segunlock(fs);
190 1.1 perseant #if 0
191 1.1 perseant printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
192 1.1 perseant written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
193 1.1 perseant printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
194 1.1 perseant written_data, (ufs_daddr_t)btofsb(fs, written_data));
195 1.1 perseant printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
196 1.1 perseant written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
197 1.1 perseant printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
198 1.1 perseant written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
199 1.1 perseant printf("wrote %d inodes (%" PRId32 " fsb)\n",
200 1.1 perseant written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
201 1.1 perseant #endif
202 1.1 perseant return 0;
203 1.1 perseant }
204 1.1 perseant
205 1.1 perseant /*
206 1.1 perseant * Write the dirty blocks associated with a vnode.
207 1.1 perseant */
208 1.1 perseant void
209 1.1 perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
210 1.1 perseant {
211 1.1 perseant struct ubuf *bp;
212 1.1 perseant struct finfo *fip;
213 1.1 perseant struct inode *ip;
214 1.1 perseant IFILE *ifp;
215 1.1 perseant
216 1.1 perseant ip = VTOI(vp);
217 1.1 perseant
218 1.1 perseant if (sp->seg_bytes_left < fs->lfs_bsize ||
219 1.1 perseant sp->sum_bytes_left < sizeof(struct finfo))
220 1.1 perseant (void) lfs_writeseg(fs, sp);
221 1.1 perseant
222 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
223 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
224 1.1 perseant
225 1.1 perseant if (vp->v_flag & VDIROP)
226 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
227 1.1 perseant
228 1.1 perseant fip = sp->fip;
229 1.1 perseant fip->fi_nblocks = 0;
230 1.1 perseant fip->fi_ino = ip->i_number;
231 1.1 perseant LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
232 1.1 perseant fip->fi_version = ifp->if_version;
233 1.1 perseant brelse(bp);
234 1.1 perseant
235 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_data);
236 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
237 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
238 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
239 1.1 perseant
240 1.1 perseant fip = sp->fip;
241 1.1 perseant if (fip->fi_nblocks != 0) {
242 1.1 perseant sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
243 1.1 perseant sizeof(ufs_daddr_t) * (fip->fi_nblocks));
244 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
245 1.1 perseant } else {
246 1.1 perseant sp->sum_bytes_left += FINFOSIZE;
247 1.1 perseant --((SEGSUM *) (sp->segsum))->ss_nfinfo;
248 1.1 perseant }
249 1.1 perseant }
250 1.1 perseant
251 1.1 perseant int
252 1.1 perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
253 1.1 perseant {
254 1.1 perseant struct ubuf *bp, *ibp;
255 1.3 fvdl struct ufs1_dinode *cdp;
256 1.1 perseant IFILE *ifp;
257 1.1 perseant SEGUSE *sup;
258 1.1 perseant daddr_t daddr;
259 1.1 perseant ino_t ino;
260 1.1 perseant int error, i, ndx, fsb = 0;
261 1.1 perseant int redo_ifile = 0;
262 1.1 perseant struct timespec ts;
263 1.1 perseant int gotblk = 0;
264 1.1 perseant
265 1.1 perseant /* Allocate a new inode block if necessary. */
266 1.1 perseant if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
267 1.1 perseant sp->ibp == NULL) {
268 1.1 perseant /* Allocate a new segment if necessary. */
269 1.1 perseant if (sp->seg_bytes_left < fs->lfs_ibsize ||
270 1.1 perseant sp->sum_bytes_left < sizeof(ufs_daddr_t))
271 1.1 perseant (void) lfs_writeseg(fs, sp);
272 1.1 perseant
273 1.1 perseant /* Get next inode block. */
274 1.1 perseant daddr = fs->lfs_offset;
275 1.1 perseant fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
276 1.1 perseant sp->ibp = *sp->cbpp++ =
277 1.1 perseant getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr),
278 1.1 perseant fs->lfs_ibsize);
279 1.1 perseant sp->ibp->b_flags |= B_GATHERED;
280 1.1 perseant gotblk++;
281 1.1 perseant
282 1.1 perseant /* Zero out inode numbers */
283 1.1 perseant for (i = 0; i < INOPB(fs); ++i)
284 1.3 fvdl ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
285 1.1 perseant
286 1.1 perseant ++sp->start_bpp;
287 1.1 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
288 1.1 perseant /* Set remaining space counters. */
289 1.1 perseant sp->seg_bytes_left -= fs->lfs_ibsize;
290 1.1 perseant sp->sum_bytes_left -= sizeof(ufs_daddr_t);
291 1.1 perseant ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
292 1.1 perseant sp->ninodes / INOPB(fs) - 1;
293 1.1 perseant ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
294 1.1 perseant }
295 1.1 perseant /* Update the inode times and copy the inode onto the inode page. */
296 1.1 perseant ts.tv_nsec = 0;
297 1.1 perseant ts.tv_sec = write_time;
298 1.1 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
299 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
300 1.1 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
301 1.1 perseant
302 1.1 perseant /*
303 1.1 perseant * If this is the Ifile, and we've already written the Ifile in this
304 1.1 perseant * partial segment, just overwrite it (it's not on disk yet) and
305 1.1 perseant * continue.
306 1.1 perseant *
307 1.1 perseant * XXX we know that the bp that we get the second time around has
308 1.1 perseant * already been gathered.
309 1.1 perseant */
310 1.1 perseant if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
311 1.3 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
312 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
313 1.1 perseant return 0;
314 1.1 perseant }
315 1.1 perseant bp = sp->ibp;
316 1.3 fvdl cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
317 1.3 fvdl *cdp = *ip->i_din.ffs1_din;
318 1.1 perseant
319 1.1 perseant /* If all blocks are goig to disk, update the "size on disk" */
320 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
321 1.1 perseant
322 1.1 perseant if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
323 1.3 fvdl sp->idp = ((struct ufs1_dinode *) bp->b_data) +
324 1.1 perseant (sp->ninodes % INOPB(fs));
325 1.1 perseant if (gotblk) {
326 1.1 perseant LFS_LOCK_BUF(bp);
327 1.1 perseant brelse(bp);
328 1.1 perseant }
329 1.1 perseant /* Increment inode count in segment summary block. */
330 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_ninos;
331 1.1 perseant
332 1.1 perseant /* If this page is full, set flag to allocate a new page. */
333 1.1 perseant if (++sp->ninodes % INOPB(fs) == 0)
334 1.1 perseant sp->ibp = NULL;
335 1.1 perseant
336 1.1 perseant /*
337 1.1 perseant * If updating the ifile, update the super-block. Update the disk
338 1.1 perseant * address and access times for this inode in the ifile.
339 1.1 perseant */
340 1.1 perseant ino = ip->i_number;
341 1.1 perseant if (ino == LFS_IFILE_INUM) {
342 1.1 perseant daddr = fs->lfs_idaddr;
343 1.1 perseant fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
344 1.1 perseant } else {
345 1.1 perseant LFS_IENTRY(ifp, fs, ino, ibp);
346 1.1 perseant daddr = ifp->if_daddr;
347 1.1 perseant ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
348 1.1 perseant error = LFS_BWRITE_LOG(ibp); /* Ifile */
349 1.1 perseant }
350 1.1 perseant
351 1.1 perseant /*
352 1.1 perseant * Account the inode: it no longer belongs to its former segment,
353 1.1 perseant * though it will not belong to the new segment until that segment
354 1.1 perseant * is actually written.
355 1.1 perseant */
356 1.1 perseant if (daddr != LFS_UNUSED_DADDR) {
357 1.1 perseant u_int32_t oldsn = dtosn(fs, daddr);
358 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
359 1.3 fvdl sup->su_nbytes -= DINODE1_SIZE;
360 1.1 perseant redo_ifile =
361 1.1 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
362 1.1 perseant if (redo_ifile)
363 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
364 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
365 1.1 perseant }
366 1.1 perseant return redo_ifile;
367 1.1 perseant }
368 1.1 perseant
369 1.1 perseant int
370 1.1 perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
371 1.1 perseant {
372 1.1 perseant struct lfs *fs;
373 1.1 perseant int version;
374 1.1 perseant int j, blksinblk;
375 1.1 perseant
376 1.1 perseant /*
377 1.1 perseant * If full, finish this segment. We may be doing I/O, so
378 1.1 perseant * release and reacquire the splbio().
379 1.1 perseant */
380 1.1 perseant fs = sp->fs;
381 1.1 perseant blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
382 1.1 perseant if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
383 1.1 perseant sp->seg_bytes_left < bp->b_bcount) {
384 1.1 perseant lfs_updatemeta(sp);
385 1.1 perseant
386 1.1 perseant version = sp->fip->fi_version;
387 1.1 perseant (void) lfs_writeseg(fs, sp);
388 1.1 perseant
389 1.1 perseant sp->fip->fi_version = version;
390 1.1 perseant sp->fip->fi_ino = VTOI(sp->vp)->i_number;
391 1.1 perseant /* Add the current file to the segment summary. */
392 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
393 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
394 1.1 perseant
395 1.1 perseant return 1;
396 1.1 perseant }
397 1.1 perseant /* Insert into the buffer list, update the FINFO block. */
398 1.1 perseant bp->b_flags |= B_GATHERED;
399 1.1 perseant /* bp->b_flags &= ~B_DONE; */
400 1.1 perseant
401 1.1 perseant *sp->cbpp++ = bp;
402 1.1 perseant for (j = 0; j < blksinblk; j++)
403 1.1 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
404 1.1 perseant
405 1.1 perseant sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
406 1.1 perseant sp->seg_bytes_left -= bp->b_bcount;
407 1.1 perseant return 0;
408 1.1 perseant }
409 1.1 perseant
410 1.1 perseant int
411 1.1 perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
412 1.1 perseant {
413 1.1 perseant struct ubuf *bp, *nbp;
414 1.1 perseant int count = 0;
415 1.1 perseant
416 1.1 perseant sp->vp = vp;
417 1.1 perseant loop:
418 1.1 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
419 1.1 perseant nbp = LIST_NEXT(bp, b_vnbufs);
420 1.1 perseant
421 1.1 perseant assert(bp->b_flags & B_DELWRI);
422 1.1 perseant if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
423 1.1 perseant continue;
424 1.1 perseant }
425 1.1 perseant if (lfs_gatherblock(sp, bp)) {
426 1.1 perseant goto loop;
427 1.1 perseant }
428 1.1 perseant count++;
429 1.1 perseant }
430 1.1 perseant
431 1.1 perseant lfs_updatemeta(sp);
432 1.1 perseant sp->vp = NULL;
433 1.1 perseant return count;
434 1.1 perseant }
435 1.1 perseant
436 1.1 perseant
437 1.1 perseant /*
438 1.1 perseant * Change the given block's address to ndaddr, finding its previous
439 1.1 perseant * location using ufs_bmaparray().
440 1.1 perseant *
441 1.1 perseant * Account for this change in the segment table.
442 1.1 perseant */
443 1.1 perseant void
444 1.1 perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
445 1.1 perseant ufs_daddr_t ndaddr, int size)
446 1.1 perseant {
447 1.1 perseant SEGUSE *sup;
448 1.1 perseant struct ubuf *bp;
449 1.1 perseant struct indir a[NIADDR + 2], *ap;
450 1.1 perseant struct inode *ip;
451 1.1 perseant struct uvnode *vp;
452 1.1 perseant daddr_t daddr, ooff;
453 1.1 perseant int num, error;
454 1.1 perseant int bb, osize, obb;
455 1.1 perseant
456 1.1 perseant vp = sp->vp;
457 1.1 perseant ip = VTOI(vp);
458 1.1 perseant
459 1.1 perseant error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
460 1.1 perseant if (error)
461 1.1 perseant errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
462 1.1 perseant if (daddr > 0)
463 1.1 perseant daddr = dbtofsb(fs, daddr);
464 1.1 perseant
465 1.1 perseant bb = fragstofsb(fs, numfrags(fs, size));
466 1.1 perseant switch (num) {
467 1.1 perseant case 0:
468 1.3 fvdl ooff = ip->i_ffs1_db[lbn];
469 1.1 perseant if (ooff == UNWRITTEN)
470 1.3 fvdl ip->i_ffs1_blocks += bb;
471 1.1 perseant else {
472 1.1 perseant /* possible fragment truncation or extension */
473 1.1 perseant obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
474 1.3 fvdl ip->i_ffs1_blocks += (bb - obb);
475 1.1 perseant }
476 1.3 fvdl ip->i_ffs1_db[lbn] = ndaddr;
477 1.1 perseant break;
478 1.1 perseant case 1:
479 1.3 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
480 1.1 perseant if (ooff == UNWRITTEN)
481 1.3 fvdl ip->i_ffs1_blocks += bb;
482 1.3 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
483 1.1 perseant break;
484 1.1 perseant default:
485 1.1 perseant ap = &a[num - 1];
486 1.1 perseant if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
487 1.1 perseant errx(1, "lfs_updatemeta: bread bno %" PRId64,
488 1.1 perseant ap->in_lbn);
489 1.1 perseant
490 1.1 perseant ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
491 1.1 perseant if (ooff == UNWRITTEN)
492 1.3 fvdl ip->i_ffs1_blocks += bb;
493 1.1 perseant ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
494 1.1 perseant (void) VOP_BWRITE(bp);
495 1.1 perseant }
496 1.1 perseant
497 1.1 perseant /*
498 1.1 perseant * Update segment usage information, based on old size
499 1.1 perseant * and location.
500 1.1 perseant */
501 1.1 perseant if (daddr > 0) {
502 1.1 perseant u_int32_t oldsn = dtosn(fs, daddr);
503 1.1 perseant if (lbn >= 0 && lbn < NDADDR)
504 1.1 perseant osize = ip->i_lfs_fragsize[lbn];
505 1.1 perseant else
506 1.1 perseant osize = fs->lfs_bsize;
507 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
508 1.1 perseant sup->su_nbytes -= osize;
509 1.1 perseant if (!(bp->b_flags & B_GATHERED))
510 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
511 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
512 1.1 perseant }
513 1.1 perseant /*
514 1.1 perseant * Now that this block has a new address, and its old
515 1.1 perseant * segment no longer owns it, we can forget about its
516 1.1 perseant * old size.
517 1.1 perseant */
518 1.1 perseant if (lbn >= 0 && lbn < NDADDR)
519 1.1 perseant ip->i_lfs_fragsize[lbn] = size;
520 1.1 perseant }
521 1.1 perseant
522 1.1 perseant /*
523 1.1 perseant * Update the metadata that points to the blocks listed in the FINFO
524 1.1 perseant * array.
525 1.1 perseant */
526 1.1 perseant void
527 1.1 perseant lfs_updatemeta(struct segment * sp)
528 1.1 perseant {
529 1.1 perseant struct ubuf *sbp;
530 1.1 perseant struct lfs *fs;
531 1.1 perseant struct uvnode *vp;
532 1.1 perseant daddr_t lbn;
533 1.1 perseant int i, nblocks, num;
534 1.1 perseant int bb;
535 1.1 perseant int bytesleft, size;
536 1.1 perseant
537 1.1 perseant vp = sp->vp;
538 1.1 perseant nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
539 1.1 perseant
540 1.1 perseant if (vp == NULL || nblocks == 0)
541 1.1 perseant return;
542 1.1 perseant
543 1.1 perseant /*
544 1.1 perseant * This count may be high due to oversize blocks from lfs_gop_write.
545 1.1 perseant * Correct for this. (XXX we should be able to keep track of these.)
546 1.1 perseant */
547 1.1 perseant fs = sp->fs;
548 1.1 perseant for (i = 0; i < nblocks; i++) {
549 1.1 perseant if (sp->start_bpp[i] == NULL) {
550 1.1 perseant printf("nblocks = %d, not %d\n", i, nblocks);
551 1.1 perseant nblocks = i;
552 1.1 perseant break;
553 1.1 perseant }
554 1.1 perseant num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
555 1.1 perseant nblocks -= num - 1;
556 1.1 perseant }
557 1.1 perseant
558 1.1 perseant /*
559 1.1 perseant * Sort the blocks.
560 1.1 perseant */
561 1.1 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
562 1.1 perseant
563 1.1 perseant /*
564 1.1 perseant * Record the length of the last block in case it's a fragment.
565 1.1 perseant * If there are indirect blocks present, they sort last. An
566 1.1 perseant * indirect block will be lfs_bsize and its presence indicates
567 1.1 perseant * that you cannot have fragments.
568 1.1 perseant */
569 1.1 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
570 1.1 perseant fs->lfs_bmask) + 1;
571 1.1 perseant
572 1.1 perseant /*
573 1.1 perseant * Assign disk addresses, and update references to the logical
574 1.1 perseant * block and the segment usage information.
575 1.1 perseant */
576 1.1 perseant for (i = nblocks; i--; ++sp->start_bpp) {
577 1.1 perseant sbp = *sp->start_bpp;
578 1.1 perseant lbn = *sp->start_lbp;
579 1.1 perseant
580 1.1 perseant sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
581 1.1 perseant
582 1.1 perseant /*
583 1.1 perseant * If we write a frag in the wrong place, the cleaner won't
584 1.1 perseant * be able to correctly identify its size later, and the
585 1.1 perseant * segment will be uncleanable. (Even worse, it will assume
586 1.1 perseant * that the indirect block that actually ends the list
587 1.1 perseant * is of a smaller size!)
588 1.1 perseant */
589 1.1 perseant if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
590 1.1 perseant errx(1, "lfs_updatemeta: fragment is not last block");
591 1.1 perseant
592 1.1 perseant /*
593 1.1 perseant * For each subblock in this possibly oversized block,
594 1.1 perseant * update its address on disk.
595 1.1 perseant */
596 1.1 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
597 1.1 perseant bytesleft -= fs->lfs_bsize) {
598 1.1 perseant size = MIN(bytesleft, fs->lfs_bsize);
599 1.1 perseant bb = fragstofsb(fs, numfrags(fs, size));
600 1.1 perseant lbn = *sp->start_lbp++;
601 1.1 perseant lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
602 1.1 perseant fs->lfs_offset += bb;
603 1.1 perseant }
604 1.1 perseant
605 1.1 perseant }
606 1.1 perseant }
607 1.1 perseant
608 1.1 perseant /*
609 1.1 perseant * Start a new segment.
610 1.1 perseant */
611 1.1 perseant int
612 1.1 perseant lfs_initseg(struct lfs * fs)
613 1.1 perseant {
614 1.1 perseant struct segment *sp;
615 1.1 perseant SEGUSE *sup;
616 1.1 perseant SEGSUM *ssp;
617 1.1 perseant struct ubuf *bp, *sbp;
618 1.1 perseant int repeat;
619 1.1 perseant
620 1.1 perseant sp = fs->lfs_sp;
621 1.1 perseant
622 1.1 perseant repeat = 0;
623 1.1 perseant
624 1.1 perseant /* Advance to the next segment. */
625 1.1 perseant if (!LFS_PARTIAL_FITS(fs)) {
626 1.1 perseant /* lfs_avail eats the remaining space */
627 1.1 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
628 1.1 perseant fs->lfs_curseg);
629 1.1 perseant lfs_newseg(fs);
630 1.1 perseant repeat = 1;
631 1.1 perseant fs->lfs_offset = fs->lfs_curseg;
632 1.1 perseant
633 1.1 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
634 1.1 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
635 1.1 perseant
636 1.1 perseant /*
637 1.1 perseant * If the segment contains a superblock, update the offset
638 1.1 perseant * and summary address to skip over it.
639 1.1 perseant */
640 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
641 1.1 perseant if (sup->su_flags & SEGUSE_SUPERBLOCK) {
642 1.1 perseant fs->lfs_offset += btofsb(fs, LFS_SBPAD);
643 1.1 perseant sp->seg_bytes_left -= LFS_SBPAD;
644 1.1 perseant }
645 1.1 perseant brelse(bp);
646 1.1 perseant /* Segment zero could also contain the labelpad */
647 1.1 perseant if (fs->lfs_version > 1 && sp->seg_number == 0 &&
648 1.1 perseant fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
649 1.1 perseant fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
650 1.1 perseant sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
651 1.1 perseant }
652 1.1 perseant } else {
653 1.1 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
654 1.1 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
655 1.1 perseant (fs->lfs_offset - fs->lfs_curseg));
656 1.1 perseant }
657 1.1 perseant fs->lfs_lastpseg = fs->lfs_offset;
658 1.1 perseant
659 1.1 perseant sp->fs = fs;
660 1.1 perseant sp->ibp = NULL;
661 1.1 perseant sp->idp = NULL;
662 1.1 perseant sp->ninodes = 0;
663 1.1 perseant sp->ndupino = 0;
664 1.1 perseant
665 1.1 perseant /* Get a new buffer for SEGSUM and enter it into the buffer list. */
666 1.1 perseant sp->cbpp = sp->bpp;
667 1.1 perseant sbp = *sp->cbpp = getblk(fs->lfs_unlockvp,
668 1.1 perseant fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
669 1.1 perseant sp->segsum = sbp->b_data;
670 1.1 perseant memset(sp->segsum, 0, fs->lfs_sumsize);
671 1.1 perseant sp->start_bpp = ++sp->cbpp;
672 1.1 perseant fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
673 1.1 perseant
674 1.1 perseant /* Set point to SEGSUM, initialize it. */
675 1.1 perseant ssp = sp->segsum;
676 1.1 perseant ssp->ss_next = fs->lfs_nextseg;
677 1.1 perseant ssp->ss_nfinfo = ssp->ss_ninos = 0;
678 1.1 perseant ssp->ss_magic = SS_MAGIC;
679 1.1 perseant
680 1.1 perseant /* Set pointer to first FINFO, initialize it. */
681 1.1 perseant sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
682 1.1 perseant sp->fip->fi_nblocks = 0;
683 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
684 1.1 perseant sp->fip->fi_lastlength = 0;
685 1.1 perseant
686 1.1 perseant sp->seg_bytes_left -= fs->lfs_sumsize;
687 1.1 perseant sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
688 1.1 perseant
689 1.1 perseant LFS_LOCK_BUF(sbp);
690 1.1 perseant brelse(sbp);
691 1.1 perseant return repeat;
692 1.1 perseant }
693 1.1 perseant
694 1.1 perseant /*
695 1.1 perseant * Return the next segment to write.
696 1.1 perseant */
697 1.1 perseant void
698 1.1 perseant lfs_newseg(struct lfs * fs)
699 1.1 perseant {
700 1.1 perseant CLEANERINFO *cip;
701 1.1 perseant SEGUSE *sup;
702 1.1 perseant struct ubuf *bp;
703 1.1 perseant int curseg, isdirty, sn;
704 1.1 perseant
705 1.1 perseant LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
706 1.1 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
707 1.1 perseant sup->su_nbytes = 0;
708 1.1 perseant sup->su_nsums = 0;
709 1.1 perseant sup->su_ninos = 0;
710 1.1 perseant LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
711 1.1 perseant
712 1.1 perseant LFS_CLEANERINFO(cip, fs, bp);
713 1.1 perseant --cip->clean;
714 1.1 perseant ++cip->dirty;
715 1.1 perseant fs->lfs_nclean = cip->clean;
716 1.1 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
717 1.1 perseant
718 1.1 perseant fs->lfs_lastseg = fs->lfs_curseg;
719 1.1 perseant fs->lfs_curseg = fs->lfs_nextseg;
720 1.1 perseant for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
721 1.1 perseant sn = (sn + 1) % fs->lfs_nseg;
722 1.1 perseant if (sn == curseg)
723 1.1 perseant errx(1, "lfs_nextseg: no clean segments");
724 1.1 perseant LFS_SEGENTRY(sup, fs, sn, bp);
725 1.1 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
726 1.1 perseant brelse(bp);
727 1.1 perseant
728 1.1 perseant if (!isdirty)
729 1.1 perseant break;
730 1.1 perseant }
731 1.1 perseant
732 1.1 perseant ++fs->lfs_nactive;
733 1.1 perseant fs->lfs_nextseg = sntod(fs, sn);
734 1.1 perseant }
735 1.1 perseant
736 1.1 perseant
737 1.1 perseant int
738 1.1 perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
739 1.1 perseant {
740 1.1 perseant struct ubuf **bpp, *bp;
741 1.1 perseant SEGUSE *sup;
742 1.1 perseant SEGSUM *ssp;
743 1.1 perseant char *datap, *dp;
744 1.1 perseant int i;
745 1.1 perseant int do_again, nblocks, byteoffset;
746 1.1 perseant size_t el_size;
747 1.1 perseant u_short ninos;
748 1.1 perseant struct uvnode *devvp;
749 1.1 perseant
750 1.1 perseant /*
751 1.1 perseant * If there are no buffers other than the segment summary to write
752 1.1 perseant * and it is not a checkpoint, don't do anything. On a checkpoint,
753 1.1 perseant * even if there aren't any buffers, you need to write the superblock.
754 1.1 perseant */
755 1.1 perseant if ((nblocks = sp->cbpp - sp->bpp) == 1)
756 1.1 perseant return 0;
757 1.1 perseant
758 1.1 perseant devvp = fs->lfs_unlockvp;
759 1.1 perseant
760 1.1 perseant /* Update the segment usage information. */
761 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
762 1.1 perseant
763 1.1 perseant /* Loop through all blocks, except the segment summary. */
764 1.1 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
765 1.1 perseant if ((*bpp)->b_vp != devvp) {
766 1.1 perseant sup->su_nbytes += (*bpp)->b_bcount;
767 1.1 perseant }
768 1.1 perseant }
769 1.1 perseant
770 1.1 perseant ssp = (SEGSUM *) sp->segsum;
771 1.1 perseant
772 1.1 perseant ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
773 1.3 fvdl sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
774 1.1 perseant
775 1.1 perseant if (fs->lfs_version == 1)
776 1.1 perseant sup->su_olastmod = write_time;
777 1.1 perseant else
778 1.1 perseant sup->su_lastmod = write_time;
779 1.1 perseant sup->su_ninos += ninos;
780 1.1 perseant ++sup->su_nsums;
781 1.1 perseant fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
782 1.1 perseant fs->lfs_ibsize));
783 1.1 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
784 1.1 perseant
785 1.1 perseant do_again = !(bp->b_flags & B_GATHERED);
786 1.1 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
787 1.1 perseant
788 1.1 perseant /*
789 1.1 perseant * Compute checksum across data and then across summary; the first
790 1.1 perseant * block (the summary block) is skipped. Set the create time here
791 1.1 perseant * so that it's guaranteed to be later than the inode mod times.
792 1.1 perseant */
793 1.1 perseant if (fs->lfs_version == 1)
794 1.1 perseant el_size = sizeof(u_long);
795 1.1 perseant else
796 1.1 perseant el_size = sizeof(u_int32_t);
797 1.1 perseant datap = dp = malloc(nblocks * el_size);
798 1.1 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
799 1.1 perseant ++bpp;
800 1.1 perseant /* Loop through gop_write cluster blocks */
801 1.1 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
802 1.1 perseant byteoffset += fs->lfs_bsize) {
803 1.1 perseant memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
804 1.1 perseant dp += el_size;
805 1.1 perseant }
806 1.2 perseant bremfree(*bpp);
807 1.1 perseant (*bpp)->b_flags |= B_BUSY;
808 1.1 perseant }
809 1.1 perseant if (fs->lfs_version == 1)
810 1.1 perseant ssp->ss_ocreate = write_time;
811 1.1 perseant else {
812 1.1 perseant ssp->ss_create = write_time;
813 1.1 perseant ssp->ss_serial = ++fs->lfs_serial;
814 1.1 perseant ssp->ss_ident = fs->lfs_ident;
815 1.1 perseant }
816 1.1 perseant /* Set the summary block busy too */
817 1.1 perseant bremfree(*(sp->bpp));
818 1.1 perseant (*(sp->bpp))->b_flags |= B_BUSY;
819 1.1 perseant
820 1.1 perseant ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
821 1.1 perseant ssp->ss_sumsum =
822 1.1 perseant cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
823 1.1 perseant free(datap);
824 1.1 perseant datap = dp = NULL;
825 1.1 perseant fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
826 1.1 perseant btofsb(fs, fs->lfs_sumsize));
827 1.1 perseant
828 1.1 perseant if (devvp == NULL)
829 1.1 perseant errx(1, "devvp is NULL");
830 1.1 perseant for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
831 1.1 perseant bp = *bpp;
832 1.1 perseant #if 0
833 1.2 perseant printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
834 1.1 perseant nblocks - i, bp, bp->b_flags, bp->b_blkno);
835 1.1 perseant printf(" vp = %p\n", bp->b_vp);
836 1.1 perseant if (bp->b_vp != fs->lfs_unlockvp)
837 1.1 perseant printf(" ino = %d lbn = %" PRId64 "\n",
838 1.1 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
839 1.1 perseant #endif
840 1.1 perseant if (bp->b_vp == fs->lfs_unlockvp)
841 1.1 perseant written_dev += bp->b_bcount;
842 1.1 perseant else {
843 1.1 perseant if (bp->b_lblkno >= 0)
844 1.1 perseant written_data += bp->b_bcount;
845 1.1 perseant else
846 1.1 perseant written_indir += bp->b_bcount;
847 1.1 perseant }
848 1.2 perseant bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
849 1.2 perseant B_LOCKED);
850 1.1 perseant bwrite(bp);
851 1.1 perseant written_bytes += bp->b_bcount;
852 1.1 perseant }
853 1.1 perseant written_inodes += ninos;
854 1.1 perseant
855 1.1 perseant return (lfs_initseg(fs) || do_again);
856 1.1 perseant }
857 1.1 perseant
858 1.1 perseant /*
859 1.1 perseant * Our own copy of shellsort. XXX use qsort or heapsort.
860 1.1 perseant */
861 1.1 perseant void
862 1.1 perseant lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
863 1.1 perseant {
864 1.1 perseant static int __rsshell_increments[] = {4, 1, 0};
865 1.1 perseant int incr, *incrp, t1, t2;
866 1.1 perseant struct ubuf *bp_temp;
867 1.1 perseant
868 1.1 perseant for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
869 1.1 perseant for (t1 = incr; t1 < nmemb; ++t1)
870 1.1 perseant for (t2 = t1 - incr; t2 >= 0;)
871 1.1 perseant if ((u_int32_t) bp_array[t2]->b_lblkno >
872 1.1 perseant (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
873 1.1 perseant bp_temp = bp_array[t2];
874 1.1 perseant bp_array[t2] = bp_array[t2 + incr];
875 1.1 perseant bp_array[t2 + incr] = bp_temp;
876 1.1 perseant t2 -= incr;
877 1.1 perseant } else
878 1.1 perseant break;
879 1.1 perseant
880 1.1 perseant /* Reform the list of logical blocks */
881 1.1 perseant incr = 0;
882 1.1 perseant for (t1 = 0; t1 < nmemb; t1++) {
883 1.1 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
884 1.1 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
885 1.1 perseant }
886 1.1 perseant }
887 1.1 perseant }
888 1.1 perseant
889 1.1 perseant
890 1.1 perseant /*
891 1.1 perseant * lfs_seglock --
892 1.1 perseant * Single thread the segment writer.
893 1.1 perseant */
894 1.1 perseant int
895 1.1 perseant lfs_seglock(struct lfs * fs, unsigned long flags)
896 1.1 perseant {
897 1.1 perseant struct segment *sp;
898 1.1 perseant
899 1.1 perseant if (fs->lfs_seglock) {
900 1.1 perseant ++fs->lfs_seglock;
901 1.1 perseant fs->lfs_sp->seg_flags |= flags;
902 1.1 perseant return 0;
903 1.1 perseant }
904 1.1 perseant fs->lfs_seglock = 1;
905 1.1 perseant
906 1.1 perseant sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
907 1.1 perseant sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
908 1.1 perseant sp->seg_flags = flags;
909 1.1 perseant sp->vp = NULL;
910 1.1 perseant sp->seg_iocount = 0;
911 1.1 perseant (void) lfs_initseg(fs);
912 1.1 perseant
913 1.1 perseant return 0;
914 1.1 perseant }
915 1.1 perseant
916 1.1 perseant /*
917 1.1 perseant * lfs_segunlock --
918 1.1 perseant * Single thread the segment writer.
919 1.1 perseant */
920 1.1 perseant void
921 1.1 perseant lfs_segunlock(struct lfs * fs)
922 1.1 perseant {
923 1.1 perseant struct segment *sp;
924 1.1 perseant struct ubuf *bp;
925 1.1 perseant
926 1.1 perseant sp = fs->lfs_sp;
927 1.1 perseant
928 1.1 perseant if (fs->lfs_seglock == 1) {
929 1.1 perseant if (sp->bpp != sp->cbpp) {
930 1.1 perseant /* Free allocated segment summary */
931 1.1 perseant fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
932 1.1 perseant bp = *sp->bpp;
933 1.1 perseant bremfree(bp);
934 1.1 perseant bp->b_flags |= B_DONE | B_INVAL;
935 1.1 perseant bp->b_flags &= ~B_DELWRI;
936 1.1 perseant reassignbuf(bp, bp->b_vp);
937 1.1 perseant bp->b_flags |= B_BUSY; /* XXX */
938 1.1 perseant brelse(bp);
939 1.1 perseant } else
940 1.1 perseant printf("unlock to 0 with no summary");
941 1.1 perseant
942 1.1 perseant free(sp->bpp);
943 1.1 perseant sp->bpp = NULL;
944 1.1 perseant free(sp);
945 1.1 perseant fs->lfs_sp = NULL;
946 1.1 perseant
947 1.1 perseant fs->lfs_nactive = 0;
948 1.1 perseant
949 1.1 perseant /* Since we *know* everything's on disk, write both sbs */
950 1.4 yamt lfs_writesuper(fs, fs->lfs_sboffs[0]);
951 1.4 yamt lfs_writesuper(fs, fs->lfs_sboffs[1]);
952 1.1 perseant
953 1.1 perseant --fs->lfs_seglock;
954 1.1 perseant fs->lfs_lockpid = 0;
955 1.1 perseant } else if (fs->lfs_seglock == 0) {
956 1.1 perseant errx(1, "Seglock not held");
957 1.1 perseant } else {
958 1.1 perseant --fs->lfs_seglock;
959 1.1 perseant }
960 1.1 perseant }
961 1.1 perseant
962 1.1 perseant int
963 1.1 perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
964 1.1 perseant {
965 1.1 perseant struct inode *ip;
966 1.1 perseant struct uvnode *vp;
967 1.1 perseant int inodes_written = 0;
968 1.1 perseant
969 1.1 perseant LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
970 1.1 perseant if (vp->v_bmap_op != lfs_vop_bmap)
971 1.1 perseant continue;
972 1.1 perseant
973 1.1 perseant ip = VTOI(vp);
974 1.1 perseant
975 1.1 perseant if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
976 1.1 perseant (op != VN_DIROP && (vp->v_flag & VDIROP))) {
977 1.1 perseant continue;
978 1.1 perseant }
979 1.1 perseant /*
980 1.1 perseant * Write the inode/file if dirty and it's not the IFILE.
981 1.1 perseant */
982 1.1 perseant if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
983 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
984 1.1 perseant lfs_writefile(fs, sp, vp);
985 1.1 perseant (void) lfs_writeinode(fs, sp, ip);
986 1.1 perseant inodes_written++;
987 1.1 perseant }
988 1.1 perseant }
989 1.1 perseant return inodes_written;
990 1.1 perseant }
991 1.1 perseant
992 1.1 perseant void
993 1.1 perseant lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
994 1.1 perseant {
995 1.1 perseant struct ubuf *bp;
996 1.1 perseant
997 1.1 perseant /* Set timestamp of this version of the superblock */
998 1.1 perseant if (fs->lfs_version == 1)
999 1.1 perseant fs->lfs_otstamp = write_time;
1000 1.1 perseant fs->lfs_tstamp = write_time;
1001 1.1 perseant
1002 1.1 perseant /* Checksum the superblock and copy it into a buffer. */
1003 1.1 perseant fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1004 1.1 perseant assert(daddr > 0);
1005 1.1 perseant bp = getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr), LFS_SBPAD);
1006 1.1 perseant memset(bp->b_data + sizeof(struct dlfs), 0,
1007 1.1 perseant LFS_SBPAD - sizeof(struct dlfs));
1008 1.1 perseant *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1009 1.1 perseant
1010 1.1 perseant bwrite(bp);
1011 1.1 perseant }
1012