segwrite.c revision 1.48 1 1.48 msaitoh /* $NetBSD: segwrite.c,v 1.48 2020/05/14 08:34:17 msaitoh Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant *
18 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
29 1.1 perseant */
30 1.1 perseant /*
31 1.1 perseant * Copyright (c) 1991, 1993
32 1.1 perseant * The Regents of the University of California. All rights reserved.
33 1.1 perseant *
34 1.1 perseant * Redistribution and use in source and binary forms, with or without
35 1.1 perseant * modification, are permitted provided that the following conditions
36 1.1 perseant * are met:
37 1.1 perseant * 1. Redistributions of source code must retain the above copyright
38 1.1 perseant * notice, this list of conditions and the following disclaimer.
39 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
40 1.1 perseant * notice, this list of conditions and the following disclaimer in the
41 1.1 perseant * documentation and/or other materials provided with the distribution.
42 1.5 agc * 3. Neither the name of the University nor the names of its contributors
43 1.1 perseant * may be used to endorse or promote products derived from this software
44 1.1 perseant * without specific prior written permission.
45 1.1 perseant *
46 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 1.1 perseant * SUCH DAMAGE.
57 1.1 perseant *
58 1.1 perseant * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 1.1 perseant */
60 1.1 perseant
61 1.1 perseant /*
62 1.1 perseant * Partial segment writer, taken from the kernel and adapted for userland.
63 1.1 perseant */
64 1.1 perseant #include <sys/types.h>
65 1.1 perseant #include <sys/param.h>
66 1.1 perseant #include <sys/time.h>
67 1.1 perseant #include <sys/buf.h>
68 1.1 perseant #include <sys/mount.h>
69 1.1 perseant
70 1.1 perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
71 1.23 dholland #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
72 1.1 perseant #define vnode uvnode
73 1.1 perseant #define buf ubuf
74 1.1 perseant #define panic call_panic
75 1.1 perseant
76 1.1 perseant #include <ufs/lfs/lfs.h>
77 1.34 dholland #include <ufs/lfs/lfs_accessors.h>
78 1.25 dholland #include <ufs/lfs/lfs_inode.h>
79 1.1 perseant
80 1.1 perseant #include <assert.h>
81 1.1 perseant #include <stdio.h>
82 1.1 perseant #include <stdlib.h>
83 1.1 perseant #include <string.h>
84 1.1 perseant #include <err.h>
85 1.1 perseant #include <errno.h>
86 1.15 christos #include <util.h>
87 1.1 perseant
88 1.1 perseant #include "bufcache.h"
89 1.47 joerg #include "extern.h"
90 1.10 christos #include "lfs_user.h"
91 1.1 perseant #include "segwrite.h"
92 1.1 perseant
93 1.1 perseant /* Compatibility definitions */
94 1.1 perseant off_t written_bytes = 0;
95 1.1 perseant off_t written_data = 0;
96 1.1 perseant off_t written_indir = 0;
97 1.1 perseant off_t written_dev = 0;
98 1.1 perseant int written_inodes = 0;
99 1.1 perseant
100 1.1 perseant /* Global variables */
101 1.1 perseant time_t write_time;
102 1.1 perseant
103 1.40 dholland static void lfs_shellsort(struct lfs *,
104 1.40 dholland struct ubuf **, union lfs_blocks *, int, int);
105 1.40 dholland
106 1.1 perseant /*
107 1.1 perseant * Logical block number match routines used when traversing the dirty block
108 1.1 perseant * chain.
109 1.1 perseant */
110 1.1 perseant int
111 1.1 perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
112 1.1 perseant {
113 1.1 perseant return (bp->b_lblkno >= 0);
114 1.1 perseant }
115 1.1 perseant
116 1.1 perseant int
117 1.1 perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
118 1.1 perseant {
119 1.1 perseant daddr_t lbn;
120 1.1 perseant
121 1.1 perseant lbn = bp->b_lblkno;
122 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
123 1.1 perseant }
124 1.1 perseant
125 1.1 perseant int
126 1.1 perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
127 1.1 perseant {
128 1.1 perseant daddr_t lbn;
129 1.1 perseant
130 1.1 perseant lbn = bp->b_lblkno;
131 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
132 1.1 perseant }
133 1.1 perseant
134 1.1 perseant int
135 1.1 perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
136 1.1 perseant {
137 1.1 perseant daddr_t lbn;
138 1.1 perseant
139 1.1 perseant lbn = bp->b_lblkno;
140 1.26 christos return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
141 1.1 perseant }
142 1.1 perseant
143 1.1 perseant /*
144 1.1 perseant * Do a checkpoint.
145 1.1 perseant */
146 1.1 perseant int
147 1.1 perseant lfs_segwrite(struct lfs * fs, int flags)
148 1.1 perseant {
149 1.1 perseant struct inode *ip;
150 1.1 perseant struct segment *sp;
151 1.1 perseant struct uvnode *vp;
152 1.39 dholland SEGSUM *ssp;
153 1.1 perseant int redo;
154 1.1 perseant
155 1.1 perseant lfs_seglock(fs, flags | SEGM_CKP);
156 1.1 perseant sp = fs->lfs_sp;
157 1.1 perseant
158 1.1 perseant lfs_writevnodes(fs, sp, VN_REG);
159 1.1 perseant lfs_writevnodes(fs, sp, VN_DIROP);
160 1.39 dholland ssp = (SEGSUM *)sp->segsum;
161 1.39 dholland lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) & ~(SS_CONT));
162 1.1 perseant
163 1.1 perseant do {
164 1.1 perseant vp = fs->lfs_ivnode;
165 1.1 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
166 1.1 perseant ip = VTOI(vp);
167 1.32 dholland if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || lfs_sb_getidaddr(fs) <= 0)
168 1.1 perseant lfs_writefile(fs, sp, vp);
169 1.1 perseant
170 1.1 perseant redo = lfs_writeinode(fs, sp, ip);
171 1.1 perseant redo += lfs_writeseg(fs, sp);
172 1.1 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
173 1.1 perseant } while (redo);
174 1.1 perseant
175 1.1 perseant lfs_segunlock(fs);
176 1.1 perseant #if 0
177 1.1 perseant printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
178 1.26 christos written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
179 1.1 perseant printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
180 1.26 christos written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
181 1.1 perseant printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
182 1.26 christos written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
183 1.1 perseant printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
184 1.26 christos written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
185 1.1 perseant printf("wrote %d inodes (%" PRId32 " fsb)\n",
186 1.26 christos written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
187 1.1 perseant #endif
188 1.1 perseant return 0;
189 1.1 perseant }
190 1.1 perseant
191 1.1 perseant /*
192 1.1 perseant * Write the dirty blocks associated with a vnode.
193 1.1 perseant */
194 1.1 perseant void
195 1.1 perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
196 1.1 perseant {
197 1.1 perseant struct ubuf *bp;
198 1.40 dholland FINFO *fip;
199 1.1 perseant struct inode *ip;
200 1.1 perseant IFILE *ifp;
201 1.39 dholland SEGSUM *ssp;
202 1.1 perseant
203 1.1 perseant ip = VTOI(vp);
204 1.1 perseant
205 1.32 dholland if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
206 1.40 dholland sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs))
207 1.1 perseant (void) lfs_writeseg(fs, sp);
208 1.1 perseant
209 1.40 dholland sp->sum_bytes_left -= FINFOSIZE(fs);
210 1.39 dholland ssp = (SEGSUM *)sp->segsum;
211 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
212 1.1 perseant
213 1.39 dholland if (vp->v_uflag & VU_DIROP) {
214 1.39 dholland lfs_ss_setflags(fs, ssp,
215 1.39 dholland lfs_ss_getflags(fs, ssp) | (SS_DIROP | SS_CONT));
216 1.39 dholland }
217 1.1 perseant
218 1.1 perseant fip = sp->fip;
219 1.40 dholland lfs_fi_setnblocks(fs, fip, 0);
220 1.40 dholland lfs_fi_setino(fs, fip, ip->i_number);
221 1.40 dholland LFS_IENTRY(ifp, fs, lfs_fi_getino(fs, fip), bp);
222 1.40 dholland lfs_fi_setversion(fs, fip, lfs_if_getversion(fs, ifp));
223 1.16 ad brelse(bp, 0);
224 1.1 perseant
225 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_data);
226 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
227 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
228 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
229 1.1 perseant
230 1.1 perseant fip = sp->fip;
231 1.40 dholland if (lfs_fi_getnblocks(fs, fip) != 0) {
232 1.39 dholland sp->fip = NEXT_FINFO(fs, fip);
233 1.40 dholland lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
234 1.1 perseant } else {
235 1.40 dholland /* XXX shouldn't this update sp->fip? */
236 1.40 dholland sp->sum_bytes_left += FINFOSIZE(fs);
237 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1);
238 1.1 perseant }
239 1.1 perseant }
240 1.1 perseant
241 1.1 perseant int
242 1.1 perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
243 1.1 perseant {
244 1.1 perseant struct ubuf *bp, *ibp;
245 1.41 dholland union lfs_dinode *cdp;
246 1.1 perseant IFILE *ifp;
247 1.1 perseant SEGUSE *sup;
248 1.39 dholland SEGSUM *ssp;
249 1.1 perseant daddr_t daddr;
250 1.1 perseant ino_t ino;
251 1.45 dholland IINFO *iip;
252 1.45 dholland int i, fsb = 0;
253 1.1 perseant int redo_ifile = 0;
254 1.1 perseant struct timespec ts;
255 1.1 perseant int gotblk = 0;
256 1.1 perseant
257 1.1 perseant /* Allocate a new inode block if necessary. */
258 1.1 perseant if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
259 1.1 perseant sp->ibp == NULL) {
260 1.1 perseant /* Allocate a new segment if necessary. */
261 1.33 dholland if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
262 1.44 dholland sp->sum_bytes_left < LFS_BLKPTRSIZE(fs))
263 1.1 perseant (void) lfs_writeseg(fs, sp);
264 1.1 perseant
265 1.1 perseant /* Get next inode block. */
266 1.32 dholland daddr = lfs_sb_getoffset(fs);
267 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
268 1.1 perseant sp->ibp = *sp->cbpp++ =
269 1.26 christos getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
270 1.33 dholland lfs_sb_getibsize(fs));
271 1.1 perseant sp->ibp->b_flags |= B_GATHERED;
272 1.1 perseant gotblk++;
273 1.1 perseant
274 1.1 perseant /* Zero out inode numbers */
275 1.41 dholland for (i = 0; i < LFS_INOPB(fs); ++i) {
276 1.41 dholland union lfs_dinode *tmpdip;
277 1.41 dholland
278 1.41 dholland tmpdip = DINO_IN_BLOCK(fs, sp->ibp->b_data, i);
279 1.41 dholland lfs_dino_setinumber(fs, tmpdip, 0);
280 1.41 dholland }
281 1.1 perseant
282 1.1 perseant ++sp->start_bpp;
283 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
284 1.1 perseant /* Set remaining space counters. */
285 1.32 dholland sp->seg_bytes_left -= lfs_sb_getibsize(fs);
286 1.44 dholland sp->sum_bytes_left -= LFS_BLKPTRSIZE(fs);
287 1.45 dholland
288 1.45 dholland /* Store the address in the segment summary. */
289 1.45 dholland iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs));
290 1.45 dholland lfs_ii_setblock(fs, iip, daddr);
291 1.1 perseant }
292 1.1 perseant /* Update the inode times and copy the inode onto the inode page. */
293 1.1 perseant ts.tv_nsec = 0;
294 1.1 perseant ts.tv_sec = write_time;
295 1.1 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
296 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
297 1.1 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
298 1.1 perseant
299 1.1 perseant /*
300 1.1 perseant * If this is the Ifile, and we've already written the Ifile in this
301 1.1 perseant * partial segment, just overwrite it (it's not on disk yet) and
302 1.1 perseant * continue.
303 1.1 perseant *
304 1.1 perseant * XXX we know that the bp that we get the second time around has
305 1.1 perseant * already been gathered.
306 1.1 perseant */
307 1.1 perseant if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
308 1.42 dholland lfs_copy_dinode(fs, sp->idp, ip->i_din);
309 1.43 dholland ip->i_lfs_osize = lfs_dino_getsize(fs, ip->i_din);
310 1.1 perseant return 0;
311 1.1 perseant }
312 1.1 perseant bp = sp->ibp;
313 1.41 dholland cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
314 1.42 dholland lfs_copy_dinode(fs, cdp, ip->i_din);
315 1.1 perseant
316 1.1 perseant /* If all blocks are goig to disk, update the "size on disk" */
317 1.43 dholland ip->i_lfs_osize = lfs_dino_getsize(fs, ip->i_din);
318 1.1 perseant
319 1.1 perseant if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
320 1.41 dholland sp->idp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs));
321 1.1 perseant if (gotblk) {
322 1.1 perseant LFS_LOCK_BUF(bp);
323 1.12 jnemeth assert(!(bp->b_flags & B_INVAL));
324 1.16 ad brelse(bp, 0);
325 1.1 perseant }
326 1.1 perseant /* Increment inode count in segment summary block. */
327 1.39 dholland ssp = (SEGSUM *)sp->segsum;
328 1.39 dholland lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1);
329 1.1 perseant
330 1.1 perseant /* If this page is full, set flag to allocate a new page. */
331 1.26 christos if (++sp->ninodes % LFS_INOPB(fs) == 0)
332 1.1 perseant sp->ibp = NULL;
333 1.1 perseant
334 1.1 perseant /*
335 1.1 perseant * If updating the ifile, update the super-block. Update the disk
336 1.38 dholland * address for this inode in the ifile.
337 1.1 perseant */
338 1.1 perseant ino = ip->i_number;
339 1.1 perseant if (ino == LFS_IFILE_INUM) {
340 1.32 dholland daddr = lfs_sb_getidaddr(fs);
341 1.32 dholland lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, bp->b_blkno));
342 1.13 perseant sbdirty();
343 1.1 perseant } else {
344 1.1 perseant LFS_IENTRY(ifp, fs, ino, ibp);
345 1.38 dholland daddr = lfs_if_getdaddr(fs, ifp);
346 1.38 dholland lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, bp->b_blkno) + fsb);
347 1.27 christos (void)LFS_BWRITE_LOG(ibp); /* Ifile */
348 1.1 perseant }
349 1.1 perseant
350 1.1 perseant /*
351 1.1 perseant * Account the inode: it no longer belongs to its former segment,
352 1.1 perseant * though it will not belong to the new segment until that segment
353 1.1 perseant * is actually written.
354 1.1 perseant */
355 1.1 perseant if (daddr != LFS_UNUSED_DADDR) {
356 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
357 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
358 1.41 dholland sup->su_nbytes -= DINOSIZE(fs);
359 1.1 perseant redo_ifile =
360 1.1 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
361 1.1 perseant if (redo_ifile)
362 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
363 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
364 1.1 perseant }
365 1.1 perseant return redo_ifile;
366 1.1 perseant }
367 1.1 perseant
368 1.1 perseant int
369 1.1 perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
370 1.1 perseant {
371 1.1 perseant struct lfs *fs;
372 1.39 dholland SEGSUM *ssp;
373 1.1 perseant int version;
374 1.1 perseant int j, blksinblk;
375 1.1 perseant
376 1.1 perseant /*
377 1.1 perseant * If full, finish this segment. We may be doing I/O, so
378 1.1 perseant * release and reacquire the splbio().
379 1.1 perseant */
380 1.1 perseant fs = sp->fs;
381 1.32 dholland blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
382 1.44 dholland if (sp->sum_bytes_left < LFS_BLKPTRSIZE(fs) * blksinblk ||
383 1.1 perseant sp->seg_bytes_left < bp->b_bcount) {
384 1.1 perseant lfs_updatemeta(sp);
385 1.1 perseant
386 1.40 dholland version = lfs_fi_getversion(fs, sp->fip);
387 1.1 perseant (void) lfs_writeseg(fs, sp);
388 1.1 perseant
389 1.40 dholland lfs_fi_setversion(fs, sp->fip, version);
390 1.40 dholland lfs_fi_setino(fs, sp->fip, VTOI(sp->vp)->i_number);
391 1.1 perseant /* Add the current file to the segment summary. */
392 1.39 dholland ssp = (SEGSUM *)sp->segsum;
393 1.39 dholland lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1);
394 1.40 dholland sp->sum_bytes_left -= FINFOSIZE(fs);
395 1.1 perseant
396 1.1 perseant return 1;
397 1.1 perseant }
398 1.1 perseant /* Insert into the buffer list, update the FINFO block. */
399 1.1 perseant bp->b_flags |= B_GATHERED;
400 1.1 perseant /* bp->b_flags &= ~B_DONE; */
401 1.1 perseant
402 1.1 perseant *sp->cbpp++ = bp;
403 1.40 dholland for (j = 0; j < blksinblk; j++) {
404 1.40 dholland unsigned bn;
405 1.40 dholland
406 1.40 dholland bn = lfs_fi_getnblocks(fs, sp->fip);
407 1.40 dholland lfs_fi_setnblocks(fs, sp->fip, bn + 1);
408 1.48 msaitoh lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j);
409 1.40 dholland }
410 1.1 perseant
411 1.44 dholland sp->sum_bytes_left -= LFS_BLKPTRSIZE(fs) * blksinblk;
412 1.1 perseant sp->seg_bytes_left -= bp->b_bcount;
413 1.1 perseant return 0;
414 1.1 perseant }
415 1.1 perseant
416 1.1 perseant int
417 1.1 perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
418 1.1 perseant {
419 1.1 perseant struct ubuf *bp, *nbp;
420 1.1 perseant int count = 0;
421 1.1 perseant
422 1.1 perseant sp->vp = vp;
423 1.1 perseant loop:
424 1.1 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
425 1.1 perseant nbp = LIST_NEXT(bp, b_vnbufs);
426 1.1 perseant
427 1.1 perseant assert(bp->b_flags & B_DELWRI);
428 1.1 perseant if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
429 1.1 perseant continue;
430 1.1 perseant }
431 1.1 perseant if (lfs_gatherblock(sp, bp)) {
432 1.1 perseant goto loop;
433 1.1 perseant }
434 1.1 perseant count++;
435 1.1 perseant }
436 1.1 perseant
437 1.1 perseant lfs_updatemeta(sp);
438 1.1 perseant sp->vp = NULL;
439 1.1 perseant return count;
440 1.1 perseant }
441 1.1 perseant
442 1.1 perseant
443 1.1 perseant /*
444 1.1 perseant * Change the given block's address to ndaddr, finding its previous
445 1.22 dholland * location using ulfs_bmaparray().
446 1.1 perseant *
447 1.1 perseant * Account for this change in the segment table.
448 1.1 perseant */
449 1.44 dholland static void
450 1.1 perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
451 1.44 dholland daddr_t ndaddr, int size)
452 1.1 perseant {
453 1.1 perseant SEGUSE *sup;
454 1.1 perseant struct ubuf *bp;
455 1.22 dholland struct indir a[ULFS_NIADDR + 2], *ap;
456 1.1 perseant struct inode *ip;
457 1.1 perseant struct uvnode *vp;
458 1.1 perseant daddr_t daddr, ooff;
459 1.1 perseant int num, error;
460 1.20 mlelstv int osize;
461 1.20 mlelstv int frags, ofrags;
462 1.1 perseant
463 1.1 perseant vp = sp->vp;
464 1.1 perseant ip = VTOI(vp);
465 1.1 perseant
466 1.22 dholland error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
467 1.1 perseant if (error)
468 1.30 christos errx(EXIT_FAILURE, "%s: ulfs_bmaparray returned %d looking up lbn %"
469 1.30 christos PRId64 "", __func__, error, lbn);
470 1.1 perseant if (daddr > 0)
471 1.26 christos daddr = LFS_DBTOFSB(fs, daddr);
472 1.1 perseant
473 1.26 christos frags = lfs_numfrags(fs, size);
474 1.1 perseant switch (num) {
475 1.1 perseant case 0:
476 1.43 dholland ooff = lfs_dino_getdb(fs, ip->i_din, lbn);
477 1.1 perseant if (ooff == UNWRITTEN)
478 1.43 dholland lfs_dino_setblocks(fs, ip->i_din,
479 1.43 dholland lfs_dino_getblocks(fs, ip->i_din) + frags);
480 1.1 perseant else {
481 1.1 perseant /* possible fragment truncation or extension */
482 1.26 christos ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
483 1.43 dholland lfs_dino_setblocks(fs, ip->i_din,
484 1.43 dholland lfs_dino_getblocks(fs, ip->i_din) + (frags - ofrags));
485 1.1 perseant }
486 1.43 dholland lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr);
487 1.1 perseant break;
488 1.1 perseant case 1:
489 1.43 dholland ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off);
490 1.1 perseant if (ooff == UNWRITTEN)
491 1.43 dholland lfs_dino_setblocks(fs, ip->i_din,
492 1.43 dholland lfs_dino_getblocks(fs, ip->i_din) + frags);
493 1.43 dholland lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr);
494 1.1 perseant break;
495 1.1 perseant default:
496 1.1 perseant ap = &a[num - 1];
497 1.32 dholland if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 0, &bp))
498 1.30 christos errx(EXIT_FAILURE, "%s: bread bno %" PRId64, __func__,
499 1.1 perseant ap->in_lbn);
500 1.1 perseant
501 1.43 dholland ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off);
502 1.1 perseant if (ooff == UNWRITTEN)
503 1.43 dholland lfs_dino_setblocks(fs, ip->i_din,
504 1.43 dholland lfs_dino_getblocks(fs, ip->i_din) + frags);
505 1.43 dholland lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr);
506 1.1 perseant (void) VOP_BWRITE(bp);
507 1.1 perseant }
508 1.1 perseant
509 1.1 perseant /*
510 1.1 perseant * Update segment usage information, based on old size
511 1.1 perseant * and location.
512 1.1 perseant */
513 1.1 perseant if (daddr > 0) {
514 1.26 christos u_int32_t oldsn = lfs_dtosn(fs, daddr);
515 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
516 1.1 perseant osize = ip->i_lfs_fragsize[lbn];
517 1.1 perseant else
518 1.32 dholland osize = lfs_sb_getbsize(fs);
519 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
520 1.1 perseant sup->su_nbytes -= osize;
521 1.1 perseant if (!(bp->b_flags & B_GATHERED))
522 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
523 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
524 1.1 perseant }
525 1.1 perseant /*
526 1.1 perseant * Now that this block has a new address, and its old
527 1.1 perseant * segment no longer owns it, we can forget about its
528 1.1 perseant * old size.
529 1.1 perseant */
530 1.22 dholland if (lbn >= 0 && lbn < ULFS_NDADDR)
531 1.1 perseant ip->i_lfs_fragsize[lbn] = size;
532 1.1 perseant }
533 1.1 perseant
534 1.1 perseant /*
535 1.1 perseant * Update the metadata that points to the blocks listed in the FINFO
536 1.1 perseant * array.
537 1.1 perseant */
538 1.1 perseant void
539 1.1 perseant lfs_updatemeta(struct segment * sp)
540 1.1 perseant {
541 1.1 perseant struct ubuf *sbp;
542 1.1 perseant struct lfs *fs;
543 1.1 perseant struct uvnode *vp;
544 1.1 perseant daddr_t lbn;
545 1.1 perseant int i, nblocks, num;
546 1.20 mlelstv int frags;
547 1.1 perseant int bytesleft, size;
548 1.40 dholland union lfs_blocks tmpptr;
549 1.1 perseant
550 1.40 dholland fs = sp->fs;
551 1.1 perseant vp = sp->vp;
552 1.40 dholland
553 1.40 dholland /*
554 1.40 dholland * This code was cutpasted from the kernel. See the
555 1.40 dholland * corresponding comment in lfs_segment.c.
556 1.40 dholland */
557 1.40 dholland #if 0
558 1.1 perseant nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
559 1.40 dholland #else
560 1.40 dholland lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip));
561 1.40 dholland nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp);
562 1.40 dholland //nblocks_orig = nblocks;
563 1.40 dholland #endif
564 1.1 perseant
565 1.1 perseant if (vp == NULL || nblocks == 0)
566 1.1 perseant return;
567 1.1 perseant
568 1.1 perseant /*
569 1.1 perseant * This count may be high due to oversize blocks from lfs_gop_write.
570 1.1 perseant * Correct for this. (XXX we should be able to keep track of these.)
571 1.1 perseant */
572 1.1 perseant for (i = 0; i < nblocks; i++) {
573 1.1 perseant if (sp->start_bpp[i] == NULL) {
574 1.1 perseant printf("nblocks = %d, not %d\n", i, nblocks);
575 1.1 perseant nblocks = i;
576 1.1 perseant break;
577 1.1 perseant }
578 1.32 dholland num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
579 1.1 perseant nblocks -= num - 1;
580 1.1 perseant }
581 1.1 perseant
582 1.1 perseant /*
583 1.1 perseant * Sort the blocks.
584 1.1 perseant */
585 1.40 dholland lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
586 1.1 perseant
587 1.1 perseant /*
588 1.1 perseant * Record the length of the last block in case it's a fragment.
589 1.1 perseant * If there are indirect blocks present, they sort last. An
590 1.1 perseant * indirect block will be lfs_bsize and its presence indicates
591 1.1 perseant * that you cannot have fragments.
592 1.1 perseant */
593 1.40 dholland lfs_fi_setlastlength(fs, sp->fip, ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
594 1.40 dholland lfs_sb_getbmask(fs)) + 1);
595 1.1 perseant
596 1.1 perseant /*
597 1.1 perseant * Assign disk addresses, and update references to the logical
598 1.1 perseant * block and the segment usage information.
599 1.1 perseant */
600 1.1 perseant for (i = nblocks; i--; ++sp->start_bpp) {
601 1.1 perseant sbp = *sp->start_bpp;
602 1.40 dholland lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
603 1.1 perseant
604 1.32 dholland sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
605 1.1 perseant
606 1.1 perseant /*
607 1.1 perseant * If we write a frag in the wrong place, the cleaner won't
608 1.1 perseant * be able to correctly identify its size later, and the
609 1.1 perseant * segment will be uncleanable. (Even worse, it will assume
610 1.1 perseant * that the indirect block that actually ends the list
611 1.1 perseant * is of a smaller size!)
612 1.1 perseant */
613 1.33 dholland if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
614 1.30 christos errx(EXIT_FAILURE, "%s: fragment is not last block", __func__);
615 1.1 perseant
616 1.1 perseant /*
617 1.1 perseant * For each subblock in this possibly oversized block,
618 1.1 perseant * update its address on disk.
619 1.1 perseant */
620 1.1 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
621 1.32 dholland bytesleft -= lfs_sb_getbsize(fs)) {
622 1.32 dholland size = MIN(bytesleft, lfs_sb_getbsize(fs));
623 1.26 christos frags = lfs_numfrags(fs, size);
624 1.40 dholland lbn = lfs_blocks_get(fs, &sp->start_lbp, 0);
625 1.40 dholland lfs_blocks_inc(fs, &sp->start_lbp);
626 1.32 dholland lfs_update_single(fs, sp, lbn, lfs_sb_getoffset(fs), size);
627 1.32 dholland lfs_sb_addoffset(fs, frags);
628 1.1 perseant }
629 1.1 perseant
630 1.1 perseant }
631 1.1 perseant }
632 1.1 perseant
633 1.1 perseant /*
634 1.1 perseant * Start a new segment.
635 1.1 perseant */
636 1.1 perseant int
637 1.1 perseant lfs_initseg(struct lfs * fs)
638 1.1 perseant {
639 1.1 perseant struct segment *sp;
640 1.1 perseant SEGUSE *sup;
641 1.1 perseant SEGSUM *ssp;
642 1.1 perseant struct ubuf *bp, *sbp;
643 1.1 perseant int repeat;
644 1.1 perseant
645 1.1 perseant sp = fs->lfs_sp;
646 1.1 perseant
647 1.1 perseant repeat = 0;
648 1.1 perseant
649 1.1 perseant /* Advance to the next segment. */
650 1.1 perseant if (!LFS_PARTIAL_FITS(fs)) {
651 1.1 perseant /* lfs_avail eats the remaining space */
652 1.32 dholland lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
653 1.32 dholland lfs_sb_getcurseg(fs)));
654 1.1 perseant lfs_newseg(fs);
655 1.1 perseant repeat = 1;
656 1.32 dholland lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
657 1.1 perseant
658 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
659 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
660 1.1 perseant
661 1.1 perseant /*
662 1.1 perseant * If the segment contains a superblock, update the offset
663 1.1 perseant * and summary address to skip over it.
664 1.1 perseant */
665 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
666 1.1 perseant if (sup->su_flags & SEGUSE_SUPERBLOCK) {
667 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
668 1.1 perseant sp->seg_bytes_left -= LFS_SBPAD;
669 1.1 perseant }
670 1.16 ad brelse(bp, 0);
671 1.1 perseant /* Segment zero could also contain the labelpad */
672 1.35 dholland if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
673 1.33 dholland lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
674 1.33 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
675 1.33 dholland sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
676 1.1 perseant }
677 1.1 perseant } else {
678 1.32 dholland sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
679 1.32 dholland sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
680 1.32 dholland (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
681 1.1 perseant }
682 1.32 dholland lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
683 1.1 perseant
684 1.1 perseant sp->fs = fs;
685 1.1 perseant sp->ibp = NULL;
686 1.1 perseant sp->idp = NULL;
687 1.1 perseant sp->ninodes = 0;
688 1.1 perseant sp->ndupino = 0;
689 1.1 perseant
690 1.1 perseant /* Get a new buffer for SEGSUM and enter it into the buffer list. */
691 1.1 perseant sp->cbpp = sp->bpp;
692 1.8 perseant sbp = *sp->cbpp = getblk(fs->lfs_devvp,
693 1.32 dholland LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs));
694 1.1 perseant sp->segsum = sbp->b_data;
695 1.32 dholland memset(sp->segsum, 0, lfs_sb_getsumsize(fs));
696 1.1 perseant sp->start_bpp = ++sp->cbpp;
697 1.32 dholland lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
698 1.1 perseant
699 1.1 perseant /* Set point to SEGSUM, initialize it. */
700 1.1 perseant ssp = sp->segsum;
701 1.39 dholland lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs));
702 1.39 dholland lfs_ss_setnfinfo(fs, ssp, 0);
703 1.39 dholland lfs_ss_setninos(fs, ssp, 0);
704 1.39 dholland lfs_ss_setmagic(fs, ssp, SS_MAGIC);
705 1.1 perseant
706 1.1 perseant /* Set pointer to first FINFO, initialize it. */
707 1.39 dholland sp->fip = SEGSUM_FINFOBASE(fs, ssp);
708 1.40 dholland lfs_fi_setnblocks(fs, sp->fip, 0);
709 1.40 dholland lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip);
710 1.40 dholland lfs_fi_setlastlength(fs, sp->fip, 0);
711 1.1 perseant
712 1.32 dholland sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
713 1.32 dholland sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
714 1.1 perseant
715 1.1 perseant LFS_LOCK_BUF(sbp);
716 1.16 ad brelse(sbp, 0);
717 1.1 perseant return repeat;
718 1.1 perseant }
719 1.1 perseant
720 1.1 perseant /*
721 1.1 perseant * Return the next segment to write.
722 1.1 perseant */
723 1.1 perseant void
724 1.1 perseant lfs_newseg(struct lfs * fs)
725 1.1 perseant {
726 1.1 perseant CLEANERINFO *cip;
727 1.1 perseant SEGUSE *sup;
728 1.1 perseant struct ubuf *bp;
729 1.1 perseant int curseg, isdirty, sn;
730 1.1 perseant
731 1.32 dholland LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
732 1.1 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
733 1.1 perseant sup->su_nbytes = 0;
734 1.1 perseant sup->su_nsums = 0;
735 1.1 perseant sup->su_ninos = 0;
736 1.32 dholland LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
737 1.1 perseant
738 1.1 perseant LFS_CLEANERINFO(cip, fs, bp);
739 1.37 dholland lfs_ci_shiftcleantodirty(fs, cip, 1);
740 1.37 dholland lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
741 1.1 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
742 1.1 perseant
743 1.32 dholland lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
744 1.32 dholland lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
745 1.32 dholland for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
746 1.33 dholland sn = (sn + 1) % lfs_sb_getnseg(fs);
747 1.1 perseant if (sn == curseg)
748 1.30 christos errx(EXIT_FAILURE, "%s: no clean segments", __func__);
749 1.1 perseant LFS_SEGENTRY(sup, fs, sn, bp);
750 1.1 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
751 1.16 ad brelse(bp, 0);
752 1.1 perseant
753 1.1 perseant if (!isdirty)
754 1.1 perseant break;
755 1.1 perseant }
756 1.1 perseant
757 1.1 perseant ++fs->lfs_nactive;
758 1.32 dholland lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
759 1.1 perseant }
760 1.1 perseant
761 1.1 perseant
762 1.1 perseant int
763 1.1 perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
764 1.1 perseant {
765 1.1 perseant struct ubuf **bpp, *bp;
766 1.1 perseant SEGUSE *sup;
767 1.1 perseant SEGSUM *ssp;
768 1.1 perseant char *datap, *dp;
769 1.1 perseant int i;
770 1.1 perseant int do_again, nblocks, byteoffset;
771 1.1 perseant size_t el_size;
772 1.1 perseant u_short ninos;
773 1.39 dholland size_t sumstart;
774 1.1 perseant struct uvnode *devvp;
775 1.1 perseant
776 1.1 perseant /*
777 1.1 perseant * If there are no buffers other than the segment summary to write
778 1.1 perseant * and it is not a checkpoint, don't do anything. On a checkpoint,
779 1.1 perseant * even if there aren't any buffers, you need to write the superblock.
780 1.1 perseant */
781 1.13 perseant nblocks = sp->cbpp - sp->bpp;
782 1.13 perseant #if 0
783 1.13 perseant printf("write %d blocks at 0x%x\n",
784 1.26 christos nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
785 1.13 perseant #endif
786 1.13 perseant if (nblocks == 1)
787 1.1 perseant return 0;
788 1.1 perseant
789 1.8 perseant devvp = fs->lfs_devvp;
790 1.1 perseant
791 1.1 perseant /* Update the segment usage information. */
792 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
793 1.13 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
794 1.1 perseant
795 1.1 perseant /* Loop through all blocks, except the segment summary. */
796 1.1 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
797 1.1 perseant if ((*bpp)->b_vp != devvp) {
798 1.1 perseant sup->su_nbytes += (*bpp)->b_bcount;
799 1.1 perseant }
800 1.26 christos assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
801 1.1 perseant }
802 1.1 perseant
803 1.1 perseant ssp = (SEGSUM *) sp->segsum;
804 1.39 dholland lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RFW);
805 1.1 perseant
806 1.39 dholland ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
807 1.41 dholland sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs);
808 1.1 perseant
809 1.35 dholland if (lfs_sb_getversion(fs) == 1)
810 1.1 perseant sup->su_olastmod = write_time;
811 1.1 perseant else
812 1.1 perseant sup->su_lastmod = write_time;
813 1.1 perseant sup->su_ninos += ninos;
814 1.1 perseant ++sup->su_nsums;
815 1.33 dholland lfs_sb_adddmeta(fs, (lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + lfs_btofsb(fs, ninos *
816 1.33 dholland lfs_sb_getibsize(fs))));
817 1.32 dholland lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
818 1.1 perseant
819 1.1 perseant do_again = !(bp->b_flags & B_GATHERED);
820 1.1 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
821 1.1 perseant
822 1.1 perseant /*
823 1.1 perseant * Compute checksum across data and then across summary; the first
824 1.1 perseant * block (the summary block) is skipped. Set the create time here
825 1.1 perseant * so that it's guaranteed to be later than the inode mod times.
826 1.1 perseant */
827 1.35 dholland if (lfs_sb_getversion(fs) == 1)
828 1.1 perseant el_size = sizeof(u_long);
829 1.1 perseant else
830 1.1 perseant el_size = sizeof(u_int32_t);
831 1.15 christos datap = dp = emalloc(nblocks * el_size);
832 1.1 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
833 1.1 perseant ++bpp;
834 1.1 perseant /* Loop through gop_write cluster blocks */
835 1.1 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
836 1.32 dholland byteoffset += lfs_sb_getbsize(fs)) {
837 1.1 perseant memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
838 1.1 perseant dp += el_size;
839 1.1 perseant }
840 1.2 perseant bremfree(*bpp);
841 1.1 perseant (*bpp)->b_flags |= B_BUSY;
842 1.1 perseant }
843 1.35 dholland if (lfs_sb_getversion(fs) == 1)
844 1.39 dholland lfs_ss_setocreate(fs, ssp, write_time);
845 1.1 perseant else {
846 1.39 dholland lfs_ss_setcreate(fs, ssp, write_time);
847 1.32 dholland lfs_sb_addserial(fs, 1);
848 1.39 dholland lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs));
849 1.39 dholland lfs_ss_setident(fs, ssp, lfs_sb_getident(fs));
850 1.1 perseant }
851 1.1 perseant /* Set the summary block busy too */
852 1.1 perseant bremfree(*(sp->bpp));
853 1.1 perseant (*(sp->bpp))->b_flags |= B_BUSY;
854 1.1 perseant
855 1.39 dholland lfs_ss_setdatasum(fs, ssp, cksum(datap, (nblocks - 1) * el_size));
856 1.39 dholland sumstart = lfs_ss_getsumstart(fs);
857 1.39 dholland lfs_ss_setsumsum(fs, ssp,
858 1.39 dholland cksum((char *)ssp + sumstart, lfs_sb_getsumsize(fs) - sumstart));
859 1.1 perseant free(datap);
860 1.1 perseant datap = dp = NULL;
861 1.32 dholland lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
862 1.32 dholland lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
863 1.1 perseant
864 1.1 perseant if (devvp == NULL)
865 1.30 christos errx(EXIT_FAILURE, "devvp is NULL");
866 1.1 perseant for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
867 1.1 perseant bp = *bpp;
868 1.1 perseant #if 0
869 1.2 perseant printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
870 1.1 perseant nblocks - i, bp, bp->b_flags, bp->b_blkno);
871 1.1 perseant printf(" vp = %p\n", bp->b_vp);
872 1.8 perseant if (bp->b_vp != fs->lfs_devvp)
873 1.1 perseant printf(" ino = %d lbn = %" PRId64 "\n",
874 1.1 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
875 1.1 perseant #endif
876 1.8 perseant if (bp->b_vp == fs->lfs_devvp)
877 1.1 perseant written_dev += bp->b_bcount;
878 1.1 perseant else {
879 1.1 perseant if (bp->b_lblkno >= 0)
880 1.1 perseant written_data += bp->b_bcount;
881 1.1 perseant else
882 1.1 perseant written_indir += bp->b_bcount;
883 1.1 perseant }
884 1.2 perseant bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
885 1.2 perseant B_LOCKED);
886 1.1 perseant bwrite(bp);
887 1.1 perseant written_bytes += bp->b_bcount;
888 1.1 perseant }
889 1.1 perseant written_inodes += ninos;
890 1.1 perseant
891 1.1 perseant return (lfs_initseg(fs) || do_again);
892 1.1 perseant }
893 1.1 perseant
894 1.1 perseant /*
895 1.1 perseant * Our own copy of shellsort. XXX use qsort or heapsort.
896 1.1 perseant */
897 1.40 dholland static void
898 1.40 dholland lfs_shellsort(struct lfs *fs,
899 1.40 dholland struct ubuf ** bp_array, union lfs_blocks *lb_array, int nmemb, int size)
900 1.1 perseant {
901 1.1 perseant static int __rsshell_increments[] = {4, 1, 0};
902 1.1 perseant int incr, *incrp, t1, t2;
903 1.1 perseant struct ubuf *bp_temp;
904 1.1 perseant
905 1.1 perseant for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
906 1.1 perseant for (t1 = incr; t1 < nmemb; ++t1)
907 1.1 perseant for (t2 = t1 - incr; t2 >= 0;)
908 1.1 perseant if ((u_int32_t) bp_array[t2]->b_lblkno >
909 1.1 perseant (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
910 1.1 perseant bp_temp = bp_array[t2];
911 1.1 perseant bp_array[t2] = bp_array[t2 + incr];
912 1.1 perseant bp_array[t2 + incr] = bp_temp;
913 1.1 perseant t2 -= incr;
914 1.1 perseant } else
915 1.1 perseant break;
916 1.1 perseant
917 1.1 perseant /* Reform the list of logical blocks */
918 1.1 perseant incr = 0;
919 1.1 perseant for (t1 = 0; t1 < nmemb; t1++) {
920 1.1 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
921 1.40 dholland lfs_blocks_set(fs, lb_array, incr++,
922 1.40 dholland bp_array[t1]->b_lblkno + t2);
923 1.1 perseant }
924 1.1 perseant }
925 1.1 perseant }
926 1.1 perseant
927 1.1 perseant
928 1.1 perseant /*
929 1.1 perseant * lfs_seglock --
930 1.1 perseant * Single thread the segment writer.
931 1.1 perseant */
932 1.1 perseant int
933 1.1 perseant lfs_seglock(struct lfs * fs, unsigned long flags)
934 1.1 perseant {
935 1.1 perseant struct segment *sp;
936 1.32 dholland size_t allocsize;
937 1.1 perseant
938 1.1 perseant if (fs->lfs_seglock) {
939 1.1 perseant ++fs->lfs_seglock;
940 1.1 perseant fs->lfs_sp->seg_flags |= flags;
941 1.1 perseant return 0;
942 1.1 perseant }
943 1.1 perseant fs->lfs_seglock = 1;
944 1.1 perseant
945 1.15 christos sp = fs->lfs_sp = emalloc(sizeof(*sp));
946 1.32 dholland allocsize = lfs_sb_getssize(fs) * sizeof(struct ubuf *);
947 1.32 dholland sp->bpp = emalloc(allocsize);
948 1.6 heas if (!sp->bpp)
949 1.32 dholland err(!preen, "Could not allocate %zu bytes", allocsize);
950 1.1 perseant sp->seg_flags = flags;
951 1.1 perseant sp->vp = NULL;
952 1.1 perseant sp->seg_iocount = 0;
953 1.1 perseant (void) lfs_initseg(fs);
954 1.1 perseant
955 1.1 perseant return 0;
956 1.1 perseant }
957 1.1 perseant
958 1.1 perseant /*
959 1.1 perseant * lfs_segunlock --
960 1.1 perseant * Single thread the segment writer.
961 1.1 perseant */
962 1.1 perseant void
963 1.1 perseant lfs_segunlock(struct lfs * fs)
964 1.1 perseant {
965 1.1 perseant struct segment *sp;
966 1.1 perseant struct ubuf *bp;
967 1.1 perseant
968 1.1 perseant sp = fs->lfs_sp;
969 1.1 perseant
970 1.1 perseant if (fs->lfs_seglock == 1) {
971 1.1 perseant if (sp->bpp != sp->cbpp) {
972 1.1 perseant /* Free allocated segment summary */
973 1.32 dholland lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
974 1.1 perseant bp = *sp->bpp;
975 1.1 perseant bremfree(bp);
976 1.1 perseant bp->b_flags |= B_DONE | B_INVAL;
977 1.1 perseant bp->b_flags &= ~B_DELWRI;
978 1.1 perseant reassignbuf(bp, bp->b_vp);
979 1.1 perseant bp->b_flags |= B_BUSY; /* XXX */
980 1.16 ad brelse(bp, 0);
981 1.1 perseant } else
982 1.1 perseant printf("unlock to 0 with no summary");
983 1.1 perseant
984 1.1 perseant free(sp->bpp);
985 1.1 perseant sp->bpp = NULL;
986 1.1 perseant free(sp);
987 1.1 perseant fs->lfs_sp = NULL;
988 1.1 perseant
989 1.1 perseant fs->lfs_nactive = 0;
990 1.1 perseant
991 1.1 perseant /* Since we *know* everything's on disk, write both sbs */
992 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
993 1.33 dholland lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
994 1.1 perseant
995 1.1 perseant --fs->lfs_seglock;
996 1.1 perseant fs->lfs_lockpid = 0;
997 1.1 perseant } else if (fs->lfs_seglock == 0) {
998 1.30 christos errx(EXIT_FAILURE, "Seglock not held");
999 1.1 perseant } else {
1000 1.1 perseant --fs->lfs_seglock;
1001 1.1 perseant }
1002 1.1 perseant }
1003 1.1 perseant
1004 1.1 perseant int
1005 1.1 perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
1006 1.1 perseant {
1007 1.1 perseant struct inode *ip;
1008 1.1 perseant struct uvnode *vp;
1009 1.1 perseant int inodes_written = 0;
1010 1.1 perseant
1011 1.1 perseant LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
1012 1.1 perseant if (vp->v_bmap_op != lfs_vop_bmap)
1013 1.1 perseant continue;
1014 1.1 perseant
1015 1.1 perseant ip = VTOI(vp);
1016 1.1 perseant
1017 1.17 ad if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
1018 1.17 ad (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
1019 1.1 perseant continue;
1020 1.1 perseant }
1021 1.1 perseant /*
1022 1.1 perseant * Write the inode/file if dirty and it's not the IFILE.
1023 1.1 perseant */
1024 1.46 pgoyette if (ip->i_state & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
1025 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
1026 1.1 perseant lfs_writefile(fs, sp, vp);
1027 1.1 perseant (void) lfs_writeinode(fs, sp, ip);
1028 1.1 perseant inodes_written++;
1029 1.1 perseant }
1030 1.1 perseant }
1031 1.1 perseant return inodes_written;
1032 1.1 perseant }
1033 1.1 perseant
1034 1.1 perseant void
1035 1.44 dholland lfs_writesuper(struct lfs *fs, daddr_t daddr)
1036 1.1 perseant {
1037 1.1 perseant struct ubuf *bp;
1038 1.1 perseant
1039 1.1 perseant /* Set timestamp of this version of the superblock */
1040 1.35 dholland if (lfs_sb_getversion(fs) == 1)
1041 1.32 dholland lfs_sb_setotstamp(fs, write_time);
1042 1.32 dholland lfs_sb_settstamp(fs, write_time);
1043 1.1 perseant
1044 1.36 dholland __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
1045 1.36 dholland
1046 1.1 perseant /* Checksum the superblock and copy it into a buffer. */
1047 1.36 dholland lfs_sb_setcksum(fs, lfs_sb_cksum(fs));
1048 1.1 perseant assert(daddr > 0);
1049 1.26 christos bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
1050 1.36 dholland memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs));
1051 1.1 perseant memset(bp->b_data + sizeof(struct dlfs), 0,
1052 1.1 perseant LFS_SBPAD - sizeof(struct dlfs));
1053 1.1 perseant
1054 1.1 perseant bwrite(bp);
1055 1.1 perseant }
1056