Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.8
      1  1.8  perseant /* $NetBSD: segwrite.c,v 1.8 2005/03/25 20:16:37 perseant Exp $ */
      2  1.1  perseant /*-
      3  1.1  perseant  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  1.1  perseant  * All rights reserved.
      5  1.1  perseant  *
      6  1.1  perseant  * This code is derived from software contributed to The NetBSD Foundation
      7  1.1  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  1.1  perseant  *
      9  1.1  perseant  * Redistribution and use in source and binary forms, with or without
     10  1.1  perseant  * modification, are permitted provided that the following conditions
     11  1.1  perseant  * are met:
     12  1.1  perseant  * 1. Redistributions of source code must retain the above copyright
     13  1.1  perseant  *    notice, this list of conditions and the following disclaimer.
     14  1.1  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  perseant  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  perseant  *    documentation and/or other materials provided with the distribution.
     17  1.1  perseant  * 3. All advertising materials mentioning features or use of this software
     18  1.1  perseant  *    must display the following acknowledgement:
     19  1.1  perseant  *	This product includes software developed by the NetBSD
     20  1.1  perseant  *	Foundation, Inc. and its contributors.
     21  1.1  perseant  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  1.1  perseant  *    contributors may be used to endorse or promote products derived
     23  1.1  perseant  *    from this software without specific prior written permission.
     24  1.1  perseant  *
     25  1.1  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  1.1  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  1.1  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  1.1  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  1.1  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  1.1  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  1.1  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  1.1  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  1.1  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  1.1  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  1.1  perseant  * POSSIBILITY OF SUCH DAMAGE.
     36  1.1  perseant  */
     37  1.1  perseant /*
     38  1.1  perseant  * Copyright (c) 1991, 1993
     39  1.1  perseant  *	The Regents of the University of California.  All rights reserved.
     40  1.1  perseant  *
     41  1.1  perseant  * Redistribution and use in source and binary forms, with or without
     42  1.1  perseant  * modification, are permitted provided that the following conditions
     43  1.1  perseant  * are met:
     44  1.1  perseant  * 1. Redistributions of source code must retain the above copyright
     45  1.1  perseant  *    notice, this list of conditions and the following disclaimer.
     46  1.1  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     47  1.1  perseant  *    notice, this list of conditions and the following disclaimer in the
     48  1.1  perseant  *    documentation and/or other materials provided with the distribution.
     49  1.5       agc  * 3. Neither the name of the University nor the names of its contributors
     50  1.1  perseant  *    may be used to endorse or promote products derived from this software
     51  1.1  perseant  *    without specific prior written permission.
     52  1.1  perseant  *
     53  1.1  perseant  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  1.1  perseant  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  1.1  perseant  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  1.1  perseant  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  1.1  perseant  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  1.1  perseant  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  1.1  perseant  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  1.1  perseant  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  1.1  perseant  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  1.1  perseant  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  1.1  perseant  * SUCH DAMAGE.
     64  1.1  perseant  *
     65  1.1  perseant  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     66  1.1  perseant  */
     67  1.1  perseant 
     68  1.1  perseant /*
     69  1.1  perseant  * Partial segment writer, taken from the kernel and adapted for userland.
     70  1.1  perseant  */
     71  1.1  perseant #include <sys/types.h>
     72  1.1  perseant #include <sys/param.h>
     73  1.1  perseant #include <sys/time.h>
     74  1.1  perseant #include <sys/buf.h>
     75  1.1  perseant #include <sys/mount.h>
     76  1.1  perseant 
     77  1.1  perseant #include <ufs/ufs/inode.h>
     78  1.1  perseant #include <ufs/ufs/ufsmount.h>
     79  1.1  perseant 
     80  1.1  perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
     81  1.1  perseant #undef simple_lock
     82  1.1  perseant #define simple_lock(x)
     83  1.1  perseant #undef simple_unlock
     84  1.1  perseant #define simple_unlock(x)
     85  1.1  perseant #define vnode uvnode
     86  1.1  perseant #define buf ubuf
     87  1.1  perseant #define panic call_panic
     88  1.1  perseant 
     89  1.1  perseant #include <ufs/lfs/lfs.h>
     90  1.1  perseant 
     91  1.1  perseant #include <assert.h>
     92  1.1  perseant #include <stdio.h>
     93  1.1  perseant #include <stdlib.h>
     94  1.1  perseant #include <string.h>
     95  1.1  perseant #include <err.h>
     96  1.1  perseant #include <errno.h>
     97  1.1  perseant 
     98  1.1  perseant #include "bufcache.h"
     99  1.1  perseant #include "vnode.h"
    100  1.1  perseant #include "lfs.h"
    101  1.1  perseant #include "segwrite.h"
    102  1.1  perseant 
    103  1.1  perseant /* Compatibility definitions */
    104  1.1  perseant extern off_t locked_queue_bytes;
    105  1.1  perseant int locked_queue_count;
    106  1.1  perseant off_t written_bytes = 0;
    107  1.1  perseant off_t written_data = 0;
    108  1.1  perseant off_t written_indir = 0;
    109  1.1  perseant off_t written_dev = 0;
    110  1.1  perseant int written_inodes = 0;
    111  1.1  perseant 
    112  1.1  perseant /* Global variables */
    113  1.1  perseant time_t write_time;
    114  1.1  perseant 
    115  1.1  perseant extern u_int32_t cksum(void *, size_t);
    116  1.1  perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
    117  1.7  perseant extern int preen;
    118  1.1  perseant 
    119  1.1  perseant /*
    120  1.1  perseant  * Logical block number match routines used when traversing the dirty block
    121  1.1  perseant  * chain.
    122  1.1  perseant  */
    123  1.1  perseant int
    124  1.1  perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
    125  1.1  perseant {
    126  1.1  perseant 	return (bp->b_lblkno >= 0);
    127  1.1  perseant }
    128  1.1  perseant 
    129  1.1  perseant int
    130  1.1  perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    131  1.1  perseant {
    132  1.1  perseant 	daddr_t lbn;
    133  1.1  perseant 
    134  1.1  perseant 	lbn = bp->b_lblkno;
    135  1.1  perseant 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    136  1.1  perseant }
    137  1.1  perseant 
    138  1.1  perseant int
    139  1.1  perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    140  1.1  perseant {
    141  1.1  perseant 	daddr_t lbn;
    142  1.1  perseant 
    143  1.1  perseant 	lbn = bp->b_lblkno;
    144  1.1  perseant 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    145  1.1  perseant }
    146  1.1  perseant 
    147  1.1  perseant int
    148  1.1  perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    149  1.1  perseant {
    150  1.1  perseant 	daddr_t lbn;
    151  1.1  perseant 
    152  1.1  perseant 	lbn = bp->b_lblkno;
    153  1.1  perseant 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    154  1.1  perseant }
    155  1.1  perseant 
    156  1.1  perseant /*
    157  1.1  perseant  * Do a checkpoint.
    158  1.1  perseant  */
    159  1.1  perseant int
    160  1.1  perseant lfs_segwrite(struct lfs * fs, int flags)
    161  1.1  perseant {
    162  1.1  perseant 	struct inode *ip;
    163  1.1  perseant 	struct segment *sp;
    164  1.1  perseant 	struct uvnode *vp;
    165  1.1  perseant 	int redo;
    166  1.1  perseant 
    167  1.1  perseant 	lfs_seglock(fs, flags | SEGM_CKP);
    168  1.1  perseant 	sp = fs->lfs_sp;
    169  1.1  perseant 
    170  1.1  perseant 	lfs_writevnodes(fs, sp, VN_REG);
    171  1.1  perseant 	lfs_writevnodes(fs, sp, VN_DIROP);
    172  1.1  perseant 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    173  1.1  perseant 
    174  1.1  perseant 	do {
    175  1.1  perseant 		vp = fs->lfs_ivnode;
    176  1.1  perseant 		fs->lfs_flags &= ~LFS_IFDIRTY;
    177  1.1  perseant 		ip = VTOI(vp);
    178  1.7  perseant 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
    179  1.1  perseant 			lfs_writefile(fs, sp, vp);
    180  1.1  perseant 
    181  1.1  perseant 		redo = lfs_writeinode(fs, sp, ip);
    182  1.1  perseant 		redo += lfs_writeseg(fs, sp);
    183  1.1  perseant 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    184  1.1  perseant 	} while (redo);
    185  1.1  perseant 
    186  1.1  perseant 	lfs_segunlock(fs);
    187  1.1  perseant #if 0
    188  1.1  perseant 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    189  1.1  perseant 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    190  1.1  perseant 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    191  1.1  perseant 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    192  1.1  perseant 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    193  1.1  perseant 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    194  1.1  perseant 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    195  1.1  perseant 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    196  1.1  perseant 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    197  1.1  perseant 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    198  1.1  perseant #endif
    199  1.1  perseant 	return 0;
    200  1.1  perseant }
    201  1.1  perseant 
    202  1.1  perseant /*
    203  1.1  perseant  * Write the dirty blocks associated with a vnode.
    204  1.1  perseant  */
    205  1.1  perseant void
    206  1.1  perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    207  1.1  perseant {
    208  1.1  perseant 	struct ubuf *bp;
    209  1.1  perseant 	struct finfo *fip;
    210  1.1  perseant 	struct inode *ip;
    211  1.1  perseant 	IFILE *ifp;
    212  1.1  perseant 
    213  1.1  perseant 	ip = VTOI(vp);
    214  1.1  perseant 
    215  1.1  perseant 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    216  1.1  perseant 	    sp->sum_bytes_left < sizeof(struct finfo))
    217  1.1  perseant 		(void) lfs_writeseg(fs, sp);
    218  1.1  perseant 
    219  1.1  perseant 	sp->sum_bytes_left -= FINFOSIZE;
    220  1.1  perseant 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    221  1.1  perseant 
    222  1.1  perseant 	if (vp->v_flag & VDIROP)
    223  1.1  perseant 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    224  1.1  perseant 
    225  1.1  perseant 	fip = sp->fip;
    226  1.1  perseant 	fip->fi_nblocks = 0;
    227  1.1  perseant 	fip->fi_ino = ip->i_number;
    228  1.1  perseant 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    229  1.1  perseant 	fip->fi_version = ifp->if_version;
    230  1.1  perseant 	brelse(bp);
    231  1.1  perseant 
    232  1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_data);
    233  1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_indir);
    234  1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    235  1.1  perseant 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    236  1.1  perseant 
    237  1.1  perseant 	fip = sp->fip;
    238  1.1  perseant 	if (fip->fi_nblocks != 0) {
    239  1.1  perseant 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    240  1.1  perseant 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    241  1.1  perseant 		sp->start_lbp = &sp->fip->fi_blocks[0];
    242  1.1  perseant 	} else {
    243  1.1  perseant 		sp->sum_bytes_left += FINFOSIZE;
    244  1.1  perseant 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    245  1.1  perseant 	}
    246  1.1  perseant }
    247  1.1  perseant 
    248  1.1  perseant int
    249  1.1  perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    250  1.1  perseant {
    251  1.1  perseant 	struct ubuf *bp, *ibp;
    252  1.3      fvdl 	struct ufs1_dinode *cdp;
    253  1.1  perseant 	IFILE *ifp;
    254  1.1  perseant 	SEGUSE *sup;
    255  1.1  perseant 	daddr_t daddr;
    256  1.1  perseant 	ino_t ino;
    257  1.1  perseant 	int error, i, ndx, fsb = 0;
    258  1.1  perseant 	int redo_ifile = 0;
    259  1.1  perseant 	struct timespec ts;
    260  1.1  perseant 	int gotblk = 0;
    261  1.1  perseant 
    262  1.1  perseant 	/* Allocate a new inode block if necessary. */
    263  1.1  perseant 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    264  1.1  perseant 	    sp->ibp == NULL) {
    265  1.1  perseant 		/* Allocate a new segment if necessary. */
    266  1.1  perseant 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    267  1.1  perseant 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    268  1.1  perseant 			(void) lfs_writeseg(fs, sp);
    269  1.1  perseant 
    270  1.1  perseant 		/* Get next inode block. */
    271  1.1  perseant 		daddr = fs->lfs_offset;
    272  1.1  perseant 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    273  1.1  perseant 		sp->ibp = *sp->cbpp++ =
    274  1.8  perseant 		    getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
    275  1.1  perseant 		    fs->lfs_ibsize);
    276  1.1  perseant 		sp->ibp->b_flags |= B_GATHERED;
    277  1.1  perseant 		gotblk++;
    278  1.1  perseant 
    279  1.1  perseant 		/* Zero out inode numbers */
    280  1.1  perseant 		for (i = 0; i < INOPB(fs); ++i)
    281  1.3      fvdl 			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    282  1.1  perseant 
    283  1.1  perseant 		++sp->start_bpp;
    284  1.1  perseant 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    285  1.1  perseant 		/* Set remaining space counters. */
    286  1.1  perseant 		sp->seg_bytes_left -= fs->lfs_ibsize;
    287  1.1  perseant 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    288  1.1  perseant 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    289  1.1  perseant 		    sp->ninodes / INOPB(fs) - 1;
    290  1.1  perseant 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    291  1.1  perseant 	}
    292  1.1  perseant 	/* Update the inode times and copy the inode onto the inode page. */
    293  1.1  perseant 	ts.tv_nsec = 0;
    294  1.1  perseant 	ts.tv_sec = write_time;
    295  1.1  perseant 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    296  1.1  perseant 	if (ip->i_number != LFS_IFILE_INUM)
    297  1.1  perseant 		LFS_ITIMES(ip, &ts, &ts, &ts);
    298  1.1  perseant 
    299  1.1  perseant 	/*
    300  1.1  perseant 	 * If this is the Ifile, and we've already written the Ifile in this
    301  1.1  perseant 	 * partial segment, just overwrite it (it's not on disk yet) and
    302  1.1  perseant 	 * continue.
    303  1.1  perseant 	 *
    304  1.1  perseant 	 * XXX we know that the bp that we get the second time around has
    305  1.1  perseant 	 * already been gathered.
    306  1.1  perseant 	 */
    307  1.1  perseant 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    308  1.3      fvdl 		*(sp->idp) = *ip->i_din.ffs1_din;
    309  1.3      fvdl 		ip->i_lfs_osize = ip->i_ffs1_size;
    310  1.1  perseant 		return 0;
    311  1.1  perseant 	}
    312  1.1  perseant 	bp = sp->ibp;
    313  1.3      fvdl 	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    314  1.3      fvdl 	*cdp = *ip->i_din.ffs1_din;
    315  1.1  perseant 
    316  1.1  perseant 	/* If all blocks are goig to disk, update the "size on disk" */
    317  1.3      fvdl 	ip->i_lfs_osize = ip->i_ffs1_size;
    318  1.1  perseant 
    319  1.1  perseant 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    320  1.3      fvdl 		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
    321  1.1  perseant 		    (sp->ninodes % INOPB(fs));
    322  1.1  perseant 	if (gotblk) {
    323  1.1  perseant 		LFS_LOCK_BUF(bp);
    324  1.1  perseant 		brelse(bp);
    325  1.1  perseant 	}
    326  1.1  perseant 	/* Increment inode count in segment summary block. */
    327  1.1  perseant 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    328  1.1  perseant 
    329  1.1  perseant 	/* If this page is full, set flag to allocate a new page. */
    330  1.1  perseant 	if (++sp->ninodes % INOPB(fs) == 0)
    331  1.1  perseant 		sp->ibp = NULL;
    332  1.1  perseant 
    333  1.1  perseant 	/*
    334  1.1  perseant 	 * If updating the ifile, update the super-block.  Update the disk
    335  1.1  perseant 	 * address and access times for this inode in the ifile.
    336  1.1  perseant 	 */
    337  1.1  perseant 	ino = ip->i_number;
    338  1.1  perseant 	if (ino == LFS_IFILE_INUM) {
    339  1.1  perseant 		daddr = fs->lfs_idaddr;
    340  1.1  perseant 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    341  1.1  perseant 	} else {
    342  1.1  perseant 		LFS_IENTRY(ifp, fs, ino, ibp);
    343  1.1  perseant 		daddr = ifp->if_daddr;
    344  1.1  perseant 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    345  1.1  perseant 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    346  1.1  perseant 	}
    347  1.1  perseant 
    348  1.1  perseant 	/*
    349  1.1  perseant 	 * Account the inode: it no longer belongs to its former segment,
    350  1.1  perseant 	 * though it will not belong to the new segment until that segment
    351  1.1  perseant 	 * is actually written.
    352  1.1  perseant 	 */
    353  1.1  perseant 	if (daddr != LFS_UNUSED_DADDR) {
    354  1.1  perseant 		u_int32_t oldsn = dtosn(fs, daddr);
    355  1.1  perseant 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    356  1.3      fvdl 		sup->su_nbytes -= DINODE1_SIZE;
    357  1.1  perseant 		redo_ifile =
    358  1.1  perseant 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    359  1.1  perseant 		if (redo_ifile)
    360  1.1  perseant 			fs->lfs_flags |= LFS_IFDIRTY;
    361  1.1  perseant 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    362  1.1  perseant 	}
    363  1.1  perseant 	return redo_ifile;
    364  1.1  perseant }
    365  1.1  perseant 
    366  1.1  perseant int
    367  1.1  perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    368  1.1  perseant {
    369  1.1  perseant 	struct lfs *fs;
    370  1.1  perseant 	int version;
    371  1.1  perseant 	int j, blksinblk;
    372  1.1  perseant 
    373  1.1  perseant 	/*
    374  1.1  perseant 	 * If full, finish this segment.  We may be doing I/O, so
    375  1.1  perseant 	 * release and reacquire the splbio().
    376  1.1  perseant 	 */
    377  1.1  perseant 	fs = sp->fs;
    378  1.1  perseant 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    379  1.1  perseant 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    380  1.1  perseant 	    sp->seg_bytes_left < bp->b_bcount) {
    381  1.1  perseant 		lfs_updatemeta(sp);
    382  1.1  perseant 
    383  1.1  perseant 		version = sp->fip->fi_version;
    384  1.1  perseant 		(void) lfs_writeseg(fs, sp);
    385  1.1  perseant 
    386  1.1  perseant 		sp->fip->fi_version = version;
    387  1.1  perseant 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    388  1.1  perseant 		/* Add the current file to the segment summary. */
    389  1.1  perseant 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    390  1.1  perseant 		sp->sum_bytes_left -= FINFOSIZE;
    391  1.1  perseant 
    392  1.1  perseant 		return 1;
    393  1.1  perseant 	}
    394  1.1  perseant 	/* Insert into the buffer list, update the FINFO block. */
    395  1.1  perseant 	bp->b_flags |= B_GATHERED;
    396  1.1  perseant 	/* bp->b_flags &= ~B_DONE; */
    397  1.1  perseant 
    398  1.1  perseant 	*sp->cbpp++ = bp;
    399  1.1  perseant 	for (j = 0; j < blksinblk; j++)
    400  1.1  perseant 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    401  1.1  perseant 
    402  1.1  perseant 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    403  1.1  perseant 	sp->seg_bytes_left -= bp->b_bcount;
    404  1.1  perseant 	return 0;
    405  1.1  perseant }
    406  1.1  perseant 
    407  1.1  perseant int
    408  1.1  perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    409  1.1  perseant {
    410  1.1  perseant 	struct ubuf *bp, *nbp;
    411  1.1  perseant 	int count = 0;
    412  1.1  perseant 
    413  1.1  perseant 	sp->vp = vp;
    414  1.1  perseant loop:
    415  1.1  perseant 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    416  1.1  perseant 		nbp = LIST_NEXT(bp, b_vnbufs);
    417  1.1  perseant 
    418  1.1  perseant 		assert(bp->b_flags & B_DELWRI);
    419  1.1  perseant 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    420  1.1  perseant 			continue;
    421  1.1  perseant 		}
    422  1.1  perseant 		if (lfs_gatherblock(sp, bp)) {
    423  1.1  perseant 			goto loop;
    424  1.1  perseant 		}
    425  1.1  perseant 		count++;
    426  1.1  perseant 	}
    427  1.1  perseant 
    428  1.1  perseant 	lfs_updatemeta(sp);
    429  1.1  perseant 	sp->vp = NULL;
    430  1.1  perseant 	return count;
    431  1.1  perseant }
    432  1.1  perseant 
    433  1.1  perseant 
    434  1.1  perseant /*
    435  1.1  perseant  * Change the given block's address to ndaddr, finding its previous
    436  1.1  perseant  * location using ufs_bmaparray().
    437  1.1  perseant  *
    438  1.1  perseant  * Account for this change in the segment table.
    439  1.1  perseant  */
    440  1.1  perseant void
    441  1.1  perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    442  1.1  perseant     ufs_daddr_t ndaddr, int size)
    443  1.1  perseant {
    444  1.1  perseant 	SEGUSE *sup;
    445  1.1  perseant 	struct ubuf *bp;
    446  1.1  perseant 	struct indir a[NIADDR + 2], *ap;
    447  1.1  perseant 	struct inode *ip;
    448  1.1  perseant 	struct uvnode *vp;
    449  1.1  perseant 	daddr_t daddr, ooff;
    450  1.1  perseant 	int num, error;
    451  1.1  perseant 	int bb, osize, obb;
    452  1.1  perseant 
    453  1.1  perseant 	vp = sp->vp;
    454  1.1  perseant 	ip = VTOI(vp);
    455  1.1  perseant 
    456  1.1  perseant 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    457  1.1  perseant 	if (error)
    458  1.1  perseant 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    459  1.1  perseant 	if (daddr > 0)
    460  1.1  perseant 		daddr = dbtofsb(fs, daddr);
    461  1.1  perseant 
    462  1.1  perseant 	bb = fragstofsb(fs, numfrags(fs, size));
    463  1.1  perseant 	switch (num) {
    464  1.1  perseant 	case 0:
    465  1.3      fvdl 		ooff = ip->i_ffs1_db[lbn];
    466  1.1  perseant 		if (ooff == UNWRITTEN)
    467  1.3      fvdl 			ip->i_ffs1_blocks += bb;
    468  1.1  perseant 		else {
    469  1.1  perseant 			/* possible fragment truncation or extension */
    470  1.1  perseant 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    471  1.3      fvdl 			ip->i_ffs1_blocks += (bb - obb);
    472  1.1  perseant 		}
    473  1.3      fvdl 		ip->i_ffs1_db[lbn] = ndaddr;
    474  1.1  perseant 		break;
    475  1.1  perseant 	case 1:
    476  1.3      fvdl 		ooff = ip->i_ffs1_ib[a[0].in_off];
    477  1.1  perseant 		if (ooff == UNWRITTEN)
    478  1.3      fvdl 			ip->i_ffs1_blocks += bb;
    479  1.3      fvdl 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    480  1.1  perseant 		break;
    481  1.1  perseant 	default:
    482  1.1  perseant 		ap = &a[num - 1];
    483  1.1  perseant 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    484  1.1  perseant 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    485  1.1  perseant 			    ap->in_lbn);
    486  1.1  perseant 
    487  1.1  perseant 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    488  1.1  perseant 		if (ooff == UNWRITTEN)
    489  1.3      fvdl 			ip->i_ffs1_blocks += bb;
    490  1.1  perseant 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    491  1.1  perseant 		(void) VOP_BWRITE(bp);
    492  1.1  perseant 	}
    493  1.1  perseant 
    494  1.1  perseant 	/*
    495  1.1  perseant 	 * Update segment usage information, based on old size
    496  1.1  perseant 	 * and location.
    497  1.1  perseant 	 */
    498  1.1  perseant 	if (daddr > 0) {
    499  1.1  perseant 		u_int32_t oldsn = dtosn(fs, daddr);
    500  1.1  perseant 		if (lbn >= 0 && lbn < NDADDR)
    501  1.1  perseant 			osize = ip->i_lfs_fragsize[lbn];
    502  1.1  perseant 		else
    503  1.1  perseant 			osize = fs->lfs_bsize;
    504  1.1  perseant 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    505  1.1  perseant 		sup->su_nbytes -= osize;
    506  1.1  perseant 		if (!(bp->b_flags & B_GATHERED))
    507  1.1  perseant 			fs->lfs_flags |= LFS_IFDIRTY;
    508  1.1  perseant 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    509  1.1  perseant 	}
    510  1.1  perseant 	/*
    511  1.1  perseant 	 * Now that this block has a new address, and its old
    512  1.1  perseant 	 * segment no longer owns it, we can forget about its
    513  1.1  perseant 	 * old size.
    514  1.1  perseant 	 */
    515  1.1  perseant 	if (lbn >= 0 && lbn < NDADDR)
    516  1.1  perseant 		ip->i_lfs_fragsize[lbn] = size;
    517  1.1  perseant }
    518  1.1  perseant 
    519  1.1  perseant /*
    520  1.1  perseant  * Update the metadata that points to the blocks listed in the FINFO
    521  1.1  perseant  * array.
    522  1.1  perseant  */
    523  1.1  perseant void
    524  1.1  perseant lfs_updatemeta(struct segment * sp)
    525  1.1  perseant {
    526  1.1  perseant 	struct ubuf *sbp;
    527  1.1  perseant 	struct lfs *fs;
    528  1.1  perseant 	struct uvnode *vp;
    529  1.1  perseant 	daddr_t lbn;
    530  1.1  perseant 	int i, nblocks, num;
    531  1.1  perseant 	int bb;
    532  1.1  perseant 	int bytesleft, size;
    533  1.1  perseant 
    534  1.1  perseant 	vp = sp->vp;
    535  1.1  perseant 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    536  1.1  perseant 
    537  1.1  perseant 	if (vp == NULL || nblocks == 0)
    538  1.1  perseant 		return;
    539  1.1  perseant 
    540  1.1  perseant 	/*
    541  1.1  perseant 	 * This count may be high due to oversize blocks from lfs_gop_write.
    542  1.1  perseant 	 * Correct for this. (XXX we should be able to keep track of these.)
    543  1.1  perseant 	 */
    544  1.1  perseant 	fs = sp->fs;
    545  1.1  perseant 	for (i = 0; i < nblocks; i++) {
    546  1.1  perseant 		if (sp->start_bpp[i] == NULL) {
    547  1.1  perseant 			printf("nblocks = %d, not %d\n", i, nblocks);
    548  1.1  perseant 			nblocks = i;
    549  1.1  perseant 			break;
    550  1.1  perseant 		}
    551  1.1  perseant 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    552  1.1  perseant 		nblocks -= num - 1;
    553  1.1  perseant 	}
    554  1.1  perseant 
    555  1.1  perseant 	/*
    556  1.1  perseant 	 * Sort the blocks.
    557  1.1  perseant 	 */
    558  1.1  perseant 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    559  1.1  perseant 
    560  1.1  perseant 	/*
    561  1.1  perseant 	 * Record the length of the last block in case it's a fragment.
    562  1.1  perseant 	 * If there are indirect blocks present, they sort last.  An
    563  1.1  perseant 	 * indirect block will be lfs_bsize and its presence indicates
    564  1.1  perseant 	 * that you cannot have fragments.
    565  1.1  perseant 	 */
    566  1.1  perseant 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    567  1.1  perseant 	    fs->lfs_bmask) + 1;
    568  1.1  perseant 
    569  1.1  perseant 	/*
    570  1.1  perseant 	 * Assign disk addresses, and update references to the logical
    571  1.1  perseant 	 * block and the segment usage information.
    572  1.1  perseant 	 */
    573  1.1  perseant 	for (i = nblocks; i--; ++sp->start_bpp) {
    574  1.1  perseant 		sbp = *sp->start_bpp;
    575  1.1  perseant 		lbn = *sp->start_lbp;
    576  1.1  perseant 
    577  1.1  perseant 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    578  1.1  perseant 
    579  1.1  perseant 		/*
    580  1.1  perseant 		 * If we write a frag in the wrong place, the cleaner won't
    581  1.1  perseant 		 * be able to correctly identify its size later, and the
    582  1.1  perseant 		 * segment will be uncleanable.	 (Even worse, it will assume
    583  1.1  perseant 		 * that the indirect block that actually ends the list
    584  1.1  perseant 		 * is of a smaller size!)
    585  1.1  perseant 		 */
    586  1.1  perseant 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    587  1.1  perseant 			errx(1, "lfs_updatemeta: fragment is not last block");
    588  1.1  perseant 
    589  1.1  perseant 		/*
    590  1.1  perseant 		 * For each subblock in this possibly oversized block,
    591  1.1  perseant 		 * update its address on disk.
    592  1.1  perseant 		 */
    593  1.1  perseant 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    594  1.1  perseant 		    bytesleft -= fs->lfs_bsize) {
    595  1.1  perseant 			size = MIN(bytesleft, fs->lfs_bsize);
    596  1.1  perseant 			bb = fragstofsb(fs, numfrags(fs, size));
    597  1.1  perseant 			lbn = *sp->start_lbp++;
    598  1.1  perseant 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    599  1.1  perseant 			fs->lfs_offset += bb;
    600  1.1  perseant 		}
    601  1.1  perseant 
    602  1.1  perseant 	}
    603  1.1  perseant }
    604  1.1  perseant 
    605  1.1  perseant /*
    606  1.1  perseant  * Start a new segment.
    607  1.1  perseant  */
    608  1.1  perseant int
    609  1.1  perseant lfs_initseg(struct lfs * fs)
    610  1.1  perseant {
    611  1.1  perseant 	struct segment *sp;
    612  1.1  perseant 	SEGUSE *sup;
    613  1.1  perseant 	SEGSUM *ssp;
    614  1.1  perseant 	struct ubuf *bp, *sbp;
    615  1.1  perseant 	int repeat;
    616  1.1  perseant 
    617  1.1  perseant 	sp = fs->lfs_sp;
    618  1.1  perseant 
    619  1.1  perseant 	repeat = 0;
    620  1.1  perseant 
    621  1.1  perseant 	/* Advance to the next segment. */
    622  1.1  perseant 	if (!LFS_PARTIAL_FITS(fs)) {
    623  1.1  perseant 		/* lfs_avail eats the remaining space */
    624  1.1  perseant 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    625  1.1  perseant 		    fs->lfs_curseg);
    626  1.1  perseant 		lfs_newseg(fs);
    627  1.1  perseant 		repeat = 1;
    628  1.1  perseant 		fs->lfs_offset = fs->lfs_curseg;
    629  1.1  perseant 
    630  1.1  perseant 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    631  1.1  perseant 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    632  1.1  perseant 
    633  1.1  perseant 		/*
    634  1.1  perseant 		 * If the segment contains a superblock, update the offset
    635  1.1  perseant 		 * and summary address to skip over it.
    636  1.1  perseant 		 */
    637  1.1  perseant 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    638  1.1  perseant 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    639  1.1  perseant 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    640  1.1  perseant 			sp->seg_bytes_left -= LFS_SBPAD;
    641  1.1  perseant 		}
    642  1.1  perseant 		brelse(bp);
    643  1.1  perseant 		/* Segment zero could also contain the labelpad */
    644  1.1  perseant 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    645  1.1  perseant 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    646  1.1  perseant 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    647  1.1  perseant 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    648  1.1  perseant 		}
    649  1.1  perseant 	} else {
    650  1.1  perseant 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    651  1.1  perseant 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    652  1.1  perseant 		    (fs->lfs_offset - fs->lfs_curseg));
    653  1.1  perseant 	}
    654  1.1  perseant 	fs->lfs_lastpseg = fs->lfs_offset;
    655  1.1  perseant 
    656  1.1  perseant 	sp->fs = fs;
    657  1.1  perseant 	sp->ibp = NULL;
    658  1.1  perseant 	sp->idp = NULL;
    659  1.1  perseant 	sp->ninodes = 0;
    660  1.1  perseant 	sp->ndupino = 0;
    661  1.1  perseant 
    662  1.1  perseant 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    663  1.1  perseant 	sp->cbpp = sp->bpp;
    664  1.8  perseant 	sbp = *sp->cbpp = getblk(fs->lfs_devvp,
    665  1.1  perseant 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    666  1.1  perseant 	sp->segsum = sbp->b_data;
    667  1.1  perseant 	memset(sp->segsum, 0, fs->lfs_sumsize);
    668  1.1  perseant 	sp->start_bpp = ++sp->cbpp;
    669  1.1  perseant 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    670  1.1  perseant 
    671  1.1  perseant 	/* Set point to SEGSUM, initialize it. */
    672  1.1  perseant 	ssp = sp->segsum;
    673  1.1  perseant 	ssp->ss_next = fs->lfs_nextseg;
    674  1.1  perseant 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    675  1.1  perseant 	ssp->ss_magic = SS_MAGIC;
    676  1.1  perseant 
    677  1.1  perseant 	/* Set pointer to first FINFO, initialize it. */
    678  1.1  perseant 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    679  1.1  perseant 	sp->fip->fi_nblocks = 0;
    680  1.1  perseant 	sp->start_lbp = &sp->fip->fi_blocks[0];
    681  1.1  perseant 	sp->fip->fi_lastlength = 0;
    682  1.1  perseant 
    683  1.1  perseant 	sp->seg_bytes_left -= fs->lfs_sumsize;
    684  1.1  perseant 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    685  1.1  perseant 
    686  1.1  perseant 	LFS_LOCK_BUF(sbp);
    687  1.1  perseant 	brelse(sbp);
    688  1.1  perseant 	return repeat;
    689  1.1  perseant }
    690  1.1  perseant 
    691  1.1  perseant /*
    692  1.1  perseant  * Return the next segment to write.
    693  1.1  perseant  */
    694  1.1  perseant void
    695  1.1  perseant lfs_newseg(struct lfs * fs)
    696  1.1  perseant {
    697  1.1  perseant 	CLEANERINFO *cip;
    698  1.1  perseant 	SEGUSE *sup;
    699  1.1  perseant 	struct ubuf *bp;
    700  1.1  perseant 	int curseg, isdirty, sn;
    701  1.1  perseant 
    702  1.1  perseant 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    703  1.1  perseant 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    704  1.1  perseant 	sup->su_nbytes = 0;
    705  1.1  perseant 	sup->su_nsums = 0;
    706  1.1  perseant 	sup->su_ninos = 0;
    707  1.1  perseant 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    708  1.1  perseant 
    709  1.1  perseant 	LFS_CLEANERINFO(cip, fs, bp);
    710  1.1  perseant 	--cip->clean;
    711  1.1  perseant 	++cip->dirty;
    712  1.1  perseant 	fs->lfs_nclean = cip->clean;
    713  1.1  perseant 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    714  1.1  perseant 
    715  1.1  perseant 	fs->lfs_lastseg = fs->lfs_curseg;
    716  1.1  perseant 	fs->lfs_curseg = fs->lfs_nextseg;
    717  1.1  perseant 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    718  1.1  perseant 		sn = (sn + 1) % fs->lfs_nseg;
    719  1.1  perseant 		if (sn == curseg)
    720  1.1  perseant 			errx(1, "lfs_nextseg: no clean segments");
    721  1.1  perseant 		LFS_SEGENTRY(sup, fs, sn, bp);
    722  1.1  perseant 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    723  1.1  perseant 		brelse(bp);
    724  1.1  perseant 
    725  1.1  perseant 		if (!isdirty)
    726  1.1  perseant 			break;
    727  1.1  perseant 	}
    728  1.1  perseant 
    729  1.1  perseant 	++fs->lfs_nactive;
    730  1.1  perseant 	fs->lfs_nextseg = sntod(fs, sn);
    731  1.1  perseant }
    732  1.1  perseant 
    733  1.1  perseant 
    734  1.1  perseant int
    735  1.1  perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
    736  1.1  perseant {
    737  1.1  perseant 	struct ubuf **bpp, *bp;
    738  1.1  perseant 	SEGUSE *sup;
    739  1.1  perseant 	SEGSUM *ssp;
    740  1.1  perseant 	char *datap, *dp;
    741  1.1  perseant 	int i;
    742  1.1  perseant 	int do_again, nblocks, byteoffset;
    743  1.1  perseant 	size_t el_size;
    744  1.1  perseant 	u_short ninos;
    745  1.1  perseant 	struct uvnode *devvp;
    746  1.1  perseant 
    747  1.1  perseant 	/*
    748  1.1  perseant 	 * If there are no buffers other than the segment summary to write
    749  1.1  perseant 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    750  1.1  perseant 	 * even if there aren't any buffers, you need to write the superblock.
    751  1.1  perseant 	 */
    752  1.1  perseant 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    753  1.1  perseant 		return 0;
    754  1.1  perseant 
    755  1.8  perseant 	devvp = fs->lfs_devvp;
    756  1.1  perseant 
    757  1.1  perseant 	/* Update the segment usage information. */
    758  1.1  perseant 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    759  1.1  perseant 
    760  1.1  perseant 	/* Loop through all blocks, except the segment summary. */
    761  1.1  perseant 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    762  1.1  perseant 		if ((*bpp)->b_vp != devvp) {
    763  1.1  perseant 			sup->su_nbytes += (*bpp)->b_bcount;
    764  1.1  perseant 		}
    765  1.1  perseant 	}
    766  1.1  perseant 
    767  1.1  perseant 	ssp = (SEGSUM *) sp->segsum;
    768  1.1  perseant 
    769  1.1  perseant 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    770  1.3      fvdl 	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
    771  1.1  perseant 
    772  1.1  perseant 	if (fs->lfs_version == 1)
    773  1.1  perseant 		sup->su_olastmod = write_time;
    774  1.1  perseant 	else
    775  1.1  perseant 		sup->su_lastmod = write_time;
    776  1.1  perseant 	sup->su_ninos += ninos;
    777  1.1  perseant 	++sup->su_nsums;
    778  1.1  perseant 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    779  1.1  perseant 		fs->lfs_ibsize));
    780  1.1  perseant 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    781  1.1  perseant 
    782  1.1  perseant 	do_again = !(bp->b_flags & B_GATHERED);
    783  1.1  perseant 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    784  1.1  perseant 
    785  1.1  perseant 	/*
    786  1.1  perseant 	 * Compute checksum across data and then across summary; the first
    787  1.1  perseant 	 * block (the summary block) is skipped.  Set the create time here
    788  1.1  perseant 	 * so that it's guaranteed to be later than the inode mod times.
    789  1.1  perseant 	 */
    790  1.1  perseant 	if (fs->lfs_version == 1)
    791  1.1  perseant 		el_size = sizeof(u_long);
    792  1.1  perseant 	else
    793  1.1  perseant 		el_size = sizeof(u_int32_t);
    794  1.1  perseant 	datap = dp = malloc(nblocks * el_size);
    795  1.1  perseant 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    796  1.1  perseant 		++bpp;
    797  1.1  perseant 		/* Loop through gop_write cluster blocks */
    798  1.1  perseant 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    799  1.1  perseant 		    byteoffset += fs->lfs_bsize) {
    800  1.1  perseant 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    801  1.1  perseant 			dp += el_size;
    802  1.1  perseant 		}
    803  1.2  perseant 		bremfree(*bpp);
    804  1.1  perseant 		(*bpp)->b_flags |= B_BUSY;
    805  1.1  perseant 	}
    806  1.1  perseant 	if (fs->lfs_version == 1)
    807  1.1  perseant 		ssp->ss_ocreate = write_time;
    808  1.1  perseant 	else {
    809  1.1  perseant 		ssp->ss_create = write_time;
    810  1.1  perseant 		ssp->ss_serial = ++fs->lfs_serial;
    811  1.1  perseant 		ssp->ss_ident = fs->lfs_ident;
    812  1.1  perseant 	}
    813  1.1  perseant 	/* Set the summary block busy too */
    814  1.1  perseant 	bremfree(*(sp->bpp));
    815  1.1  perseant 	(*(sp->bpp))->b_flags |= B_BUSY;
    816  1.1  perseant 
    817  1.1  perseant 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    818  1.1  perseant 	ssp->ss_sumsum =
    819  1.1  perseant 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    820  1.1  perseant 	free(datap);
    821  1.1  perseant 	datap = dp = NULL;
    822  1.1  perseant 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    823  1.1  perseant 	    btofsb(fs, fs->lfs_sumsize));
    824  1.1  perseant 
    825  1.1  perseant 	if (devvp == NULL)
    826  1.1  perseant 		errx(1, "devvp is NULL");
    827  1.1  perseant 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    828  1.1  perseant 		bp = *bpp;
    829  1.1  perseant #if 0
    830  1.2  perseant 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    831  1.1  perseant 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    832  1.1  perseant 		printf("  vp = %p\n", bp->b_vp);
    833  1.8  perseant 		if (bp->b_vp != fs->lfs_devvp)
    834  1.1  perseant 			printf("  ino = %d lbn = %" PRId64 "\n",
    835  1.1  perseant 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    836  1.1  perseant #endif
    837  1.8  perseant 		if (bp->b_vp == fs->lfs_devvp)
    838  1.1  perseant 			written_dev += bp->b_bcount;
    839  1.1  perseant 		else {
    840  1.1  perseant 			if (bp->b_lblkno >= 0)
    841  1.1  perseant 				written_data += bp->b_bcount;
    842  1.1  perseant 			else
    843  1.1  perseant 				written_indir += bp->b_bcount;
    844  1.1  perseant 		}
    845  1.2  perseant 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    846  1.2  perseant 				 B_LOCKED);
    847  1.1  perseant 		bwrite(bp);
    848  1.1  perseant 		written_bytes += bp->b_bcount;
    849  1.1  perseant 	}
    850  1.1  perseant 	written_inodes += ninos;
    851  1.1  perseant 
    852  1.1  perseant 	return (lfs_initseg(fs) || do_again);
    853  1.1  perseant }
    854  1.1  perseant 
    855  1.1  perseant /*
    856  1.1  perseant  * Our own copy of shellsort.  XXX use qsort or heapsort.
    857  1.1  perseant  */
    858  1.1  perseant void
    859  1.1  perseant lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    860  1.1  perseant {
    861  1.1  perseant 	static int __rsshell_increments[] = {4, 1, 0};
    862  1.1  perseant 	int incr, *incrp, t1, t2;
    863  1.1  perseant 	struct ubuf *bp_temp;
    864  1.1  perseant 
    865  1.1  perseant 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    866  1.1  perseant 		for (t1 = incr; t1 < nmemb; ++t1)
    867  1.1  perseant 			for (t2 = t1 - incr; t2 >= 0;)
    868  1.1  perseant 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    869  1.1  perseant 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    870  1.1  perseant 					bp_temp = bp_array[t2];
    871  1.1  perseant 					bp_array[t2] = bp_array[t2 + incr];
    872  1.1  perseant 					bp_array[t2 + incr] = bp_temp;
    873  1.1  perseant 					t2 -= incr;
    874  1.1  perseant 				} else
    875  1.1  perseant 					break;
    876  1.1  perseant 
    877  1.1  perseant 	/* Reform the list of logical blocks */
    878  1.1  perseant 	incr = 0;
    879  1.1  perseant 	for (t1 = 0; t1 < nmemb; t1++) {
    880  1.1  perseant 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    881  1.1  perseant 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    882  1.1  perseant 		}
    883  1.1  perseant 	}
    884  1.1  perseant }
    885  1.1  perseant 
    886  1.1  perseant 
    887  1.1  perseant /*
    888  1.1  perseant  * lfs_seglock --
    889  1.1  perseant  *	Single thread the segment writer.
    890  1.1  perseant  */
    891  1.1  perseant int
    892  1.1  perseant lfs_seglock(struct lfs * fs, unsigned long flags)
    893  1.1  perseant {
    894  1.1  perseant 	struct segment *sp;
    895  1.1  perseant 
    896  1.1  perseant 	if (fs->lfs_seglock) {
    897  1.1  perseant 		++fs->lfs_seglock;
    898  1.1  perseant 		fs->lfs_sp->seg_flags |= flags;
    899  1.1  perseant 		return 0;
    900  1.1  perseant 	}
    901  1.1  perseant 	fs->lfs_seglock = 1;
    902  1.1  perseant 
    903  1.1  perseant 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    904  1.1  perseant 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    905  1.6      heas 	if (!sp->bpp)
    906  1.7  perseant 		errx(!preen, "Could not allocate %zu bytes: %s",
    907  1.6      heas 			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
    908  1.6      heas 			strerror(errno));
    909  1.1  perseant 	sp->seg_flags = flags;
    910  1.1  perseant 	sp->vp = NULL;
    911  1.1  perseant 	sp->seg_iocount = 0;
    912  1.1  perseant 	(void) lfs_initseg(fs);
    913  1.1  perseant 
    914  1.1  perseant 	return 0;
    915  1.1  perseant }
    916  1.1  perseant 
    917  1.1  perseant /*
    918  1.1  perseant  * lfs_segunlock --
    919  1.1  perseant  *	Single thread the segment writer.
    920  1.1  perseant  */
    921  1.1  perseant void
    922  1.1  perseant lfs_segunlock(struct lfs * fs)
    923  1.1  perseant {
    924  1.1  perseant 	struct segment *sp;
    925  1.1  perseant 	struct ubuf *bp;
    926  1.1  perseant 
    927  1.1  perseant 	sp = fs->lfs_sp;
    928  1.1  perseant 
    929  1.1  perseant 	if (fs->lfs_seglock == 1) {
    930  1.1  perseant 		if (sp->bpp != sp->cbpp) {
    931  1.1  perseant 			/* Free allocated segment summary */
    932  1.1  perseant 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    933  1.1  perseant 			bp = *sp->bpp;
    934  1.1  perseant 			bremfree(bp);
    935  1.1  perseant 			bp->b_flags |= B_DONE | B_INVAL;
    936  1.1  perseant 			bp->b_flags &= ~B_DELWRI;
    937  1.1  perseant 			reassignbuf(bp, bp->b_vp);
    938  1.1  perseant 			bp->b_flags |= B_BUSY; /* XXX */
    939  1.1  perseant 			brelse(bp);
    940  1.1  perseant 		} else
    941  1.1  perseant 			printf("unlock to 0 with no summary");
    942  1.1  perseant 
    943  1.1  perseant 		free(sp->bpp);
    944  1.1  perseant 		sp->bpp = NULL;
    945  1.1  perseant 		free(sp);
    946  1.1  perseant 		fs->lfs_sp = NULL;
    947  1.1  perseant 
    948  1.1  perseant 		fs->lfs_nactive = 0;
    949  1.1  perseant 
    950  1.1  perseant 		/* Since we *know* everything's on disk, write both sbs */
    951  1.4      yamt 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    952  1.4      yamt 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    953  1.1  perseant 
    954  1.1  perseant 		--fs->lfs_seglock;
    955  1.1  perseant 		fs->lfs_lockpid = 0;
    956  1.1  perseant 	} else if (fs->lfs_seglock == 0) {
    957  1.1  perseant 		errx(1, "Seglock not held");
    958  1.1  perseant 	} else {
    959  1.1  perseant 		--fs->lfs_seglock;
    960  1.1  perseant 	}
    961  1.1  perseant }
    962  1.1  perseant 
    963  1.1  perseant int
    964  1.1  perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    965  1.1  perseant {
    966  1.1  perseant 	struct inode *ip;
    967  1.1  perseant 	struct uvnode *vp;
    968  1.1  perseant 	int inodes_written = 0;
    969  1.1  perseant 
    970  1.1  perseant 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    971  1.1  perseant 		if (vp->v_bmap_op != lfs_vop_bmap)
    972  1.1  perseant 			continue;
    973  1.1  perseant 
    974  1.1  perseant 		ip = VTOI(vp);
    975  1.1  perseant 
    976  1.1  perseant 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    977  1.1  perseant 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    978  1.1  perseant 			continue;
    979  1.1  perseant 		}
    980  1.1  perseant 		/*
    981  1.1  perseant 		 * Write the inode/file if dirty and it's not the IFILE.
    982  1.1  perseant 		 */
    983  1.1  perseant 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    984  1.1  perseant 			if (ip->i_number != LFS_IFILE_INUM)
    985  1.1  perseant 				lfs_writefile(fs, sp, vp);
    986  1.1  perseant 			(void) lfs_writeinode(fs, sp, ip);
    987  1.1  perseant 			inodes_written++;
    988  1.1  perseant 		}
    989  1.1  perseant 	}
    990  1.1  perseant 	return inodes_written;
    991  1.1  perseant }
    992  1.1  perseant 
    993  1.1  perseant void
    994  1.1  perseant lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
    995  1.1  perseant {
    996  1.1  perseant 	struct ubuf *bp;
    997  1.1  perseant 
    998  1.1  perseant 	/* Set timestamp of this version of the superblock */
    999  1.1  perseant 	if (fs->lfs_version == 1)
   1000  1.1  perseant 		fs->lfs_otstamp = write_time;
   1001  1.1  perseant 	fs->lfs_tstamp = write_time;
   1002  1.1  perseant 
   1003  1.1  perseant 	/* Checksum the superblock and copy it into a buffer. */
   1004  1.1  perseant 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1005  1.1  perseant 	assert(daddr > 0);
   1006  1.8  perseant 	bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1007  1.1  perseant 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1008  1.1  perseant 	    LFS_SBPAD - sizeof(struct dlfs));
   1009  1.1  perseant 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1010  1.1  perseant 
   1011  1.1  perseant 	bwrite(bp);
   1012  1.1  perseant }
   1013