segwrite.c revision 1.8 1 1.8 perseant /* $NetBSD: segwrite.c,v 1.8 2005/03/25 20:16:37 perseant Exp $ */
2 1.1 perseant /*-
3 1.1 perseant * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 1.1 perseant * All rights reserved.
5 1.1 perseant *
6 1.1 perseant * This code is derived from software contributed to The NetBSD Foundation
7 1.1 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 1.1 perseant *
9 1.1 perseant * Redistribution and use in source and binary forms, with or without
10 1.1 perseant * modification, are permitted provided that the following conditions
11 1.1 perseant * are met:
12 1.1 perseant * 1. Redistributions of source code must retain the above copyright
13 1.1 perseant * notice, this list of conditions and the following disclaimer.
14 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 perseant * notice, this list of conditions and the following disclaimer in the
16 1.1 perseant * documentation and/or other materials provided with the distribution.
17 1.1 perseant * 3. All advertising materials mentioning features or use of this software
18 1.1 perseant * must display the following acknowledgement:
19 1.1 perseant * This product includes software developed by the NetBSD
20 1.1 perseant * Foundation, Inc. and its contributors.
21 1.1 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
22 1.1 perseant * contributors may be used to endorse or promote products derived
23 1.1 perseant * from this software without specific prior written permission.
24 1.1 perseant *
25 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.1 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.1 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 perseant * POSSIBILITY OF SUCH DAMAGE.
36 1.1 perseant */
37 1.1 perseant /*
38 1.1 perseant * Copyright (c) 1991, 1993
39 1.1 perseant * The Regents of the University of California. All rights reserved.
40 1.1 perseant *
41 1.1 perseant * Redistribution and use in source and binary forms, with or without
42 1.1 perseant * modification, are permitted provided that the following conditions
43 1.1 perseant * are met:
44 1.1 perseant * 1. Redistributions of source code must retain the above copyright
45 1.1 perseant * notice, this list of conditions and the following disclaimer.
46 1.1 perseant * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 perseant * notice, this list of conditions and the following disclaimer in the
48 1.1 perseant * documentation and/or other materials provided with the distribution.
49 1.5 agc * 3. Neither the name of the University nor the names of its contributors
50 1.1 perseant * may be used to endorse or promote products derived from this software
51 1.1 perseant * without specific prior written permission.
52 1.1 perseant *
53 1.1 perseant * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 perseant * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 perseant * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 perseant * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 perseant * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 perseant * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 perseant * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 perseant * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 perseant * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 perseant * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 perseant * SUCH DAMAGE.
64 1.1 perseant *
65 1.1 perseant * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
66 1.1 perseant */
67 1.1 perseant
68 1.1 perseant /*
69 1.1 perseant * Partial segment writer, taken from the kernel and adapted for userland.
70 1.1 perseant */
71 1.1 perseant #include <sys/types.h>
72 1.1 perseant #include <sys/param.h>
73 1.1 perseant #include <sys/time.h>
74 1.1 perseant #include <sys/buf.h>
75 1.1 perseant #include <sys/mount.h>
76 1.1 perseant
77 1.1 perseant #include <ufs/ufs/inode.h>
78 1.1 perseant #include <ufs/ufs/ufsmount.h>
79 1.1 perseant
80 1.1 perseant /* Override certain things to make <ufs/lfs/lfs.h> work */
81 1.1 perseant #undef simple_lock
82 1.1 perseant #define simple_lock(x)
83 1.1 perseant #undef simple_unlock
84 1.1 perseant #define simple_unlock(x)
85 1.1 perseant #define vnode uvnode
86 1.1 perseant #define buf ubuf
87 1.1 perseant #define panic call_panic
88 1.1 perseant
89 1.1 perseant #include <ufs/lfs/lfs.h>
90 1.1 perseant
91 1.1 perseant #include <assert.h>
92 1.1 perseant #include <stdio.h>
93 1.1 perseant #include <stdlib.h>
94 1.1 perseant #include <string.h>
95 1.1 perseant #include <err.h>
96 1.1 perseant #include <errno.h>
97 1.1 perseant
98 1.1 perseant #include "bufcache.h"
99 1.1 perseant #include "vnode.h"
100 1.1 perseant #include "lfs.h"
101 1.1 perseant #include "segwrite.h"
102 1.1 perseant
103 1.1 perseant /* Compatibility definitions */
104 1.1 perseant extern off_t locked_queue_bytes;
105 1.1 perseant int locked_queue_count;
106 1.1 perseant off_t written_bytes = 0;
107 1.1 perseant off_t written_data = 0;
108 1.1 perseant off_t written_indir = 0;
109 1.1 perseant off_t written_dev = 0;
110 1.1 perseant int written_inodes = 0;
111 1.1 perseant
112 1.1 perseant /* Global variables */
113 1.1 perseant time_t write_time;
114 1.1 perseant
115 1.1 perseant extern u_int32_t cksum(void *, size_t);
116 1.1 perseant extern u_int32_t lfs_sb_cksum(struct dlfs *);
117 1.7 perseant extern int preen;
118 1.1 perseant
119 1.1 perseant /*
120 1.1 perseant * Logical block number match routines used when traversing the dirty block
121 1.1 perseant * chain.
122 1.1 perseant */
123 1.1 perseant int
124 1.1 perseant lfs_match_data(struct lfs * fs, struct ubuf * bp)
125 1.1 perseant {
126 1.1 perseant return (bp->b_lblkno >= 0);
127 1.1 perseant }
128 1.1 perseant
129 1.1 perseant int
130 1.1 perseant lfs_match_indir(struct lfs * fs, struct ubuf * bp)
131 1.1 perseant {
132 1.1 perseant daddr_t lbn;
133 1.1 perseant
134 1.1 perseant lbn = bp->b_lblkno;
135 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
136 1.1 perseant }
137 1.1 perseant
138 1.1 perseant int
139 1.1 perseant lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
140 1.1 perseant {
141 1.1 perseant daddr_t lbn;
142 1.1 perseant
143 1.1 perseant lbn = bp->b_lblkno;
144 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
145 1.1 perseant }
146 1.1 perseant
147 1.1 perseant int
148 1.1 perseant lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
149 1.1 perseant {
150 1.1 perseant daddr_t lbn;
151 1.1 perseant
152 1.1 perseant lbn = bp->b_lblkno;
153 1.1 perseant return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
154 1.1 perseant }
155 1.1 perseant
156 1.1 perseant /*
157 1.1 perseant * Do a checkpoint.
158 1.1 perseant */
159 1.1 perseant int
160 1.1 perseant lfs_segwrite(struct lfs * fs, int flags)
161 1.1 perseant {
162 1.1 perseant struct inode *ip;
163 1.1 perseant struct segment *sp;
164 1.1 perseant struct uvnode *vp;
165 1.1 perseant int redo;
166 1.1 perseant
167 1.1 perseant lfs_seglock(fs, flags | SEGM_CKP);
168 1.1 perseant sp = fs->lfs_sp;
169 1.1 perseant
170 1.1 perseant lfs_writevnodes(fs, sp, VN_REG);
171 1.1 perseant lfs_writevnodes(fs, sp, VN_DIROP);
172 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
173 1.1 perseant
174 1.1 perseant do {
175 1.1 perseant vp = fs->lfs_ivnode;
176 1.1 perseant fs->lfs_flags &= ~LFS_IFDIRTY;
177 1.1 perseant ip = VTOI(vp);
178 1.7 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
179 1.1 perseant lfs_writefile(fs, sp, vp);
180 1.1 perseant
181 1.1 perseant redo = lfs_writeinode(fs, sp, ip);
182 1.1 perseant redo += lfs_writeseg(fs, sp);
183 1.1 perseant redo += (fs->lfs_flags & LFS_IFDIRTY);
184 1.1 perseant } while (redo);
185 1.1 perseant
186 1.1 perseant lfs_segunlock(fs);
187 1.1 perseant #if 0
188 1.1 perseant printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
189 1.1 perseant written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
190 1.1 perseant printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
191 1.1 perseant written_data, (ufs_daddr_t)btofsb(fs, written_data));
192 1.1 perseant printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
193 1.1 perseant written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
194 1.1 perseant printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
195 1.1 perseant written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
196 1.1 perseant printf("wrote %d inodes (%" PRId32 " fsb)\n",
197 1.1 perseant written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
198 1.1 perseant #endif
199 1.1 perseant return 0;
200 1.1 perseant }
201 1.1 perseant
202 1.1 perseant /*
203 1.1 perseant * Write the dirty blocks associated with a vnode.
204 1.1 perseant */
205 1.1 perseant void
206 1.1 perseant lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
207 1.1 perseant {
208 1.1 perseant struct ubuf *bp;
209 1.1 perseant struct finfo *fip;
210 1.1 perseant struct inode *ip;
211 1.1 perseant IFILE *ifp;
212 1.1 perseant
213 1.1 perseant ip = VTOI(vp);
214 1.1 perseant
215 1.1 perseant if (sp->seg_bytes_left < fs->lfs_bsize ||
216 1.1 perseant sp->sum_bytes_left < sizeof(struct finfo))
217 1.1 perseant (void) lfs_writeseg(fs, sp);
218 1.1 perseant
219 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
220 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
221 1.1 perseant
222 1.1 perseant if (vp->v_flag & VDIROP)
223 1.1 perseant ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
224 1.1 perseant
225 1.1 perseant fip = sp->fip;
226 1.1 perseant fip->fi_nblocks = 0;
227 1.1 perseant fip->fi_ino = ip->i_number;
228 1.1 perseant LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
229 1.1 perseant fip->fi_version = ifp->if_version;
230 1.1 perseant brelse(bp);
231 1.1 perseant
232 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_data);
233 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_indir);
234 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_dindir);
235 1.1 perseant lfs_gather(fs, sp, vp, lfs_match_tindir);
236 1.1 perseant
237 1.1 perseant fip = sp->fip;
238 1.1 perseant if (fip->fi_nblocks != 0) {
239 1.1 perseant sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
240 1.1 perseant sizeof(ufs_daddr_t) * (fip->fi_nblocks));
241 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
242 1.1 perseant } else {
243 1.1 perseant sp->sum_bytes_left += FINFOSIZE;
244 1.1 perseant --((SEGSUM *) (sp->segsum))->ss_nfinfo;
245 1.1 perseant }
246 1.1 perseant }
247 1.1 perseant
248 1.1 perseant int
249 1.1 perseant lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
250 1.1 perseant {
251 1.1 perseant struct ubuf *bp, *ibp;
252 1.3 fvdl struct ufs1_dinode *cdp;
253 1.1 perseant IFILE *ifp;
254 1.1 perseant SEGUSE *sup;
255 1.1 perseant daddr_t daddr;
256 1.1 perseant ino_t ino;
257 1.1 perseant int error, i, ndx, fsb = 0;
258 1.1 perseant int redo_ifile = 0;
259 1.1 perseant struct timespec ts;
260 1.1 perseant int gotblk = 0;
261 1.1 perseant
262 1.1 perseant /* Allocate a new inode block if necessary. */
263 1.1 perseant if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
264 1.1 perseant sp->ibp == NULL) {
265 1.1 perseant /* Allocate a new segment if necessary. */
266 1.1 perseant if (sp->seg_bytes_left < fs->lfs_ibsize ||
267 1.1 perseant sp->sum_bytes_left < sizeof(ufs_daddr_t))
268 1.1 perseant (void) lfs_writeseg(fs, sp);
269 1.1 perseant
270 1.1 perseant /* Get next inode block. */
271 1.1 perseant daddr = fs->lfs_offset;
272 1.1 perseant fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
273 1.1 perseant sp->ibp = *sp->cbpp++ =
274 1.8 perseant getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
275 1.1 perseant fs->lfs_ibsize);
276 1.1 perseant sp->ibp->b_flags |= B_GATHERED;
277 1.1 perseant gotblk++;
278 1.1 perseant
279 1.1 perseant /* Zero out inode numbers */
280 1.1 perseant for (i = 0; i < INOPB(fs); ++i)
281 1.3 fvdl ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
282 1.1 perseant
283 1.1 perseant ++sp->start_bpp;
284 1.1 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
285 1.1 perseant /* Set remaining space counters. */
286 1.1 perseant sp->seg_bytes_left -= fs->lfs_ibsize;
287 1.1 perseant sp->sum_bytes_left -= sizeof(ufs_daddr_t);
288 1.1 perseant ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
289 1.1 perseant sp->ninodes / INOPB(fs) - 1;
290 1.1 perseant ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
291 1.1 perseant }
292 1.1 perseant /* Update the inode times and copy the inode onto the inode page. */
293 1.1 perseant ts.tv_nsec = 0;
294 1.1 perseant ts.tv_sec = write_time;
295 1.1 perseant /* XXX kludge --- don't redirty the ifile just to put times on it */
296 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
297 1.1 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
298 1.1 perseant
299 1.1 perseant /*
300 1.1 perseant * If this is the Ifile, and we've already written the Ifile in this
301 1.1 perseant * partial segment, just overwrite it (it's not on disk yet) and
302 1.1 perseant * continue.
303 1.1 perseant *
304 1.1 perseant * XXX we know that the bp that we get the second time around has
305 1.1 perseant * already been gathered.
306 1.1 perseant */
307 1.1 perseant if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
308 1.3 fvdl *(sp->idp) = *ip->i_din.ffs1_din;
309 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
310 1.1 perseant return 0;
311 1.1 perseant }
312 1.1 perseant bp = sp->ibp;
313 1.3 fvdl cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
314 1.3 fvdl *cdp = *ip->i_din.ffs1_din;
315 1.1 perseant
316 1.1 perseant /* If all blocks are goig to disk, update the "size on disk" */
317 1.3 fvdl ip->i_lfs_osize = ip->i_ffs1_size;
318 1.1 perseant
319 1.1 perseant if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
320 1.3 fvdl sp->idp = ((struct ufs1_dinode *) bp->b_data) +
321 1.1 perseant (sp->ninodes % INOPB(fs));
322 1.1 perseant if (gotblk) {
323 1.1 perseant LFS_LOCK_BUF(bp);
324 1.1 perseant brelse(bp);
325 1.1 perseant }
326 1.1 perseant /* Increment inode count in segment summary block. */
327 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_ninos;
328 1.1 perseant
329 1.1 perseant /* If this page is full, set flag to allocate a new page. */
330 1.1 perseant if (++sp->ninodes % INOPB(fs) == 0)
331 1.1 perseant sp->ibp = NULL;
332 1.1 perseant
333 1.1 perseant /*
334 1.1 perseant * If updating the ifile, update the super-block. Update the disk
335 1.1 perseant * address and access times for this inode in the ifile.
336 1.1 perseant */
337 1.1 perseant ino = ip->i_number;
338 1.1 perseant if (ino == LFS_IFILE_INUM) {
339 1.1 perseant daddr = fs->lfs_idaddr;
340 1.1 perseant fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
341 1.1 perseant } else {
342 1.1 perseant LFS_IENTRY(ifp, fs, ino, ibp);
343 1.1 perseant daddr = ifp->if_daddr;
344 1.1 perseant ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
345 1.1 perseant error = LFS_BWRITE_LOG(ibp); /* Ifile */
346 1.1 perseant }
347 1.1 perseant
348 1.1 perseant /*
349 1.1 perseant * Account the inode: it no longer belongs to its former segment,
350 1.1 perseant * though it will not belong to the new segment until that segment
351 1.1 perseant * is actually written.
352 1.1 perseant */
353 1.1 perseant if (daddr != LFS_UNUSED_DADDR) {
354 1.1 perseant u_int32_t oldsn = dtosn(fs, daddr);
355 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
356 1.3 fvdl sup->su_nbytes -= DINODE1_SIZE;
357 1.1 perseant redo_ifile =
358 1.1 perseant (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
359 1.1 perseant if (redo_ifile)
360 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
361 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
362 1.1 perseant }
363 1.1 perseant return redo_ifile;
364 1.1 perseant }
365 1.1 perseant
366 1.1 perseant int
367 1.1 perseant lfs_gatherblock(struct segment * sp, struct ubuf * bp)
368 1.1 perseant {
369 1.1 perseant struct lfs *fs;
370 1.1 perseant int version;
371 1.1 perseant int j, blksinblk;
372 1.1 perseant
373 1.1 perseant /*
374 1.1 perseant * If full, finish this segment. We may be doing I/O, so
375 1.1 perseant * release and reacquire the splbio().
376 1.1 perseant */
377 1.1 perseant fs = sp->fs;
378 1.1 perseant blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
379 1.1 perseant if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
380 1.1 perseant sp->seg_bytes_left < bp->b_bcount) {
381 1.1 perseant lfs_updatemeta(sp);
382 1.1 perseant
383 1.1 perseant version = sp->fip->fi_version;
384 1.1 perseant (void) lfs_writeseg(fs, sp);
385 1.1 perseant
386 1.1 perseant sp->fip->fi_version = version;
387 1.1 perseant sp->fip->fi_ino = VTOI(sp->vp)->i_number;
388 1.1 perseant /* Add the current file to the segment summary. */
389 1.1 perseant ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
390 1.1 perseant sp->sum_bytes_left -= FINFOSIZE;
391 1.1 perseant
392 1.1 perseant return 1;
393 1.1 perseant }
394 1.1 perseant /* Insert into the buffer list, update the FINFO block. */
395 1.1 perseant bp->b_flags |= B_GATHERED;
396 1.1 perseant /* bp->b_flags &= ~B_DONE; */
397 1.1 perseant
398 1.1 perseant *sp->cbpp++ = bp;
399 1.1 perseant for (j = 0; j < blksinblk; j++)
400 1.1 perseant sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
401 1.1 perseant
402 1.1 perseant sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
403 1.1 perseant sp->seg_bytes_left -= bp->b_bcount;
404 1.1 perseant return 0;
405 1.1 perseant }
406 1.1 perseant
407 1.1 perseant int
408 1.1 perseant lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
409 1.1 perseant {
410 1.1 perseant struct ubuf *bp, *nbp;
411 1.1 perseant int count = 0;
412 1.1 perseant
413 1.1 perseant sp->vp = vp;
414 1.1 perseant loop:
415 1.1 perseant for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
416 1.1 perseant nbp = LIST_NEXT(bp, b_vnbufs);
417 1.1 perseant
418 1.1 perseant assert(bp->b_flags & B_DELWRI);
419 1.1 perseant if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
420 1.1 perseant continue;
421 1.1 perseant }
422 1.1 perseant if (lfs_gatherblock(sp, bp)) {
423 1.1 perseant goto loop;
424 1.1 perseant }
425 1.1 perseant count++;
426 1.1 perseant }
427 1.1 perseant
428 1.1 perseant lfs_updatemeta(sp);
429 1.1 perseant sp->vp = NULL;
430 1.1 perseant return count;
431 1.1 perseant }
432 1.1 perseant
433 1.1 perseant
434 1.1 perseant /*
435 1.1 perseant * Change the given block's address to ndaddr, finding its previous
436 1.1 perseant * location using ufs_bmaparray().
437 1.1 perseant *
438 1.1 perseant * Account for this change in the segment table.
439 1.1 perseant */
440 1.1 perseant void
441 1.1 perseant lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
442 1.1 perseant ufs_daddr_t ndaddr, int size)
443 1.1 perseant {
444 1.1 perseant SEGUSE *sup;
445 1.1 perseant struct ubuf *bp;
446 1.1 perseant struct indir a[NIADDR + 2], *ap;
447 1.1 perseant struct inode *ip;
448 1.1 perseant struct uvnode *vp;
449 1.1 perseant daddr_t daddr, ooff;
450 1.1 perseant int num, error;
451 1.1 perseant int bb, osize, obb;
452 1.1 perseant
453 1.1 perseant vp = sp->vp;
454 1.1 perseant ip = VTOI(vp);
455 1.1 perseant
456 1.1 perseant error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
457 1.1 perseant if (error)
458 1.1 perseant errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
459 1.1 perseant if (daddr > 0)
460 1.1 perseant daddr = dbtofsb(fs, daddr);
461 1.1 perseant
462 1.1 perseant bb = fragstofsb(fs, numfrags(fs, size));
463 1.1 perseant switch (num) {
464 1.1 perseant case 0:
465 1.3 fvdl ooff = ip->i_ffs1_db[lbn];
466 1.1 perseant if (ooff == UNWRITTEN)
467 1.3 fvdl ip->i_ffs1_blocks += bb;
468 1.1 perseant else {
469 1.1 perseant /* possible fragment truncation or extension */
470 1.1 perseant obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
471 1.3 fvdl ip->i_ffs1_blocks += (bb - obb);
472 1.1 perseant }
473 1.3 fvdl ip->i_ffs1_db[lbn] = ndaddr;
474 1.1 perseant break;
475 1.1 perseant case 1:
476 1.3 fvdl ooff = ip->i_ffs1_ib[a[0].in_off];
477 1.1 perseant if (ooff == UNWRITTEN)
478 1.3 fvdl ip->i_ffs1_blocks += bb;
479 1.3 fvdl ip->i_ffs1_ib[a[0].in_off] = ndaddr;
480 1.1 perseant break;
481 1.1 perseant default:
482 1.1 perseant ap = &a[num - 1];
483 1.1 perseant if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
484 1.1 perseant errx(1, "lfs_updatemeta: bread bno %" PRId64,
485 1.1 perseant ap->in_lbn);
486 1.1 perseant
487 1.1 perseant ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
488 1.1 perseant if (ooff == UNWRITTEN)
489 1.3 fvdl ip->i_ffs1_blocks += bb;
490 1.1 perseant ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
491 1.1 perseant (void) VOP_BWRITE(bp);
492 1.1 perseant }
493 1.1 perseant
494 1.1 perseant /*
495 1.1 perseant * Update segment usage information, based on old size
496 1.1 perseant * and location.
497 1.1 perseant */
498 1.1 perseant if (daddr > 0) {
499 1.1 perseant u_int32_t oldsn = dtosn(fs, daddr);
500 1.1 perseant if (lbn >= 0 && lbn < NDADDR)
501 1.1 perseant osize = ip->i_lfs_fragsize[lbn];
502 1.1 perseant else
503 1.1 perseant osize = fs->lfs_bsize;
504 1.1 perseant LFS_SEGENTRY(sup, fs, oldsn, bp);
505 1.1 perseant sup->su_nbytes -= osize;
506 1.1 perseant if (!(bp->b_flags & B_GATHERED))
507 1.1 perseant fs->lfs_flags |= LFS_IFDIRTY;
508 1.1 perseant LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
509 1.1 perseant }
510 1.1 perseant /*
511 1.1 perseant * Now that this block has a new address, and its old
512 1.1 perseant * segment no longer owns it, we can forget about its
513 1.1 perseant * old size.
514 1.1 perseant */
515 1.1 perseant if (lbn >= 0 && lbn < NDADDR)
516 1.1 perseant ip->i_lfs_fragsize[lbn] = size;
517 1.1 perseant }
518 1.1 perseant
519 1.1 perseant /*
520 1.1 perseant * Update the metadata that points to the blocks listed in the FINFO
521 1.1 perseant * array.
522 1.1 perseant */
523 1.1 perseant void
524 1.1 perseant lfs_updatemeta(struct segment * sp)
525 1.1 perseant {
526 1.1 perseant struct ubuf *sbp;
527 1.1 perseant struct lfs *fs;
528 1.1 perseant struct uvnode *vp;
529 1.1 perseant daddr_t lbn;
530 1.1 perseant int i, nblocks, num;
531 1.1 perseant int bb;
532 1.1 perseant int bytesleft, size;
533 1.1 perseant
534 1.1 perseant vp = sp->vp;
535 1.1 perseant nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
536 1.1 perseant
537 1.1 perseant if (vp == NULL || nblocks == 0)
538 1.1 perseant return;
539 1.1 perseant
540 1.1 perseant /*
541 1.1 perseant * This count may be high due to oversize blocks from lfs_gop_write.
542 1.1 perseant * Correct for this. (XXX we should be able to keep track of these.)
543 1.1 perseant */
544 1.1 perseant fs = sp->fs;
545 1.1 perseant for (i = 0; i < nblocks; i++) {
546 1.1 perseant if (sp->start_bpp[i] == NULL) {
547 1.1 perseant printf("nblocks = %d, not %d\n", i, nblocks);
548 1.1 perseant nblocks = i;
549 1.1 perseant break;
550 1.1 perseant }
551 1.1 perseant num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
552 1.1 perseant nblocks -= num - 1;
553 1.1 perseant }
554 1.1 perseant
555 1.1 perseant /*
556 1.1 perseant * Sort the blocks.
557 1.1 perseant */
558 1.1 perseant lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
559 1.1 perseant
560 1.1 perseant /*
561 1.1 perseant * Record the length of the last block in case it's a fragment.
562 1.1 perseant * If there are indirect blocks present, they sort last. An
563 1.1 perseant * indirect block will be lfs_bsize and its presence indicates
564 1.1 perseant * that you cannot have fragments.
565 1.1 perseant */
566 1.1 perseant sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
567 1.1 perseant fs->lfs_bmask) + 1;
568 1.1 perseant
569 1.1 perseant /*
570 1.1 perseant * Assign disk addresses, and update references to the logical
571 1.1 perseant * block and the segment usage information.
572 1.1 perseant */
573 1.1 perseant for (i = nblocks; i--; ++sp->start_bpp) {
574 1.1 perseant sbp = *sp->start_bpp;
575 1.1 perseant lbn = *sp->start_lbp;
576 1.1 perseant
577 1.1 perseant sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
578 1.1 perseant
579 1.1 perseant /*
580 1.1 perseant * If we write a frag in the wrong place, the cleaner won't
581 1.1 perseant * be able to correctly identify its size later, and the
582 1.1 perseant * segment will be uncleanable. (Even worse, it will assume
583 1.1 perseant * that the indirect block that actually ends the list
584 1.1 perseant * is of a smaller size!)
585 1.1 perseant */
586 1.1 perseant if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
587 1.1 perseant errx(1, "lfs_updatemeta: fragment is not last block");
588 1.1 perseant
589 1.1 perseant /*
590 1.1 perseant * For each subblock in this possibly oversized block,
591 1.1 perseant * update its address on disk.
592 1.1 perseant */
593 1.1 perseant for (bytesleft = sbp->b_bcount; bytesleft > 0;
594 1.1 perseant bytesleft -= fs->lfs_bsize) {
595 1.1 perseant size = MIN(bytesleft, fs->lfs_bsize);
596 1.1 perseant bb = fragstofsb(fs, numfrags(fs, size));
597 1.1 perseant lbn = *sp->start_lbp++;
598 1.1 perseant lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
599 1.1 perseant fs->lfs_offset += bb;
600 1.1 perseant }
601 1.1 perseant
602 1.1 perseant }
603 1.1 perseant }
604 1.1 perseant
605 1.1 perseant /*
606 1.1 perseant * Start a new segment.
607 1.1 perseant */
608 1.1 perseant int
609 1.1 perseant lfs_initseg(struct lfs * fs)
610 1.1 perseant {
611 1.1 perseant struct segment *sp;
612 1.1 perseant SEGUSE *sup;
613 1.1 perseant SEGSUM *ssp;
614 1.1 perseant struct ubuf *bp, *sbp;
615 1.1 perseant int repeat;
616 1.1 perseant
617 1.1 perseant sp = fs->lfs_sp;
618 1.1 perseant
619 1.1 perseant repeat = 0;
620 1.1 perseant
621 1.1 perseant /* Advance to the next segment. */
622 1.1 perseant if (!LFS_PARTIAL_FITS(fs)) {
623 1.1 perseant /* lfs_avail eats the remaining space */
624 1.1 perseant fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
625 1.1 perseant fs->lfs_curseg);
626 1.1 perseant lfs_newseg(fs);
627 1.1 perseant repeat = 1;
628 1.1 perseant fs->lfs_offset = fs->lfs_curseg;
629 1.1 perseant
630 1.1 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
631 1.1 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
632 1.1 perseant
633 1.1 perseant /*
634 1.1 perseant * If the segment contains a superblock, update the offset
635 1.1 perseant * and summary address to skip over it.
636 1.1 perseant */
637 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
638 1.1 perseant if (sup->su_flags & SEGUSE_SUPERBLOCK) {
639 1.1 perseant fs->lfs_offset += btofsb(fs, LFS_SBPAD);
640 1.1 perseant sp->seg_bytes_left -= LFS_SBPAD;
641 1.1 perseant }
642 1.1 perseant brelse(bp);
643 1.1 perseant /* Segment zero could also contain the labelpad */
644 1.1 perseant if (fs->lfs_version > 1 && sp->seg_number == 0 &&
645 1.1 perseant fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
646 1.1 perseant fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
647 1.1 perseant sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
648 1.1 perseant }
649 1.1 perseant } else {
650 1.1 perseant sp->seg_number = dtosn(fs, fs->lfs_curseg);
651 1.1 perseant sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
652 1.1 perseant (fs->lfs_offset - fs->lfs_curseg));
653 1.1 perseant }
654 1.1 perseant fs->lfs_lastpseg = fs->lfs_offset;
655 1.1 perseant
656 1.1 perseant sp->fs = fs;
657 1.1 perseant sp->ibp = NULL;
658 1.1 perseant sp->idp = NULL;
659 1.1 perseant sp->ninodes = 0;
660 1.1 perseant sp->ndupino = 0;
661 1.1 perseant
662 1.1 perseant /* Get a new buffer for SEGSUM and enter it into the buffer list. */
663 1.1 perseant sp->cbpp = sp->bpp;
664 1.8 perseant sbp = *sp->cbpp = getblk(fs->lfs_devvp,
665 1.1 perseant fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
666 1.1 perseant sp->segsum = sbp->b_data;
667 1.1 perseant memset(sp->segsum, 0, fs->lfs_sumsize);
668 1.1 perseant sp->start_bpp = ++sp->cbpp;
669 1.1 perseant fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
670 1.1 perseant
671 1.1 perseant /* Set point to SEGSUM, initialize it. */
672 1.1 perseant ssp = sp->segsum;
673 1.1 perseant ssp->ss_next = fs->lfs_nextseg;
674 1.1 perseant ssp->ss_nfinfo = ssp->ss_ninos = 0;
675 1.1 perseant ssp->ss_magic = SS_MAGIC;
676 1.1 perseant
677 1.1 perseant /* Set pointer to first FINFO, initialize it. */
678 1.1 perseant sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
679 1.1 perseant sp->fip->fi_nblocks = 0;
680 1.1 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
681 1.1 perseant sp->fip->fi_lastlength = 0;
682 1.1 perseant
683 1.1 perseant sp->seg_bytes_left -= fs->lfs_sumsize;
684 1.1 perseant sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
685 1.1 perseant
686 1.1 perseant LFS_LOCK_BUF(sbp);
687 1.1 perseant brelse(sbp);
688 1.1 perseant return repeat;
689 1.1 perseant }
690 1.1 perseant
691 1.1 perseant /*
692 1.1 perseant * Return the next segment to write.
693 1.1 perseant */
694 1.1 perseant void
695 1.1 perseant lfs_newseg(struct lfs * fs)
696 1.1 perseant {
697 1.1 perseant CLEANERINFO *cip;
698 1.1 perseant SEGUSE *sup;
699 1.1 perseant struct ubuf *bp;
700 1.1 perseant int curseg, isdirty, sn;
701 1.1 perseant
702 1.1 perseant LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
703 1.1 perseant sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
704 1.1 perseant sup->su_nbytes = 0;
705 1.1 perseant sup->su_nsums = 0;
706 1.1 perseant sup->su_ninos = 0;
707 1.1 perseant LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
708 1.1 perseant
709 1.1 perseant LFS_CLEANERINFO(cip, fs, bp);
710 1.1 perseant --cip->clean;
711 1.1 perseant ++cip->dirty;
712 1.1 perseant fs->lfs_nclean = cip->clean;
713 1.1 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
714 1.1 perseant
715 1.1 perseant fs->lfs_lastseg = fs->lfs_curseg;
716 1.1 perseant fs->lfs_curseg = fs->lfs_nextseg;
717 1.1 perseant for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
718 1.1 perseant sn = (sn + 1) % fs->lfs_nseg;
719 1.1 perseant if (sn == curseg)
720 1.1 perseant errx(1, "lfs_nextseg: no clean segments");
721 1.1 perseant LFS_SEGENTRY(sup, fs, sn, bp);
722 1.1 perseant isdirty = sup->su_flags & SEGUSE_DIRTY;
723 1.1 perseant brelse(bp);
724 1.1 perseant
725 1.1 perseant if (!isdirty)
726 1.1 perseant break;
727 1.1 perseant }
728 1.1 perseant
729 1.1 perseant ++fs->lfs_nactive;
730 1.1 perseant fs->lfs_nextseg = sntod(fs, sn);
731 1.1 perseant }
732 1.1 perseant
733 1.1 perseant
734 1.1 perseant int
735 1.1 perseant lfs_writeseg(struct lfs * fs, struct segment * sp)
736 1.1 perseant {
737 1.1 perseant struct ubuf **bpp, *bp;
738 1.1 perseant SEGUSE *sup;
739 1.1 perseant SEGSUM *ssp;
740 1.1 perseant char *datap, *dp;
741 1.1 perseant int i;
742 1.1 perseant int do_again, nblocks, byteoffset;
743 1.1 perseant size_t el_size;
744 1.1 perseant u_short ninos;
745 1.1 perseant struct uvnode *devvp;
746 1.1 perseant
747 1.1 perseant /*
748 1.1 perseant * If there are no buffers other than the segment summary to write
749 1.1 perseant * and it is not a checkpoint, don't do anything. On a checkpoint,
750 1.1 perseant * even if there aren't any buffers, you need to write the superblock.
751 1.1 perseant */
752 1.1 perseant if ((nblocks = sp->cbpp - sp->bpp) == 1)
753 1.1 perseant return 0;
754 1.1 perseant
755 1.8 perseant devvp = fs->lfs_devvp;
756 1.1 perseant
757 1.1 perseant /* Update the segment usage information. */
758 1.1 perseant LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
759 1.1 perseant
760 1.1 perseant /* Loop through all blocks, except the segment summary. */
761 1.1 perseant for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
762 1.1 perseant if ((*bpp)->b_vp != devvp) {
763 1.1 perseant sup->su_nbytes += (*bpp)->b_bcount;
764 1.1 perseant }
765 1.1 perseant }
766 1.1 perseant
767 1.1 perseant ssp = (SEGSUM *) sp->segsum;
768 1.1 perseant
769 1.1 perseant ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
770 1.3 fvdl sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
771 1.1 perseant
772 1.1 perseant if (fs->lfs_version == 1)
773 1.1 perseant sup->su_olastmod = write_time;
774 1.1 perseant else
775 1.1 perseant sup->su_lastmod = write_time;
776 1.1 perseant sup->su_ninos += ninos;
777 1.1 perseant ++sup->su_nsums;
778 1.1 perseant fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
779 1.1 perseant fs->lfs_ibsize));
780 1.1 perseant fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
781 1.1 perseant
782 1.1 perseant do_again = !(bp->b_flags & B_GATHERED);
783 1.1 perseant LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
784 1.1 perseant
785 1.1 perseant /*
786 1.1 perseant * Compute checksum across data and then across summary; the first
787 1.1 perseant * block (the summary block) is skipped. Set the create time here
788 1.1 perseant * so that it's guaranteed to be later than the inode mod times.
789 1.1 perseant */
790 1.1 perseant if (fs->lfs_version == 1)
791 1.1 perseant el_size = sizeof(u_long);
792 1.1 perseant else
793 1.1 perseant el_size = sizeof(u_int32_t);
794 1.1 perseant datap = dp = malloc(nblocks * el_size);
795 1.1 perseant for (bpp = sp->bpp, i = nblocks - 1; i--;) {
796 1.1 perseant ++bpp;
797 1.1 perseant /* Loop through gop_write cluster blocks */
798 1.1 perseant for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
799 1.1 perseant byteoffset += fs->lfs_bsize) {
800 1.1 perseant memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
801 1.1 perseant dp += el_size;
802 1.1 perseant }
803 1.2 perseant bremfree(*bpp);
804 1.1 perseant (*bpp)->b_flags |= B_BUSY;
805 1.1 perseant }
806 1.1 perseant if (fs->lfs_version == 1)
807 1.1 perseant ssp->ss_ocreate = write_time;
808 1.1 perseant else {
809 1.1 perseant ssp->ss_create = write_time;
810 1.1 perseant ssp->ss_serial = ++fs->lfs_serial;
811 1.1 perseant ssp->ss_ident = fs->lfs_ident;
812 1.1 perseant }
813 1.1 perseant /* Set the summary block busy too */
814 1.1 perseant bremfree(*(sp->bpp));
815 1.1 perseant (*(sp->bpp))->b_flags |= B_BUSY;
816 1.1 perseant
817 1.1 perseant ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
818 1.1 perseant ssp->ss_sumsum =
819 1.1 perseant cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
820 1.1 perseant free(datap);
821 1.1 perseant datap = dp = NULL;
822 1.1 perseant fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
823 1.1 perseant btofsb(fs, fs->lfs_sumsize));
824 1.1 perseant
825 1.1 perseant if (devvp == NULL)
826 1.1 perseant errx(1, "devvp is NULL");
827 1.1 perseant for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
828 1.1 perseant bp = *bpp;
829 1.1 perseant #if 0
830 1.2 perseant printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
831 1.1 perseant nblocks - i, bp, bp->b_flags, bp->b_blkno);
832 1.1 perseant printf(" vp = %p\n", bp->b_vp);
833 1.8 perseant if (bp->b_vp != fs->lfs_devvp)
834 1.1 perseant printf(" ino = %d lbn = %" PRId64 "\n",
835 1.1 perseant VTOI(bp->b_vp)->i_number, bp->b_lblkno);
836 1.1 perseant #endif
837 1.8 perseant if (bp->b_vp == fs->lfs_devvp)
838 1.1 perseant written_dev += bp->b_bcount;
839 1.1 perseant else {
840 1.1 perseant if (bp->b_lblkno >= 0)
841 1.1 perseant written_data += bp->b_bcount;
842 1.1 perseant else
843 1.1 perseant written_indir += bp->b_bcount;
844 1.1 perseant }
845 1.2 perseant bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
846 1.2 perseant B_LOCKED);
847 1.1 perseant bwrite(bp);
848 1.1 perseant written_bytes += bp->b_bcount;
849 1.1 perseant }
850 1.1 perseant written_inodes += ninos;
851 1.1 perseant
852 1.1 perseant return (lfs_initseg(fs) || do_again);
853 1.1 perseant }
854 1.1 perseant
855 1.1 perseant /*
856 1.1 perseant * Our own copy of shellsort. XXX use qsort or heapsort.
857 1.1 perseant */
858 1.1 perseant void
859 1.1 perseant lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
860 1.1 perseant {
861 1.1 perseant static int __rsshell_increments[] = {4, 1, 0};
862 1.1 perseant int incr, *incrp, t1, t2;
863 1.1 perseant struct ubuf *bp_temp;
864 1.1 perseant
865 1.1 perseant for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
866 1.1 perseant for (t1 = incr; t1 < nmemb; ++t1)
867 1.1 perseant for (t2 = t1 - incr; t2 >= 0;)
868 1.1 perseant if ((u_int32_t) bp_array[t2]->b_lblkno >
869 1.1 perseant (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
870 1.1 perseant bp_temp = bp_array[t2];
871 1.1 perseant bp_array[t2] = bp_array[t2 + incr];
872 1.1 perseant bp_array[t2 + incr] = bp_temp;
873 1.1 perseant t2 -= incr;
874 1.1 perseant } else
875 1.1 perseant break;
876 1.1 perseant
877 1.1 perseant /* Reform the list of logical blocks */
878 1.1 perseant incr = 0;
879 1.1 perseant for (t1 = 0; t1 < nmemb; t1++) {
880 1.1 perseant for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
881 1.1 perseant lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
882 1.1 perseant }
883 1.1 perseant }
884 1.1 perseant }
885 1.1 perseant
886 1.1 perseant
887 1.1 perseant /*
888 1.1 perseant * lfs_seglock --
889 1.1 perseant * Single thread the segment writer.
890 1.1 perseant */
891 1.1 perseant int
892 1.1 perseant lfs_seglock(struct lfs * fs, unsigned long flags)
893 1.1 perseant {
894 1.1 perseant struct segment *sp;
895 1.1 perseant
896 1.1 perseant if (fs->lfs_seglock) {
897 1.1 perseant ++fs->lfs_seglock;
898 1.1 perseant fs->lfs_sp->seg_flags |= flags;
899 1.1 perseant return 0;
900 1.1 perseant }
901 1.1 perseant fs->lfs_seglock = 1;
902 1.1 perseant
903 1.1 perseant sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
904 1.1 perseant sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
905 1.6 heas if (!sp->bpp)
906 1.7 perseant errx(!preen, "Could not allocate %zu bytes: %s",
907 1.6 heas (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
908 1.6 heas strerror(errno));
909 1.1 perseant sp->seg_flags = flags;
910 1.1 perseant sp->vp = NULL;
911 1.1 perseant sp->seg_iocount = 0;
912 1.1 perseant (void) lfs_initseg(fs);
913 1.1 perseant
914 1.1 perseant return 0;
915 1.1 perseant }
916 1.1 perseant
917 1.1 perseant /*
918 1.1 perseant * lfs_segunlock --
919 1.1 perseant * Single thread the segment writer.
920 1.1 perseant */
921 1.1 perseant void
922 1.1 perseant lfs_segunlock(struct lfs * fs)
923 1.1 perseant {
924 1.1 perseant struct segment *sp;
925 1.1 perseant struct ubuf *bp;
926 1.1 perseant
927 1.1 perseant sp = fs->lfs_sp;
928 1.1 perseant
929 1.1 perseant if (fs->lfs_seglock == 1) {
930 1.1 perseant if (sp->bpp != sp->cbpp) {
931 1.1 perseant /* Free allocated segment summary */
932 1.1 perseant fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
933 1.1 perseant bp = *sp->bpp;
934 1.1 perseant bremfree(bp);
935 1.1 perseant bp->b_flags |= B_DONE | B_INVAL;
936 1.1 perseant bp->b_flags &= ~B_DELWRI;
937 1.1 perseant reassignbuf(bp, bp->b_vp);
938 1.1 perseant bp->b_flags |= B_BUSY; /* XXX */
939 1.1 perseant brelse(bp);
940 1.1 perseant } else
941 1.1 perseant printf("unlock to 0 with no summary");
942 1.1 perseant
943 1.1 perseant free(sp->bpp);
944 1.1 perseant sp->bpp = NULL;
945 1.1 perseant free(sp);
946 1.1 perseant fs->lfs_sp = NULL;
947 1.1 perseant
948 1.1 perseant fs->lfs_nactive = 0;
949 1.1 perseant
950 1.1 perseant /* Since we *know* everything's on disk, write both sbs */
951 1.4 yamt lfs_writesuper(fs, fs->lfs_sboffs[0]);
952 1.4 yamt lfs_writesuper(fs, fs->lfs_sboffs[1]);
953 1.1 perseant
954 1.1 perseant --fs->lfs_seglock;
955 1.1 perseant fs->lfs_lockpid = 0;
956 1.1 perseant } else if (fs->lfs_seglock == 0) {
957 1.1 perseant errx(1, "Seglock not held");
958 1.1 perseant } else {
959 1.1 perseant --fs->lfs_seglock;
960 1.1 perseant }
961 1.1 perseant }
962 1.1 perseant
963 1.1 perseant int
964 1.1 perseant lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
965 1.1 perseant {
966 1.1 perseant struct inode *ip;
967 1.1 perseant struct uvnode *vp;
968 1.1 perseant int inodes_written = 0;
969 1.1 perseant
970 1.1 perseant LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
971 1.1 perseant if (vp->v_bmap_op != lfs_vop_bmap)
972 1.1 perseant continue;
973 1.1 perseant
974 1.1 perseant ip = VTOI(vp);
975 1.1 perseant
976 1.1 perseant if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
977 1.1 perseant (op != VN_DIROP && (vp->v_flag & VDIROP))) {
978 1.1 perseant continue;
979 1.1 perseant }
980 1.1 perseant /*
981 1.1 perseant * Write the inode/file if dirty and it's not the IFILE.
982 1.1 perseant */
983 1.1 perseant if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
984 1.1 perseant if (ip->i_number != LFS_IFILE_INUM)
985 1.1 perseant lfs_writefile(fs, sp, vp);
986 1.1 perseant (void) lfs_writeinode(fs, sp, ip);
987 1.1 perseant inodes_written++;
988 1.1 perseant }
989 1.1 perseant }
990 1.1 perseant return inodes_written;
991 1.1 perseant }
992 1.1 perseant
993 1.1 perseant void
994 1.1 perseant lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
995 1.1 perseant {
996 1.1 perseant struct ubuf *bp;
997 1.1 perseant
998 1.1 perseant /* Set timestamp of this version of the superblock */
999 1.1 perseant if (fs->lfs_version == 1)
1000 1.1 perseant fs->lfs_otstamp = write_time;
1001 1.1 perseant fs->lfs_tstamp = write_time;
1002 1.1 perseant
1003 1.1 perseant /* Checksum the superblock and copy it into a buffer. */
1004 1.1 perseant fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1005 1.1 perseant assert(daddr > 0);
1006 1.8 perseant bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
1007 1.1 perseant memset(bp->b_data + sizeof(struct dlfs), 0,
1008 1.1 perseant LFS_SBPAD - sizeof(struct dlfs));
1009 1.1 perseant *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1010 1.1 perseant
1011 1.1 perseant bwrite(bp);
1012 1.1 perseant }
1013