Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.11
      1 /* $NetBSD: segwrite.c,v 1.11 2006/03/17 15:53:46 rumble Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     66  */
     67 
     68 /*
     69  * Partial segment writer, taken from the kernel and adapted for userland.
     70  */
     71 #include <sys/types.h>
     72 #include <sys/param.h>
     73 #include <sys/time.h>
     74 #include <sys/buf.h>
     75 #include <sys/mount.h>
     76 
     77 #include <ufs/ufs/inode.h>
     78 #include <ufs/ufs/ufsmount.h>
     79 
     80 /* Override certain things to make <ufs/lfs/lfs.h> work */
     81 #define vnode uvnode
     82 #define buf ubuf
     83 #define panic call_panic
     84 
     85 #include <ufs/lfs/lfs.h>
     86 
     87 #include <assert.h>
     88 #include <stdio.h>
     89 #include <stdlib.h>
     90 #include <string.h>
     91 #include <err.h>
     92 #include <errno.h>
     93 
     94 #include "bufcache.h"
     95 #include "vnode.h"
     96 #include "lfs_user.h"
     97 #include "segwrite.h"
     98 
     99 /* Compatibility definitions */
    100 extern off_t locked_queue_bytes;
    101 int locked_queue_count;
    102 off_t written_bytes = 0;
    103 off_t written_data = 0;
    104 off_t written_indir = 0;
    105 off_t written_dev = 0;
    106 int written_inodes = 0;
    107 
    108 /* Global variables */
    109 time_t write_time;
    110 
    111 extern u_int32_t cksum(void *, size_t);
    112 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    113 extern int preen;
    114 
    115 /*
    116  * Logical block number match routines used when traversing the dirty block
    117  * chain.
    118  */
    119 int
    120 lfs_match_data(struct lfs * fs, struct ubuf * bp)
    121 {
    122 	return (bp->b_lblkno >= 0);
    123 }
    124 
    125 int
    126 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    127 {
    128 	daddr_t lbn;
    129 
    130 	lbn = bp->b_lblkno;
    131 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    132 }
    133 
    134 int
    135 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    136 {
    137 	daddr_t lbn;
    138 
    139 	lbn = bp->b_lblkno;
    140 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    141 }
    142 
    143 int
    144 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    145 {
    146 	daddr_t lbn;
    147 
    148 	lbn = bp->b_lblkno;
    149 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    150 }
    151 
    152 /*
    153  * Do a checkpoint.
    154  */
    155 int
    156 lfs_segwrite(struct lfs * fs, int flags)
    157 {
    158 	struct inode *ip;
    159 	struct segment *sp;
    160 	struct uvnode *vp;
    161 	int redo;
    162 
    163 	lfs_seglock(fs, flags | SEGM_CKP);
    164 	sp = fs->lfs_sp;
    165 
    166 	lfs_writevnodes(fs, sp, VN_REG);
    167 	lfs_writevnodes(fs, sp, VN_DIROP);
    168 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    169 
    170 	do {
    171 		vp = fs->lfs_ivnode;
    172 		fs->lfs_flags &= ~LFS_IFDIRTY;
    173 		ip = VTOI(vp);
    174 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
    175 			lfs_writefile(fs, sp, vp);
    176 
    177 		redo = lfs_writeinode(fs, sp, ip);
    178 		redo += lfs_writeseg(fs, sp);
    179 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    180 	} while (redo);
    181 
    182 	lfs_segunlock(fs);
    183 #if 0
    184 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    185 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    186 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    187 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    188 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    189 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    190 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    191 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    192 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    193 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    194 #endif
    195 	return 0;
    196 }
    197 
    198 /*
    199  * Write the dirty blocks associated with a vnode.
    200  */
    201 void
    202 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    203 {
    204 	struct ubuf *bp;
    205 	struct finfo *fip;
    206 	struct inode *ip;
    207 	IFILE *ifp;
    208 
    209 	ip = VTOI(vp);
    210 
    211 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    212 	    sp->sum_bytes_left < sizeof(struct finfo))
    213 		(void) lfs_writeseg(fs, sp);
    214 
    215 	sp->sum_bytes_left -= FINFOSIZE;
    216 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    217 
    218 	if (vp->v_flag & VDIROP)
    219 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    220 
    221 	fip = sp->fip;
    222 	fip->fi_nblocks = 0;
    223 	fip->fi_ino = ip->i_number;
    224 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    225 	fip->fi_version = ifp->if_version;
    226 	brelse(bp);
    227 
    228 	lfs_gather(fs, sp, vp, lfs_match_data);
    229 	lfs_gather(fs, sp, vp, lfs_match_indir);
    230 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    231 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    232 
    233 	fip = sp->fip;
    234 	if (fip->fi_nblocks != 0) {
    235 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    236 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    237 		sp->start_lbp = &sp->fip->fi_blocks[0];
    238 	} else {
    239 		sp->sum_bytes_left += FINFOSIZE;
    240 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    241 	}
    242 }
    243 
    244 int
    245 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    246 {
    247 	struct ubuf *bp, *ibp;
    248 	struct ufs1_dinode *cdp;
    249 	IFILE *ifp;
    250 	SEGUSE *sup;
    251 	daddr_t daddr;
    252 	ino_t ino;
    253 	int error, i, ndx, fsb = 0;
    254 	int redo_ifile = 0;
    255 	struct timespec ts;
    256 	int gotblk = 0;
    257 
    258 	/* Allocate a new inode block if necessary. */
    259 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    260 	    sp->ibp == NULL) {
    261 		/* Allocate a new segment if necessary. */
    262 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    263 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    264 			(void) lfs_writeseg(fs, sp);
    265 
    266 		/* Get next inode block. */
    267 		daddr = fs->lfs_offset;
    268 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    269 		sp->ibp = *sp->cbpp++ =
    270 		    getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
    271 		    fs->lfs_ibsize);
    272 		sp->ibp->b_flags |= B_GATHERED;
    273 		gotblk++;
    274 
    275 		/* Zero out inode numbers */
    276 		for (i = 0; i < INOPB(fs); ++i)
    277 			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    278 
    279 		++sp->start_bpp;
    280 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    281 		/* Set remaining space counters. */
    282 		sp->seg_bytes_left -= fs->lfs_ibsize;
    283 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    284 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    285 		    sp->ninodes / INOPB(fs) - 1;
    286 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    287 	}
    288 	/* Update the inode times and copy the inode onto the inode page. */
    289 	ts.tv_nsec = 0;
    290 	ts.tv_sec = write_time;
    291 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    292 	if (ip->i_number != LFS_IFILE_INUM)
    293 		LFS_ITIMES(ip, &ts, &ts, &ts);
    294 
    295 	/*
    296 	 * If this is the Ifile, and we've already written the Ifile in this
    297 	 * partial segment, just overwrite it (it's not on disk yet) and
    298 	 * continue.
    299 	 *
    300 	 * XXX we know that the bp that we get the second time around has
    301 	 * already been gathered.
    302 	 */
    303 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    304 		*(sp->idp) = *ip->i_din.ffs1_din;
    305 		ip->i_lfs_osize = ip->i_ffs1_size;
    306 		return 0;
    307 	}
    308 	bp = sp->ibp;
    309 	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    310 	*cdp = *ip->i_din.ffs1_din;
    311 
    312 	/* If all blocks are goig to disk, update the "size on disk" */
    313 	ip->i_lfs_osize = ip->i_ffs1_size;
    314 
    315 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    316 		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
    317 		    (sp->ninodes % INOPB(fs));
    318 	if (gotblk) {
    319 		LFS_LOCK_BUF(bp);
    320 		brelse(bp);
    321 	}
    322 	/* Increment inode count in segment summary block. */
    323 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    324 
    325 	/* If this page is full, set flag to allocate a new page. */
    326 	if (++sp->ninodes % INOPB(fs) == 0)
    327 		sp->ibp = NULL;
    328 
    329 	/*
    330 	 * If updating the ifile, update the super-block.  Update the disk
    331 	 * address and access times for this inode in the ifile.
    332 	 */
    333 	ino = ip->i_number;
    334 	if (ino == LFS_IFILE_INUM) {
    335 		daddr = fs->lfs_idaddr;
    336 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    337 	} else {
    338 		LFS_IENTRY(ifp, fs, ino, ibp);
    339 		daddr = ifp->if_daddr;
    340 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    341 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    342 	}
    343 
    344 	/*
    345 	 * Account the inode: it no longer belongs to its former segment,
    346 	 * though it will not belong to the new segment until that segment
    347 	 * is actually written.
    348 	 */
    349 	if (daddr != LFS_UNUSED_DADDR) {
    350 		u_int32_t oldsn = dtosn(fs, daddr);
    351 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    352 		sup->su_nbytes -= DINODE1_SIZE;
    353 		redo_ifile =
    354 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    355 		if (redo_ifile)
    356 			fs->lfs_flags |= LFS_IFDIRTY;
    357 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    358 	}
    359 	return redo_ifile;
    360 }
    361 
    362 int
    363 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    364 {
    365 	struct lfs *fs;
    366 	int version;
    367 	int j, blksinblk;
    368 
    369 	/*
    370 	 * If full, finish this segment.  We may be doing I/O, so
    371 	 * release and reacquire the splbio().
    372 	 */
    373 	fs = sp->fs;
    374 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    375 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    376 	    sp->seg_bytes_left < bp->b_bcount) {
    377 		lfs_updatemeta(sp);
    378 
    379 		version = sp->fip->fi_version;
    380 		(void) lfs_writeseg(fs, sp);
    381 
    382 		sp->fip->fi_version = version;
    383 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    384 		/* Add the current file to the segment summary. */
    385 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    386 		sp->sum_bytes_left -= FINFOSIZE;
    387 
    388 		return 1;
    389 	}
    390 	/* Insert into the buffer list, update the FINFO block. */
    391 	bp->b_flags |= B_GATHERED;
    392 	/* bp->b_flags &= ~B_DONE; */
    393 
    394 	*sp->cbpp++ = bp;
    395 	for (j = 0; j < blksinblk; j++)
    396 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    397 
    398 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    399 	sp->seg_bytes_left -= bp->b_bcount;
    400 	return 0;
    401 }
    402 
    403 int
    404 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    405 {
    406 	struct ubuf *bp, *nbp;
    407 	int count = 0;
    408 
    409 	sp->vp = vp;
    410 loop:
    411 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    412 		nbp = LIST_NEXT(bp, b_vnbufs);
    413 
    414 		assert(bp->b_flags & B_DELWRI);
    415 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    416 			continue;
    417 		}
    418 		if (lfs_gatherblock(sp, bp)) {
    419 			goto loop;
    420 		}
    421 		count++;
    422 	}
    423 
    424 	lfs_updatemeta(sp);
    425 	sp->vp = NULL;
    426 	return count;
    427 }
    428 
    429 
    430 /*
    431  * Change the given block's address to ndaddr, finding its previous
    432  * location using ufs_bmaparray().
    433  *
    434  * Account for this change in the segment table.
    435  */
    436 void
    437 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    438     ufs_daddr_t ndaddr, int size)
    439 {
    440 	SEGUSE *sup;
    441 	struct ubuf *bp;
    442 	struct indir a[NIADDR + 2], *ap;
    443 	struct inode *ip;
    444 	struct uvnode *vp;
    445 	daddr_t daddr, ooff;
    446 	int num, error;
    447 	int bb, osize, obb;
    448 
    449 	vp = sp->vp;
    450 	ip = VTOI(vp);
    451 
    452 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    453 	if (error)
    454 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    455 	if (daddr > 0)
    456 		daddr = dbtofsb(fs, daddr);
    457 
    458 	bb = fragstofsb(fs, numfrags(fs, size));
    459 	switch (num) {
    460 	case 0:
    461 		ooff = ip->i_ffs1_db[lbn];
    462 		if (ooff == UNWRITTEN)
    463 			ip->i_ffs1_blocks += bb;
    464 		else {
    465 			/* possible fragment truncation or extension */
    466 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    467 			ip->i_ffs1_blocks += (bb - obb);
    468 		}
    469 		ip->i_ffs1_db[lbn] = ndaddr;
    470 		break;
    471 	case 1:
    472 		ooff = ip->i_ffs1_ib[a[0].in_off];
    473 		if (ooff == UNWRITTEN)
    474 			ip->i_ffs1_blocks += bb;
    475 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    476 		break;
    477 	default:
    478 		ap = &a[num - 1];
    479 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    480 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    481 			    ap->in_lbn);
    482 
    483 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    484 		if (ooff == UNWRITTEN)
    485 			ip->i_ffs1_blocks += bb;
    486 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    487 		(void) VOP_BWRITE(bp);
    488 	}
    489 
    490 	/*
    491 	 * Update segment usage information, based on old size
    492 	 * and location.
    493 	 */
    494 	if (daddr > 0) {
    495 		u_int32_t oldsn = dtosn(fs, daddr);
    496 		if (lbn >= 0 && lbn < NDADDR)
    497 			osize = ip->i_lfs_fragsize[lbn];
    498 		else
    499 			osize = fs->lfs_bsize;
    500 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    501 		sup->su_nbytes -= osize;
    502 		if (!(bp->b_flags & B_GATHERED))
    503 			fs->lfs_flags |= LFS_IFDIRTY;
    504 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    505 	}
    506 	/*
    507 	 * Now that this block has a new address, and its old
    508 	 * segment no longer owns it, we can forget about its
    509 	 * old size.
    510 	 */
    511 	if (lbn >= 0 && lbn < NDADDR)
    512 		ip->i_lfs_fragsize[lbn] = size;
    513 }
    514 
    515 /*
    516  * Update the metadata that points to the blocks listed in the FINFO
    517  * array.
    518  */
    519 void
    520 lfs_updatemeta(struct segment * sp)
    521 {
    522 	struct ubuf *sbp;
    523 	struct lfs *fs;
    524 	struct uvnode *vp;
    525 	daddr_t lbn;
    526 	int i, nblocks, num;
    527 	int bb;
    528 	int bytesleft, size;
    529 
    530 	vp = sp->vp;
    531 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    532 
    533 	if (vp == NULL || nblocks == 0)
    534 		return;
    535 
    536 	/*
    537 	 * This count may be high due to oversize blocks from lfs_gop_write.
    538 	 * Correct for this. (XXX we should be able to keep track of these.)
    539 	 */
    540 	fs = sp->fs;
    541 	for (i = 0; i < nblocks; i++) {
    542 		if (sp->start_bpp[i] == NULL) {
    543 			printf("nblocks = %d, not %d\n", i, nblocks);
    544 			nblocks = i;
    545 			break;
    546 		}
    547 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    548 		nblocks -= num - 1;
    549 	}
    550 
    551 	/*
    552 	 * Sort the blocks.
    553 	 */
    554 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    555 
    556 	/*
    557 	 * Record the length of the last block in case it's a fragment.
    558 	 * If there are indirect blocks present, they sort last.  An
    559 	 * indirect block will be lfs_bsize and its presence indicates
    560 	 * that you cannot have fragments.
    561 	 */
    562 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    563 	    fs->lfs_bmask) + 1;
    564 
    565 	/*
    566 	 * Assign disk addresses, and update references to the logical
    567 	 * block and the segment usage information.
    568 	 */
    569 	for (i = nblocks; i--; ++sp->start_bpp) {
    570 		sbp = *sp->start_bpp;
    571 		lbn = *sp->start_lbp;
    572 
    573 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    574 
    575 		/*
    576 		 * If we write a frag in the wrong place, the cleaner won't
    577 		 * be able to correctly identify its size later, and the
    578 		 * segment will be uncleanable.	 (Even worse, it will assume
    579 		 * that the indirect block that actually ends the list
    580 		 * is of a smaller size!)
    581 		 */
    582 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    583 			errx(1, "lfs_updatemeta: fragment is not last block");
    584 
    585 		/*
    586 		 * For each subblock in this possibly oversized block,
    587 		 * update its address on disk.
    588 		 */
    589 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    590 		    bytesleft -= fs->lfs_bsize) {
    591 			size = MIN(bytesleft, fs->lfs_bsize);
    592 			bb = fragstofsb(fs, numfrags(fs, size));
    593 			lbn = *sp->start_lbp++;
    594 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    595 			fs->lfs_offset += bb;
    596 		}
    597 
    598 	}
    599 }
    600 
    601 /*
    602  * Start a new segment.
    603  */
    604 int
    605 lfs_initseg(struct lfs * fs)
    606 {
    607 	struct segment *sp;
    608 	SEGUSE *sup;
    609 	SEGSUM *ssp;
    610 	struct ubuf *bp, *sbp;
    611 	int repeat;
    612 
    613 	sp = fs->lfs_sp;
    614 
    615 	repeat = 0;
    616 
    617 	/* Advance to the next segment. */
    618 	if (!LFS_PARTIAL_FITS(fs)) {
    619 		/* lfs_avail eats the remaining space */
    620 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    621 		    fs->lfs_curseg);
    622 		lfs_newseg(fs);
    623 		repeat = 1;
    624 		fs->lfs_offset = fs->lfs_curseg;
    625 
    626 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    627 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    628 
    629 		/*
    630 		 * If the segment contains a superblock, update the offset
    631 		 * and summary address to skip over it.
    632 		 */
    633 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    634 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    635 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    636 			sp->seg_bytes_left -= LFS_SBPAD;
    637 		}
    638 		brelse(bp);
    639 		/* Segment zero could also contain the labelpad */
    640 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    641 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    642 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    643 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    644 		}
    645 	} else {
    646 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    647 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    648 		    (fs->lfs_offset - fs->lfs_curseg));
    649 	}
    650 	fs->lfs_lastpseg = fs->lfs_offset;
    651 
    652 	sp->fs = fs;
    653 	sp->ibp = NULL;
    654 	sp->idp = NULL;
    655 	sp->ninodes = 0;
    656 	sp->ndupino = 0;
    657 
    658 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    659 	sp->cbpp = sp->bpp;
    660 	sbp = *sp->cbpp = getblk(fs->lfs_devvp,
    661 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    662 	sp->segsum = sbp->b_data;
    663 	memset(sp->segsum, 0, fs->lfs_sumsize);
    664 	sp->start_bpp = ++sp->cbpp;
    665 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    666 
    667 	/* Set point to SEGSUM, initialize it. */
    668 	ssp = sp->segsum;
    669 	ssp->ss_next = fs->lfs_nextseg;
    670 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    671 	ssp->ss_magic = SS_MAGIC;
    672 
    673 	/* Set pointer to first FINFO, initialize it. */
    674 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    675 	sp->fip->fi_nblocks = 0;
    676 	sp->start_lbp = &sp->fip->fi_blocks[0];
    677 	sp->fip->fi_lastlength = 0;
    678 
    679 	sp->seg_bytes_left -= fs->lfs_sumsize;
    680 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    681 
    682 	LFS_LOCK_BUF(sbp);
    683 	brelse(sbp);
    684 	return repeat;
    685 }
    686 
    687 /*
    688  * Return the next segment to write.
    689  */
    690 void
    691 lfs_newseg(struct lfs * fs)
    692 {
    693 	CLEANERINFO *cip;
    694 	SEGUSE *sup;
    695 	struct ubuf *bp;
    696 	int curseg, isdirty, sn;
    697 
    698 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    699 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    700 	sup->su_nbytes = 0;
    701 	sup->su_nsums = 0;
    702 	sup->su_ninos = 0;
    703 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    704 
    705 	LFS_CLEANERINFO(cip, fs, bp);
    706 	--cip->clean;
    707 	++cip->dirty;
    708 	fs->lfs_nclean = cip->clean;
    709 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    710 
    711 	fs->lfs_lastseg = fs->lfs_curseg;
    712 	fs->lfs_curseg = fs->lfs_nextseg;
    713 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    714 		sn = (sn + 1) % fs->lfs_nseg;
    715 		if (sn == curseg)
    716 			errx(1, "lfs_nextseg: no clean segments");
    717 		LFS_SEGENTRY(sup, fs, sn, bp);
    718 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    719 		brelse(bp);
    720 
    721 		if (!isdirty)
    722 			break;
    723 	}
    724 
    725 	++fs->lfs_nactive;
    726 	fs->lfs_nextseg = sntod(fs, sn);
    727 }
    728 
    729 
    730 int
    731 lfs_writeseg(struct lfs * fs, struct segment * sp)
    732 {
    733 	struct ubuf **bpp, *bp;
    734 	SEGUSE *sup;
    735 	SEGSUM *ssp;
    736 	char *datap, *dp;
    737 	int i;
    738 	int do_again, nblocks, byteoffset;
    739 	size_t el_size;
    740 	u_short ninos;
    741 	struct uvnode *devvp;
    742 
    743 	/*
    744 	 * If there are no buffers other than the segment summary to write
    745 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    746 	 * even if there aren't any buffers, you need to write the superblock.
    747 	 */
    748 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    749 		return 0;
    750 
    751 	devvp = fs->lfs_devvp;
    752 
    753 	/* Update the segment usage information. */
    754 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    755 
    756 	/* Loop through all blocks, except the segment summary. */
    757 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    758 		if ((*bpp)->b_vp != devvp) {
    759 			sup->su_nbytes += (*bpp)->b_bcount;
    760 		}
    761 	}
    762 
    763 	ssp = (SEGSUM *) sp->segsum;
    764 
    765 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    766 	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
    767 
    768 	if (fs->lfs_version == 1)
    769 		sup->su_olastmod = write_time;
    770 	else
    771 		sup->su_lastmod = write_time;
    772 	sup->su_ninos += ninos;
    773 	++sup->su_nsums;
    774 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    775 		fs->lfs_ibsize));
    776 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    777 
    778 	do_again = !(bp->b_flags & B_GATHERED);
    779 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    780 
    781 	/*
    782 	 * Compute checksum across data and then across summary; the first
    783 	 * block (the summary block) is skipped.  Set the create time here
    784 	 * so that it's guaranteed to be later than the inode mod times.
    785 	 */
    786 	if (fs->lfs_version == 1)
    787 		el_size = sizeof(u_long);
    788 	else
    789 		el_size = sizeof(u_int32_t);
    790 	datap = dp = malloc(nblocks * el_size);
    791 	if (dp == NULL)
    792 		err(1, NULL);
    793 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    794 		++bpp;
    795 		/* Loop through gop_write cluster blocks */
    796 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    797 		    byteoffset += fs->lfs_bsize) {
    798 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    799 			dp += el_size;
    800 		}
    801 		bremfree(*bpp);
    802 		(*bpp)->b_flags |= B_BUSY;
    803 	}
    804 	if (fs->lfs_version == 1)
    805 		ssp->ss_ocreate = write_time;
    806 	else {
    807 		ssp->ss_create = write_time;
    808 		ssp->ss_serial = ++fs->lfs_serial;
    809 		ssp->ss_ident = fs->lfs_ident;
    810 	}
    811 	/* Set the summary block busy too */
    812 	bremfree(*(sp->bpp));
    813 	(*(sp->bpp))->b_flags |= B_BUSY;
    814 
    815 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    816 	ssp->ss_sumsum =
    817 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    818 	free(datap);
    819 	datap = dp = NULL;
    820 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    821 	    btofsb(fs, fs->lfs_sumsize));
    822 
    823 	if (devvp == NULL)
    824 		errx(1, "devvp is NULL");
    825 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    826 		bp = *bpp;
    827 #if 0
    828 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    829 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    830 		printf("  vp = %p\n", bp->b_vp);
    831 		if (bp->b_vp != fs->lfs_devvp)
    832 			printf("  ino = %d lbn = %" PRId64 "\n",
    833 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    834 #endif
    835 		if (bp->b_vp == fs->lfs_devvp)
    836 			written_dev += bp->b_bcount;
    837 		else {
    838 			if (bp->b_lblkno >= 0)
    839 				written_data += bp->b_bcount;
    840 			else
    841 				written_indir += bp->b_bcount;
    842 		}
    843 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    844 				 B_LOCKED);
    845 		bwrite(bp);
    846 		written_bytes += bp->b_bcount;
    847 	}
    848 	written_inodes += ninos;
    849 
    850 	return (lfs_initseg(fs) || do_again);
    851 }
    852 
    853 /*
    854  * Our own copy of shellsort.  XXX use qsort or heapsort.
    855  */
    856 void
    857 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    858 {
    859 	static int __rsshell_increments[] = {4, 1, 0};
    860 	int incr, *incrp, t1, t2;
    861 	struct ubuf *bp_temp;
    862 
    863 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    864 		for (t1 = incr; t1 < nmemb; ++t1)
    865 			for (t2 = t1 - incr; t2 >= 0;)
    866 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    867 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    868 					bp_temp = bp_array[t2];
    869 					bp_array[t2] = bp_array[t2 + incr];
    870 					bp_array[t2 + incr] = bp_temp;
    871 					t2 -= incr;
    872 				} else
    873 					break;
    874 
    875 	/* Reform the list of logical blocks */
    876 	incr = 0;
    877 	for (t1 = 0; t1 < nmemb; t1++) {
    878 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    879 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    880 		}
    881 	}
    882 }
    883 
    884 
    885 /*
    886  * lfs_seglock --
    887  *	Single thread the segment writer.
    888  */
    889 int
    890 lfs_seglock(struct lfs * fs, unsigned long flags)
    891 {
    892 	struct segment *sp;
    893 
    894 	if (fs->lfs_seglock) {
    895 		++fs->lfs_seglock;
    896 		fs->lfs_sp->seg_flags |= flags;
    897 		return 0;
    898 	}
    899 	fs->lfs_seglock = 1;
    900 
    901 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    902 	if (sp == NULL)
    903 		err(1, NULL);
    904 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    905 	if (!sp->bpp)
    906 		errx(!preen, "Could not allocate %zu bytes: %s",
    907 			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
    908 			strerror(errno));
    909 	sp->seg_flags = flags;
    910 	sp->vp = NULL;
    911 	sp->seg_iocount = 0;
    912 	(void) lfs_initseg(fs);
    913 
    914 	return 0;
    915 }
    916 
    917 /*
    918  * lfs_segunlock --
    919  *	Single thread the segment writer.
    920  */
    921 void
    922 lfs_segunlock(struct lfs * fs)
    923 {
    924 	struct segment *sp;
    925 	struct ubuf *bp;
    926 
    927 	sp = fs->lfs_sp;
    928 
    929 	if (fs->lfs_seglock == 1) {
    930 		if (sp->bpp != sp->cbpp) {
    931 			/* Free allocated segment summary */
    932 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    933 			bp = *sp->bpp;
    934 			bremfree(bp);
    935 			bp->b_flags |= B_DONE | B_INVAL;
    936 			bp->b_flags &= ~B_DELWRI;
    937 			reassignbuf(bp, bp->b_vp);
    938 			bp->b_flags |= B_BUSY; /* XXX */
    939 			brelse(bp);
    940 		} else
    941 			printf("unlock to 0 with no summary");
    942 
    943 		free(sp->bpp);
    944 		sp->bpp = NULL;
    945 		free(sp);
    946 		fs->lfs_sp = NULL;
    947 
    948 		fs->lfs_nactive = 0;
    949 
    950 		/* Since we *know* everything's on disk, write both sbs */
    951 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    952 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    953 
    954 		--fs->lfs_seglock;
    955 		fs->lfs_lockpid = 0;
    956 	} else if (fs->lfs_seglock == 0) {
    957 		errx(1, "Seglock not held");
    958 	} else {
    959 		--fs->lfs_seglock;
    960 	}
    961 }
    962 
    963 int
    964 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    965 {
    966 	struct inode *ip;
    967 	struct uvnode *vp;
    968 	int inodes_written = 0;
    969 
    970 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    971 		if (vp->v_bmap_op != lfs_vop_bmap)
    972 			continue;
    973 
    974 		ip = VTOI(vp);
    975 
    976 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    977 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    978 			continue;
    979 		}
    980 		/*
    981 		 * Write the inode/file if dirty and it's not the IFILE.
    982 		 */
    983 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    984 			if (ip->i_number != LFS_IFILE_INUM)
    985 				lfs_writefile(fs, sp, vp);
    986 			(void) lfs_writeinode(fs, sp, ip);
    987 			inodes_written++;
    988 		}
    989 	}
    990 	return inodes_written;
    991 }
    992 
    993 void
    994 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
    995 {
    996 	struct ubuf *bp;
    997 
    998 	/* Set timestamp of this version of the superblock */
    999 	if (fs->lfs_version == 1)
   1000 		fs->lfs_otstamp = write_time;
   1001 	fs->lfs_tstamp = write_time;
   1002 
   1003 	/* Checksum the superblock and copy it into a buffer. */
   1004 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1005 	assert(daddr > 0);
   1006 	bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1007 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1008 	    LFS_SBPAD - sizeof(struct dlfs));
   1009 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1010 
   1011 	bwrite(bp);
   1012 }
   1013