Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.13
      1 /* $NetBSD: segwrite.c,v 1.13 2006/07/18 23:37:13 perseant Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     66  */
     67 
     68 /*
     69  * Partial segment writer, taken from the kernel and adapted for userland.
     70  */
     71 #include <sys/types.h>
     72 #include <sys/param.h>
     73 #include <sys/time.h>
     74 #include <sys/buf.h>
     75 #include <sys/mount.h>
     76 
     77 #include <ufs/ufs/inode.h>
     78 #include <ufs/ufs/ufsmount.h>
     79 
     80 /* Override certain things to make <ufs/lfs/lfs.h> work */
     81 #define vnode uvnode
     82 #define buf ubuf
     83 #define panic call_panic
     84 
     85 #include <ufs/lfs/lfs.h>
     86 
     87 #include <assert.h>
     88 #include <stdio.h>
     89 #include <stdlib.h>
     90 #include <string.h>
     91 #include <err.h>
     92 #include <errno.h>
     93 
     94 #include "bufcache.h"
     95 #include "vnode.h"
     96 #include "lfs_user.h"
     97 #include "segwrite.h"
     98 
     99 /* Compatibility definitions */
    100 extern off_t locked_queue_bytes;
    101 int locked_queue_count;
    102 off_t written_bytes = 0;
    103 off_t written_data = 0;
    104 off_t written_indir = 0;
    105 off_t written_dev = 0;
    106 int written_inodes = 0;
    107 
    108 /* Global variables */
    109 time_t write_time;
    110 
    111 extern u_int32_t cksum(void *, size_t);
    112 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    113 extern int preen;
    114 
    115 /*
    116  * Logical block number match routines used when traversing the dirty block
    117  * chain.
    118  */
    119 int
    120 lfs_match_data(struct lfs * fs, struct ubuf * bp)
    121 {
    122 	return (bp->b_lblkno >= 0);
    123 }
    124 
    125 int
    126 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    127 {
    128 	daddr_t lbn;
    129 
    130 	lbn = bp->b_lblkno;
    131 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    132 }
    133 
    134 int
    135 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    136 {
    137 	daddr_t lbn;
    138 
    139 	lbn = bp->b_lblkno;
    140 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    141 }
    142 
    143 int
    144 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    145 {
    146 	daddr_t lbn;
    147 
    148 	lbn = bp->b_lblkno;
    149 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    150 }
    151 
    152 /*
    153  * Do a checkpoint.
    154  */
    155 int
    156 lfs_segwrite(struct lfs * fs, int flags)
    157 {
    158 	struct inode *ip;
    159 	struct segment *sp;
    160 	struct uvnode *vp;
    161 	int redo;
    162 
    163 	lfs_seglock(fs, flags | SEGM_CKP);
    164 	sp = fs->lfs_sp;
    165 
    166 	lfs_writevnodes(fs, sp, VN_REG);
    167 	lfs_writevnodes(fs, sp, VN_DIROP);
    168 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    169 
    170 	do {
    171 		vp = fs->lfs_ivnode;
    172 		fs->lfs_flags &= ~LFS_IFDIRTY;
    173 		ip = VTOI(vp);
    174 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
    175 			lfs_writefile(fs, sp, vp);
    176 
    177 		redo = lfs_writeinode(fs, sp, ip);
    178 		redo += lfs_writeseg(fs, sp);
    179 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    180 	} while (redo);
    181 
    182 	lfs_segunlock(fs);
    183 #if 0
    184 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    185 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    186 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    187 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    188 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    189 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    190 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    191 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    192 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    193 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    194 #endif
    195 	return 0;
    196 }
    197 
    198 /*
    199  * Write the dirty blocks associated with a vnode.
    200  */
    201 void
    202 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    203 {
    204 	struct ubuf *bp;
    205 	struct finfo *fip;
    206 	struct inode *ip;
    207 	IFILE *ifp;
    208 
    209 	ip = VTOI(vp);
    210 
    211 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    212 	    sp->sum_bytes_left < sizeof(struct finfo))
    213 		(void) lfs_writeseg(fs, sp);
    214 
    215 	sp->sum_bytes_left -= FINFOSIZE;
    216 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    217 
    218 	if (vp->v_flag & VDIROP)
    219 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    220 
    221 	fip = sp->fip;
    222 	fip->fi_nblocks = 0;
    223 	fip->fi_ino = ip->i_number;
    224 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    225 	fip->fi_version = ifp->if_version;
    226 	brelse(bp);
    227 
    228 	lfs_gather(fs, sp, vp, lfs_match_data);
    229 	lfs_gather(fs, sp, vp, lfs_match_indir);
    230 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    231 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    232 
    233 	fip = sp->fip;
    234 	if (fip->fi_nblocks != 0) {
    235 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    236 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    237 		sp->start_lbp = &sp->fip->fi_blocks[0];
    238 	} else {
    239 		sp->sum_bytes_left += FINFOSIZE;
    240 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    241 	}
    242 }
    243 
    244 int
    245 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    246 {
    247 	struct ubuf *bp, *ibp;
    248 	struct ufs1_dinode *cdp;
    249 	IFILE *ifp;
    250 	SEGUSE *sup;
    251 	daddr_t daddr;
    252 	ino_t ino;
    253 	int error, i, ndx, fsb = 0;
    254 	int redo_ifile = 0;
    255 	struct timespec ts;
    256 	int gotblk = 0;
    257 
    258 	/* Allocate a new inode block if necessary. */
    259 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    260 	    sp->ibp == NULL) {
    261 		/* Allocate a new segment if necessary. */
    262 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    263 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    264 			(void) lfs_writeseg(fs, sp);
    265 
    266 		/* Get next inode block. */
    267 		daddr = fs->lfs_offset;
    268 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    269 		sp->ibp = *sp->cbpp++ =
    270 		    getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
    271 		    fs->lfs_ibsize);
    272 		sp->ibp->b_flags |= B_GATHERED;
    273 		gotblk++;
    274 
    275 		/* Zero out inode numbers */
    276 		for (i = 0; i < INOPB(fs); ++i)
    277 			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    278 
    279 		++sp->start_bpp;
    280 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    281 		/* Set remaining space counters. */
    282 		sp->seg_bytes_left -= fs->lfs_ibsize;
    283 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    284 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    285 		    sp->ninodes / INOPB(fs) - 1;
    286 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    287 	}
    288 	/* Update the inode times and copy the inode onto the inode page. */
    289 	ts.tv_nsec = 0;
    290 	ts.tv_sec = write_time;
    291 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    292 	if (ip->i_number != LFS_IFILE_INUM)
    293 		LFS_ITIMES(ip, &ts, &ts, &ts);
    294 
    295 	/*
    296 	 * If this is the Ifile, and we've already written the Ifile in this
    297 	 * partial segment, just overwrite it (it's not on disk yet) and
    298 	 * continue.
    299 	 *
    300 	 * XXX we know that the bp that we get the second time around has
    301 	 * already been gathered.
    302 	 */
    303 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    304 		*(sp->idp) = *ip->i_din.ffs1_din;
    305 		ip->i_lfs_osize = ip->i_ffs1_size;
    306 		return 0;
    307 	}
    308 	bp = sp->ibp;
    309 	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    310 	*cdp = *ip->i_din.ffs1_din;
    311 
    312 	/* If all blocks are goig to disk, update the "size on disk" */
    313 	ip->i_lfs_osize = ip->i_ffs1_size;
    314 
    315 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    316 		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
    317 		    (sp->ninodes % INOPB(fs));
    318 	if (gotblk) {
    319 		LFS_LOCK_BUF(bp);
    320 		assert(!(bp->b_flags & B_INVAL));
    321 		brelse(bp);
    322 	}
    323 	/* Increment inode count in segment summary block. */
    324 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    325 
    326 	/* If this page is full, set flag to allocate a new page. */
    327 	if (++sp->ninodes % INOPB(fs) == 0)
    328 		sp->ibp = NULL;
    329 
    330 	/*
    331 	 * If updating the ifile, update the super-block.  Update the disk
    332 	 * address and access times for this inode in the ifile.
    333 	 */
    334 	ino = ip->i_number;
    335 	if (ino == LFS_IFILE_INUM) {
    336 		daddr = fs->lfs_idaddr;
    337 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    338 		sbdirty();
    339 	} else {
    340 		LFS_IENTRY(ifp, fs, ino, ibp);
    341 		daddr = ifp->if_daddr;
    342 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    343 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    344 	}
    345 
    346 	/*
    347 	 * Account the inode: it no longer belongs to its former segment,
    348 	 * though it will not belong to the new segment until that segment
    349 	 * is actually written.
    350 	 */
    351 	if (daddr != LFS_UNUSED_DADDR) {
    352 		u_int32_t oldsn = dtosn(fs, daddr);
    353 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    354 		sup->su_nbytes -= DINODE1_SIZE;
    355 		redo_ifile =
    356 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    357 		if (redo_ifile)
    358 			fs->lfs_flags |= LFS_IFDIRTY;
    359 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    360 	}
    361 	return redo_ifile;
    362 }
    363 
    364 int
    365 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    366 {
    367 	struct lfs *fs;
    368 	int version;
    369 	int j, blksinblk;
    370 
    371 	/*
    372 	 * If full, finish this segment.  We may be doing I/O, so
    373 	 * release and reacquire the splbio().
    374 	 */
    375 	fs = sp->fs;
    376 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    377 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    378 	    sp->seg_bytes_left < bp->b_bcount) {
    379 		lfs_updatemeta(sp);
    380 
    381 		version = sp->fip->fi_version;
    382 		(void) lfs_writeseg(fs, sp);
    383 
    384 		sp->fip->fi_version = version;
    385 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    386 		/* Add the current file to the segment summary. */
    387 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    388 		sp->sum_bytes_left -= FINFOSIZE;
    389 
    390 		return 1;
    391 	}
    392 	/* Insert into the buffer list, update the FINFO block. */
    393 	bp->b_flags |= B_GATHERED;
    394 	/* bp->b_flags &= ~B_DONE; */
    395 
    396 	*sp->cbpp++ = bp;
    397 	for (j = 0; j < blksinblk; j++)
    398 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    399 
    400 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    401 	sp->seg_bytes_left -= bp->b_bcount;
    402 	return 0;
    403 }
    404 
    405 int
    406 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    407 {
    408 	struct ubuf *bp, *nbp;
    409 	int count = 0;
    410 
    411 	sp->vp = vp;
    412 loop:
    413 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    414 		nbp = LIST_NEXT(bp, b_vnbufs);
    415 
    416 		assert(bp->b_flags & B_DELWRI);
    417 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    418 			continue;
    419 		}
    420 		if (lfs_gatherblock(sp, bp)) {
    421 			goto loop;
    422 		}
    423 		count++;
    424 	}
    425 
    426 	lfs_updatemeta(sp);
    427 	sp->vp = NULL;
    428 	return count;
    429 }
    430 
    431 
    432 /*
    433  * Change the given block's address to ndaddr, finding its previous
    434  * location using ufs_bmaparray().
    435  *
    436  * Account for this change in the segment table.
    437  */
    438 void
    439 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    440     ufs_daddr_t ndaddr, int size)
    441 {
    442 	SEGUSE *sup;
    443 	struct ubuf *bp;
    444 	struct indir a[NIADDR + 2], *ap;
    445 	struct inode *ip;
    446 	struct uvnode *vp;
    447 	daddr_t daddr, ooff;
    448 	int num, error;
    449 	int bb, osize, obb;
    450 
    451 	vp = sp->vp;
    452 	ip = VTOI(vp);
    453 
    454 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    455 	if (error)
    456 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    457 	if (daddr > 0)
    458 		daddr = dbtofsb(fs, daddr);
    459 
    460 	bb = fragstofsb(fs, numfrags(fs, size));
    461 	switch (num) {
    462 	case 0:
    463 		ooff = ip->i_ffs1_db[lbn];
    464 		if (ooff == UNWRITTEN)
    465 			ip->i_ffs1_blocks += bb;
    466 		else {
    467 			/* possible fragment truncation or extension */
    468 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    469 			ip->i_ffs1_blocks += (bb - obb);
    470 		}
    471 		ip->i_ffs1_db[lbn] = ndaddr;
    472 		break;
    473 	case 1:
    474 		ooff = ip->i_ffs1_ib[a[0].in_off];
    475 		if (ooff == UNWRITTEN)
    476 			ip->i_ffs1_blocks += bb;
    477 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    478 		break;
    479 	default:
    480 		ap = &a[num - 1];
    481 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    482 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    483 			    ap->in_lbn);
    484 
    485 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    486 		if (ooff == UNWRITTEN)
    487 			ip->i_ffs1_blocks += bb;
    488 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    489 		(void) VOP_BWRITE(bp);
    490 	}
    491 
    492 	/*
    493 	 * Update segment usage information, based on old size
    494 	 * and location.
    495 	 */
    496 	if (daddr > 0) {
    497 		u_int32_t oldsn = dtosn(fs, daddr);
    498 		if (lbn >= 0 && lbn < NDADDR)
    499 			osize = ip->i_lfs_fragsize[lbn];
    500 		else
    501 			osize = fs->lfs_bsize;
    502 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    503 		sup->su_nbytes -= osize;
    504 		if (!(bp->b_flags & B_GATHERED))
    505 			fs->lfs_flags |= LFS_IFDIRTY;
    506 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    507 	}
    508 	/*
    509 	 * Now that this block has a new address, and its old
    510 	 * segment no longer owns it, we can forget about its
    511 	 * old size.
    512 	 */
    513 	if (lbn >= 0 && lbn < NDADDR)
    514 		ip->i_lfs_fragsize[lbn] = size;
    515 }
    516 
    517 /*
    518  * Update the metadata that points to the blocks listed in the FINFO
    519  * array.
    520  */
    521 void
    522 lfs_updatemeta(struct segment * sp)
    523 {
    524 	struct ubuf *sbp;
    525 	struct lfs *fs;
    526 	struct uvnode *vp;
    527 	daddr_t lbn;
    528 	int i, nblocks, num;
    529 	int bb;
    530 	int bytesleft, size;
    531 
    532 	vp = sp->vp;
    533 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    534 
    535 	if (vp == NULL || nblocks == 0)
    536 		return;
    537 
    538 	/*
    539 	 * This count may be high due to oversize blocks from lfs_gop_write.
    540 	 * Correct for this. (XXX we should be able to keep track of these.)
    541 	 */
    542 	fs = sp->fs;
    543 	for (i = 0; i < nblocks; i++) {
    544 		if (sp->start_bpp[i] == NULL) {
    545 			printf("nblocks = %d, not %d\n", i, nblocks);
    546 			nblocks = i;
    547 			break;
    548 		}
    549 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    550 		nblocks -= num - 1;
    551 	}
    552 
    553 	/*
    554 	 * Sort the blocks.
    555 	 */
    556 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    557 
    558 	/*
    559 	 * Record the length of the last block in case it's a fragment.
    560 	 * If there are indirect blocks present, they sort last.  An
    561 	 * indirect block will be lfs_bsize and its presence indicates
    562 	 * that you cannot have fragments.
    563 	 */
    564 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    565 	    fs->lfs_bmask) + 1;
    566 
    567 	/*
    568 	 * Assign disk addresses, and update references to the logical
    569 	 * block and the segment usage information.
    570 	 */
    571 	for (i = nblocks; i--; ++sp->start_bpp) {
    572 		sbp = *sp->start_bpp;
    573 		lbn = *sp->start_lbp;
    574 
    575 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    576 
    577 		/*
    578 		 * If we write a frag in the wrong place, the cleaner won't
    579 		 * be able to correctly identify its size later, and the
    580 		 * segment will be uncleanable.	 (Even worse, it will assume
    581 		 * that the indirect block that actually ends the list
    582 		 * is of a smaller size!)
    583 		 */
    584 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    585 			errx(1, "lfs_updatemeta: fragment is not last block");
    586 
    587 		/*
    588 		 * For each subblock in this possibly oversized block,
    589 		 * update its address on disk.
    590 		 */
    591 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    592 		    bytesleft -= fs->lfs_bsize) {
    593 			size = MIN(bytesleft, fs->lfs_bsize);
    594 			bb = fragstofsb(fs, numfrags(fs, size));
    595 			lbn = *sp->start_lbp++;
    596 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    597 			fs->lfs_offset += bb;
    598 		}
    599 
    600 	}
    601 }
    602 
    603 /*
    604  * Start a new segment.
    605  */
    606 int
    607 lfs_initseg(struct lfs * fs)
    608 {
    609 	struct segment *sp;
    610 	SEGUSE *sup;
    611 	SEGSUM *ssp;
    612 	struct ubuf *bp, *sbp;
    613 	int repeat;
    614 
    615 	sp = fs->lfs_sp;
    616 
    617 	repeat = 0;
    618 
    619 	/* Advance to the next segment. */
    620 	if (!LFS_PARTIAL_FITS(fs)) {
    621 		/* lfs_avail eats the remaining space */
    622 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    623 		    fs->lfs_curseg);
    624 		lfs_newseg(fs);
    625 		repeat = 1;
    626 		fs->lfs_offset = fs->lfs_curseg;
    627 
    628 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    629 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    630 
    631 		/*
    632 		 * If the segment contains a superblock, update the offset
    633 		 * and summary address to skip over it.
    634 		 */
    635 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    636 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    637 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    638 			sp->seg_bytes_left -= LFS_SBPAD;
    639 		}
    640 		brelse(bp);
    641 		/* Segment zero could also contain the labelpad */
    642 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    643 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    644 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    645 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    646 		}
    647 	} else {
    648 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    649 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    650 		    (fs->lfs_offset - fs->lfs_curseg));
    651 	}
    652 	fs->lfs_lastpseg = fs->lfs_offset;
    653 
    654 	sp->fs = fs;
    655 	sp->ibp = NULL;
    656 	sp->idp = NULL;
    657 	sp->ninodes = 0;
    658 	sp->ndupino = 0;
    659 
    660 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    661 	sp->cbpp = sp->bpp;
    662 	sbp = *sp->cbpp = getblk(fs->lfs_devvp,
    663 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    664 	sp->segsum = sbp->b_data;
    665 	memset(sp->segsum, 0, fs->lfs_sumsize);
    666 	sp->start_bpp = ++sp->cbpp;
    667 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    668 
    669 	/* Set point to SEGSUM, initialize it. */
    670 	ssp = sp->segsum;
    671 	ssp->ss_next = fs->lfs_nextseg;
    672 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    673 	ssp->ss_magic = SS_MAGIC;
    674 
    675 	/* Set pointer to first FINFO, initialize it. */
    676 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    677 	sp->fip->fi_nblocks = 0;
    678 	sp->start_lbp = &sp->fip->fi_blocks[0];
    679 	sp->fip->fi_lastlength = 0;
    680 
    681 	sp->seg_bytes_left -= fs->lfs_sumsize;
    682 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    683 
    684 	LFS_LOCK_BUF(sbp);
    685 	brelse(sbp);
    686 	return repeat;
    687 }
    688 
    689 /*
    690  * Return the next segment to write.
    691  */
    692 void
    693 lfs_newseg(struct lfs * fs)
    694 {
    695 	CLEANERINFO *cip;
    696 	SEGUSE *sup;
    697 	struct ubuf *bp;
    698 	int curseg, isdirty, sn;
    699 
    700 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    701 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    702 	sup->su_nbytes = 0;
    703 	sup->su_nsums = 0;
    704 	sup->su_ninos = 0;
    705 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    706 
    707 	LFS_CLEANERINFO(cip, fs, bp);
    708 	--cip->clean;
    709 	++cip->dirty;
    710 	fs->lfs_nclean = cip->clean;
    711 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    712 
    713 	fs->lfs_lastseg = fs->lfs_curseg;
    714 	fs->lfs_curseg = fs->lfs_nextseg;
    715 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    716 		sn = (sn + 1) % fs->lfs_nseg;
    717 		if (sn == curseg)
    718 			errx(1, "lfs_nextseg: no clean segments");
    719 		LFS_SEGENTRY(sup, fs, sn, bp);
    720 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    721 		brelse(bp);
    722 
    723 		if (!isdirty)
    724 			break;
    725 	}
    726 
    727 	++fs->lfs_nactive;
    728 	fs->lfs_nextseg = sntod(fs, sn);
    729 }
    730 
    731 
    732 int
    733 lfs_writeseg(struct lfs * fs, struct segment * sp)
    734 {
    735 	struct ubuf **bpp, *bp;
    736 	SEGUSE *sup;
    737 	SEGSUM *ssp;
    738 	char *datap, *dp;
    739 	int i;
    740 	int do_again, nblocks, byteoffset;
    741 	size_t el_size;
    742 	u_short ninos;
    743 	struct uvnode *devvp;
    744 
    745 	/*
    746 	 * If there are no buffers other than the segment summary to write
    747 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    748 	 * even if there aren't any buffers, you need to write the superblock.
    749 	 */
    750 	nblocks = sp->cbpp - sp->bpp;
    751 #if 0
    752 	printf("write %d blocks at 0x%x\n",
    753 		nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
    754 #endif
    755 	if (nblocks == 1)
    756 		return 0;
    757 
    758 	devvp = fs->lfs_devvp;
    759 
    760 	/* Update the segment usage information. */
    761 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    762 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    763 
    764 	/* Loop through all blocks, except the segment summary. */
    765 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    766 		if ((*bpp)->b_vp != devvp) {
    767 			sup->su_nbytes += (*bpp)->b_bcount;
    768 		}
    769 		assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
    770 	}
    771 
    772 	ssp = (SEGSUM *) sp->segsum;
    773 
    774 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    775 	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
    776 
    777 	if (fs->lfs_version == 1)
    778 		sup->su_olastmod = write_time;
    779 	else
    780 		sup->su_lastmod = write_time;
    781 	sup->su_ninos += ninos;
    782 	++sup->su_nsums;
    783 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    784 		fs->lfs_ibsize));
    785 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    786 
    787 	do_again = !(bp->b_flags & B_GATHERED);
    788 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    789 
    790 	/*
    791 	 * Compute checksum across data and then across summary; the first
    792 	 * block (the summary block) is skipped.  Set the create time here
    793 	 * so that it's guaranteed to be later than the inode mod times.
    794 	 */
    795 	if (fs->lfs_version == 1)
    796 		el_size = sizeof(u_long);
    797 	else
    798 		el_size = sizeof(u_int32_t);
    799 	datap = dp = malloc(nblocks * el_size);
    800 	if (dp == NULL)
    801 		err(1, NULL);
    802 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    803 		++bpp;
    804 		/* Loop through gop_write cluster blocks */
    805 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    806 		    byteoffset += fs->lfs_bsize) {
    807 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    808 			dp += el_size;
    809 		}
    810 		bremfree(*bpp);
    811 		(*bpp)->b_flags |= B_BUSY;
    812 	}
    813 	if (fs->lfs_version == 1)
    814 		ssp->ss_ocreate = write_time;
    815 	else {
    816 		ssp->ss_create = write_time;
    817 		ssp->ss_serial = ++fs->lfs_serial;
    818 		ssp->ss_ident = fs->lfs_ident;
    819 	}
    820 	/* Set the summary block busy too */
    821 	bremfree(*(sp->bpp));
    822 	(*(sp->bpp))->b_flags |= B_BUSY;
    823 
    824 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    825 	ssp->ss_sumsum =
    826 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    827 	free(datap);
    828 	datap = dp = NULL;
    829 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    830 	    btofsb(fs, fs->lfs_sumsize));
    831 
    832 	if (devvp == NULL)
    833 		errx(1, "devvp is NULL");
    834 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    835 		bp = *bpp;
    836 #if 0
    837 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    838 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    839 		printf("  vp = %p\n", bp->b_vp);
    840 		if (bp->b_vp != fs->lfs_devvp)
    841 			printf("  ino = %d lbn = %" PRId64 "\n",
    842 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    843 #endif
    844 		if (bp->b_vp == fs->lfs_devvp)
    845 			written_dev += bp->b_bcount;
    846 		else {
    847 			if (bp->b_lblkno >= 0)
    848 				written_data += bp->b_bcount;
    849 			else
    850 				written_indir += bp->b_bcount;
    851 		}
    852 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    853 				 B_LOCKED);
    854 		bwrite(bp);
    855 		written_bytes += bp->b_bcount;
    856 	}
    857 	written_inodes += ninos;
    858 
    859 	return (lfs_initseg(fs) || do_again);
    860 }
    861 
    862 /*
    863  * Our own copy of shellsort.  XXX use qsort or heapsort.
    864  */
    865 void
    866 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    867 {
    868 	static int __rsshell_increments[] = {4, 1, 0};
    869 	int incr, *incrp, t1, t2;
    870 	struct ubuf *bp_temp;
    871 
    872 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    873 		for (t1 = incr; t1 < nmemb; ++t1)
    874 			for (t2 = t1 - incr; t2 >= 0;)
    875 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    876 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    877 					bp_temp = bp_array[t2];
    878 					bp_array[t2] = bp_array[t2 + incr];
    879 					bp_array[t2 + incr] = bp_temp;
    880 					t2 -= incr;
    881 				} else
    882 					break;
    883 
    884 	/* Reform the list of logical blocks */
    885 	incr = 0;
    886 	for (t1 = 0; t1 < nmemb; t1++) {
    887 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    888 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    889 		}
    890 	}
    891 }
    892 
    893 
    894 /*
    895  * lfs_seglock --
    896  *	Single thread the segment writer.
    897  */
    898 int
    899 lfs_seglock(struct lfs * fs, unsigned long flags)
    900 {
    901 	struct segment *sp;
    902 
    903 	if (fs->lfs_seglock) {
    904 		++fs->lfs_seglock;
    905 		fs->lfs_sp->seg_flags |= flags;
    906 		return 0;
    907 	}
    908 	fs->lfs_seglock = 1;
    909 
    910 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    911 	if (sp == NULL)
    912 		err(1, NULL);
    913 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    914 	if (!sp->bpp)
    915 		errx(!preen, "Could not allocate %zu bytes: %s",
    916 			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
    917 			strerror(errno));
    918 	sp->seg_flags = flags;
    919 	sp->vp = NULL;
    920 	sp->seg_iocount = 0;
    921 	(void) lfs_initseg(fs);
    922 
    923 	return 0;
    924 }
    925 
    926 /*
    927  * lfs_segunlock --
    928  *	Single thread the segment writer.
    929  */
    930 void
    931 lfs_segunlock(struct lfs * fs)
    932 {
    933 	struct segment *sp;
    934 	struct ubuf *bp;
    935 
    936 	sp = fs->lfs_sp;
    937 
    938 	if (fs->lfs_seglock == 1) {
    939 		if (sp->bpp != sp->cbpp) {
    940 			/* Free allocated segment summary */
    941 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    942 			bp = *sp->bpp;
    943 			bremfree(bp);
    944 			bp->b_flags |= B_DONE | B_INVAL;
    945 			bp->b_flags &= ~B_DELWRI;
    946 			reassignbuf(bp, bp->b_vp);
    947 			bp->b_flags |= B_BUSY; /* XXX */
    948 			brelse(bp);
    949 		} else
    950 			printf("unlock to 0 with no summary");
    951 
    952 		free(sp->bpp);
    953 		sp->bpp = NULL;
    954 		free(sp);
    955 		fs->lfs_sp = NULL;
    956 
    957 		fs->lfs_nactive = 0;
    958 
    959 		/* Since we *know* everything's on disk, write both sbs */
    960 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    961 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    962 
    963 		--fs->lfs_seglock;
    964 		fs->lfs_lockpid = 0;
    965 	} else if (fs->lfs_seglock == 0) {
    966 		errx(1, "Seglock not held");
    967 	} else {
    968 		--fs->lfs_seglock;
    969 	}
    970 }
    971 
    972 int
    973 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    974 {
    975 	struct inode *ip;
    976 	struct uvnode *vp;
    977 	int inodes_written = 0;
    978 
    979 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    980 		if (vp->v_bmap_op != lfs_vop_bmap)
    981 			continue;
    982 
    983 		ip = VTOI(vp);
    984 
    985 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    986 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    987 			continue;
    988 		}
    989 		/*
    990 		 * Write the inode/file if dirty and it's not the IFILE.
    991 		 */
    992 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    993 			if (ip->i_number != LFS_IFILE_INUM)
    994 				lfs_writefile(fs, sp, vp);
    995 			(void) lfs_writeinode(fs, sp, ip);
    996 			inodes_written++;
    997 		}
    998 	}
    999 	return inodes_written;
   1000 }
   1001 
   1002 void
   1003 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
   1004 {
   1005 	struct ubuf *bp;
   1006 
   1007 	/* Set timestamp of this version of the superblock */
   1008 	if (fs->lfs_version == 1)
   1009 		fs->lfs_otstamp = write_time;
   1010 	fs->lfs_tstamp = write_time;
   1011 
   1012 	/* Checksum the superblock and copy it into a buffer. */
   1013 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1014 	assert(daddr > 0);
   1015 	bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1016 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1017 	    LFS_SBPAD - sizeof(struct dlfs));
   1018 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1019 
   1020 	bwrite(bp);
   1021 }
   1022