segwrite.c revision 1.13 1 /* $NetBSD: segwrite.c,v 1.13 2006/07/18 23:37:13 perseant Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
66 */
67
68 /*
69 * Partial segment writer, taken from the kernel and adapted for userland.
70 */
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/buf.h>
75 #include <sys/mount.h>
76
77 #include <ufs/ufs/inode.h>
78 #include <ufs/ufs/ufsmount.h>
79
80 /* Override certain things to make <ufs/lfs/lfs.h> work */
81 #define vnode uvnode
82 #define buf ubuf
83 #define panic call_panic
84
85 #include <ufs/lfs/lfs.h>
86
87 #include <assert.h>
88 #include <stdio.h>
89 #include <stdlib.h>
90 #include <string.h>
91 #include <err.h>
92 #include <errno.h>
93
94 #include "bufcache.h"
95 #include "vnode.h"
96 #include "lfs_user.h"
97 #include "segwrite.h"
98
99 /* Compatibility definitions */
100 extern off_t locked_queue_bytes;
101 int locked_queue_count;
102 off_t written_bytes = 0;
103 off_t written_data = 0;
104 off_t written_indir = 0;
105 off_t written_dev = 0;
106 int written_inodes = 0;
107
108 /* Global variables */
109 time_t write_time;
110
111 extern u_int32_t cksum(void *, size_t);
112 extern u_int32_t lfs_sb_cksum(struct dlfs *);
113 extern int preen;
114
115 /*
116 * Logical block number match routines used when traversing the dirty block
117 * chain.
118 */
119 int
120 lfs_match_data(struct lfs * fs, struct ubuf * bp)
121 {
122 return (bp->b_lblkno >= 0);
123 }
124
125 int
126 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
127 {
128 daddr_t lbn;
129
130 lbn = bp->b_lblkno;
131 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
132 }
133
134 int
135 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
136 {
137 daddr_t lbn;
138
139 lbn = bp->b_lblkno;
140 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
141 }
142
143 int
144 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
145 {
146 daddr_t lbn;
147
148 lbn = bp->b_lblkno;
149 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
150 }
151
152 /*
153 * Do a checkpoint.
154 */
155 int
156 lfs_segwrite(struct lfs * fs, int flags)
157 {
158 struct inode *ip;
159 struct segment *sp;
160 struct uvnode *vp;
161 int redo;
162
163 lfs_seglock(fs, flags | SEGM_CKP);
164 sp = fs->lfs_sp;
165
166 lfs_writevnodes(fs, sp, VN_REG);
167 lfs_writevnodes(fs, sp, VN_DIROP);
168 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
169
170 do {
171 vp = fs->lfs_ivnode;
172 fs->lfs_flags &= ~LFS_IFDIRTY;
173 ip = VTOI(vp);
174 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
175 lfs_writefile(fs, sp, vp);
176
177 redo = lfs_writeinode(fs, sp, ip);
178 redo += lfs_writeseg(fs, sp);
179 redo += (fs->lfs_flags & LFS_IFDIRTY);
180 } while (redo);
181
182 lfs_segunlock(fs);
183 #if 0
184 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
185 written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
186 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
187 written_data, (ufs_daddr_t)btofsb(fs, written_data));
188 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
189 written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
190 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
191 written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
192 printf("wrote %d inodes (%" PRId32 " fsb)\n",
193 written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
194 #endif
195 return 0;
196 }
197
198 /*
199 * Write the dirty blocks associated with a vnode.
200 */
201 void
202 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
203 {
204 struct ubuf *bp;
205 struct finfo *fip;
206 struct inode *ip;
207 IFILE *ifp;
208
209 ip = VTOI(vp);
210
211 if (sp->seg_bytes_left < fs->lfs_bsize ||
212 sp->sum_bytes_left < sizeof(struct finfo))
213 (void) lfs_writeseg(fs, sp);
214
215 sp->sum_bytes_left -= FINFOSIZE;
216 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
217
218 if (vp->v_flag & VDIROP)
219 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
220
221 fip = sp->fip;
222 fip->fi_nblocks = 0;
223 fip->fi_ino = ip->i_number;
224 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
225 fip->fi_version = ifp->if_version;
226 brelse(bp);
227
228 lfs_gather(fs, sp, vp, lfs_match_data);
229 lfs_gather(fs, sp, vp, lfs_match_indir);
230 lfs_gather(fs, sp, vp, lfs_match_dindir);
231 lfs_gather(fs, sp, vp, lfs_match_tindir);
232
233 fip = sp->fip;
234 if (fip->fi_nblocks != 0) {
235 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
236 sizeof(ufs_daddr_t) * (fip->fi_nblocks));
237 sp->start_lbp = &sp->fip->fi_blocks[0];
238 } else {
239 sp->sum_bytes_left += FINFOSIZE;
240 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
241 }
242 }
243
244 int
245 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
246 {
247 struct ubuf *bp, *ibp;
248 struct ufs1_dinode *cdp;
249 IFILE *ifp;
250 SEGUSE *sup;
251 daddr_t daddr;
252 ino_t ino;
253 int error, i, ndx, fsb = 0;
254 int redo_ifile = 0;
255 struct timespec ts;
256 int gotblk = 0;
257
258 /* Allocate a new inode block if necessary. */
259 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
260 sp->ibp == NULL) {
261 /* Allocate a new segment if necessary. */
262 if (sp->seg_bytes_left < fs->lfs_ibsize ||
263 sp->sum_bytes_left < sizeof(ufs_daddr_t))
264 (void) lfs_writeseg(fs, sp);
265
266 /* Get next inode block. */
267 daddr = fs->lfs_offset;
268 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
269 sp->ibp = *sp->cbpp++ =
270 getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
271 fs->lfs_ibsize);
272 sp->ibp->b_flags |= B_GATHERED;
273 gotblk++;
274
275 /* Zero out inode numbers */
276 for (i = 0; i < INOPB(fs); ++i)
277 ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
278
279 ++sp->start_bpp;
280 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
281 /* Set remaining space counters. */
282 sp->seg_bytes_left -= fs->lfs_ibsize;
283 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
284 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
285 sp->ninodes / INOPB(fs) - 1;
286 ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
287 }
288 /* Update the inode times and copy the inode onto the inode page. */
289 ts.tv_nsec = 0;
290 ts.tv_sec = write_time;
291 /* XXX kludge --- don't redirty the ifile just to put times on it */
292 if (ip->i_number != LFS_IFILE_INUM)
293 LFS_ITIMES(ip, &ts, &ts, &ts);
294
295 /*
296 * If this is the Ifile, and we've already written the Ifile in this
297 * partial segment, just overwrite it (it's not on disk yet) and
298 * continue.
299 *
300 * XXX we know that the bp that we get the second time around has
301 * already been gathered.
302 */
303 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
304 *(sp->idp) = *ip->i_din.ffs1_din;
305 ip->i_lfs_osize = ip->i_ffs1_size;
306 return 0;
307 }
308 bp = sp->ibp;
309 cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
310 *cdp = *ip->i_din.ffs1_din;
311
312 /* If all blocks are goig to disk, update the "size on disk" */
313 ip->i_lfs_osize = ip->i_ffs1_size;
314
315 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
316 sp->idp = ((struct ufs1_dinode *) bp->b_data) +
317 (sp->ninodes % INOPB(fs));
318 if (gotblk) {
319 LFS_LOCK_BUF(bp);
320 assert(!(bp->b_flags & B_INVAL));
321 brelse(bp);
322 }
323 /* Increment inode count in segment summary block. */
324 ++((SEGSUM *) (sp->segsum))->ss_ninos;
325
326 /* If this page is full, set flag to allocate a new page. */
327 if (++sp->ninodes % INOPB(fs) == 0)
328 sp->ibp = NULL;
329
330 /*
331 * If updating the ifile, update the super-block. Update the disk
332 * address and access times for this inode in the ifile.
333 */
334 ino = ip->i_number;
335 if (ino == LFS_IFILE_INUM) {
336 daddr = fs->lfs_idaddr;
337 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
338 sbdirty();
339 } else {
340 LFS_IENTRY(ifp, fs, ino, ibp);
341 daddr = ifp->if_daddr;
342 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
343 error = LFS_BWRITE_LOG(ibp); /* Ifile */
344 }
345
346 /*
347 * Account the inode: it no longer belongs to its former segment,
348 * though it will not belong to the new segment until that segment
349 * is actually written.
350 */
351 if (daddr != LFS_UNUSED_DADDR) {
352 u_int32_t oldsn = dtosn(fs, daddr);
353 LFS_SEGENTRY(sup, fs, oldsn, bp);
354 sup->su_nbytes -= DINODE1_SIZE;
355 redo_ifile =
356 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
357 if (redo_ifile)
358 fs->lfs_flags |= LFS_IFDIRTY;
359 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
360 }
361 return redo_ifile;
362 }
363
364 int
365 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
366 {
367 struct lfs *fs;
368 int version;
369 int j, blksinblk;
370
371 /*
372 * If full, finish this segment. We may be doing I/O, so
373 * release and reacquire the splbio().
374 */
375 fs = sp->fs;
376 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
377 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
378 sp->seg_bytes_left < bp->b_bcount) {
379 lfs_updatemeta(sp);
380
381 version = sp->fip->fi_version;
382 (void) lfs_writeseg(fs, sp);
383
384 sp->fip->fi_version = version;
385 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
386 /* Add the current file to the segment summary. */
387 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
388 sp->sum_bytes_left -= FINFOSIZE;
389
390 return 1;
391 }
392 /* Insert into the buffer list, update the FINFO block. */
393 bp->b_flags |= B_GATHERED;
394 /* bp->b_flags &= ~B_DONE; */
395
396 *sp->cbpp++ = bp;
397 for (j = 0; j < blksinblk; j++)
398 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
399
400 sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
401 sp->seg_bytes_left -= bp->b_bcount;
402 return 0;
403 }
404
405 int
406 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
407 {
408 struct ubuf *bp, *nbp;
409 int count = 0;
410
411 sp->vp = vp;
412 loop:
413 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
414 nbp = LIST_NEXT(bp, b_vnbufs);
415
416 assert(bp->b_flags & B_DELWRI);
417 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
418 continue;
419 }
420 if (lfs_gatherblock(sp, bp)) {
421 goto loop;
422 }
423 count++;
424 }
425
426 lfs_updatemeta(sp);
427 sp->vp = NULL;
428 return count;
429 }
430
431
432 /*
433 * Change the given block's address to ndaddr, finding its previous
434 * location using ufs_bmaparray().
435 *
436 * Account for this change in the segment table.
437 */
438 void
439 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
440 ufs_daddr_t ndaddr, int size)
441 {
442 SEGUSE *sup;
443 struct ubuf *bp;
444 struct indir a[NIADDR + 2], *ap;
445 struct inode *ip;
446 struct uvnode *vp;
447 daddr_t daddr, ooff;
448 int num, error;
449 int bb, osize, obb;
450
451 vp = sp->vp;
452 ip = VTOI(vp);
453
454 error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
455 if (error)
456 errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
457 if (daddr > 0)
458 daddr = dbtofsb(fs, daddr);
459
460 bb = fragstofsb(fs, numfrags(fs, size));
461 switch (num) {
462 case 0:
463 ooff = ip->i_ffs1_db[lbn];
464 if (ooff == UNWRITTEN)
465 ip->i_ffs1_blocks += bb;
466 else {
467 /* possible fragment truncation or extension */
468 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
469 ip->i_ffs1_blocks += (bb - obb);
470 }
471 ip->i_ffs1_db[lbn] = ndaddr;
472 break;
473 case 1:
474 ooff = ip->i_ffs1_ib[a[0].in_off];
475 if (ooff == UNWRITTEN)
476 ip->i_ffs1_blocks += bb;
477 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
478 break;
479 default:
480 ap = &a[num - 1];
481 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
482 errx(1, "lfs_updatemeta: bread bno %" PRId64,
483 ap->in_lbn);
484
485 ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
486 if (ooff == UNWRITTEN)
487 ip->i_ffs1_blocks += bb;
488 ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
489 (void) VOP_BWRITE(bp);
490 }
491
492 /*
493 * Update segment usage information, based on old size
494 * and location.
495 */
496 if (daddr > 0) {
497 u_int32_t oldsn = dtosn(fs, daddr);
498 if (lbn >= 0 && lbn < NDADDR)
499 osize = ip->i_lfs_fragsize[lbn];
500 else
501 osize = fs->lfs_bsize;
502 LFS_SEGENTRY(sup, fs, oldsn, bp);
503 sup->su_nbytes -= osize;
504 if (!(bp->b_flags & B_GATHERED))
505 fs->lfs_flags |= LFS_IFDIRTY;
506 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
507 }
508 /*
509 * Now that this block has a new address, and its old
510 * segment no longer owns it, we can forget about its
511 * old size.
512 */
513 if (lbn >= 0 && lbn < NDADDR)
514 ip->i_lfs_fragsize[lbn] = size;
515 }
516
517 /*
518 * Update the metadata that points to the blocks listed in the FINFO
519 * array.
520 */
521 void
522 lfs_updatemeta(struct segment * sp)
523 {
524 struct ubuf *sbp;
525 struct lfs *fs;
526 struct uvnode *vp;
527 daddr_t lbn;
528 int i, nblocks, num;
529 int bb;
530 int bytesleft, size;
531
532 vp = sp->vp;
533 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
534
535 if (vp == NULL || nblocks == 0)
536 return;
537
538 /*
539 * This count may be high due to oversize blocks from lfs_gop_write.
540 * Correct for this. (XXX we should be able to keep track of these.)
541 */
542 fs = sp->fs;
543 for (i = 0; i < nblocks; i++) {
544 if (sp->start_bpp[i] == NULL) {
545 printf("nblocks = %d, not %d\n", i, nblocks);
546 nblocks = i;
547 break;
548 }
549 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
550 nblocks -= num - 1;
551 }
552
553 /*
554 * Sort the blocks.
555 */
556 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
557
558 /*
559 * Record the length of the last block in case it's a fragment.
560 * If there are indirect blocks present, they sort last. An
561 * indirect block will be lfs_bsize and its presence indicates
562 * that you cannot have fragments.
563 */
564 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
565 fs->lfs_bmask) + 1;
566
567 /*
568 * Assign disk addresses, and update references to the logical
569 * block and the segment usage information.
570 */
571 for (i = nblocks; i--; ++sp->start_bpp) {
572 sbp = *sp->start_bpp;
573 lbn = *sp->start_lbp;
574
575 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
576
577 /*
578 * If we write a frag in the wrong place, the cleaner won't
579 * be able to correctly identify its size later, and the
580 * segment will be uncleanable. (Even worse, it will assume
581 * that the indirect block that actually ends the list
582 * is of a smaller size!)
583 */
584 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
585 errx(1, "lfs_updatemeta: fragment is not last block");
586
587 /*
588 * For each subblock in this possibly oversized block,
589 * update its address on disk.
590 */
591 for (bytesleft = sbp->b_bcount; bytesleft > 0;
592 bytesleft -= fs->lfs_bsize) {
593 size = MIN(bytesleft, fs->lfs_bsize);
594 bb = fragstofsb(fs, numfrags(fs, size));
595 lbn = *sp->start_lbp++;
596 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
597 fs->lfs_offset += bb;
598 }
599
600 }
601 }
602
603 /*
604 * Start a new segment.
605 */
606 int
607 lfs_initseg(struct lfs * fs)
608 {
609 struct segment *sp;
610 SEGUSE *sup;
611 SEGSUM *ssp;
612 struct ubuf *bp, *sbp;
613 int repeat;
614
615 sp = fs->lfs_sp;
616
617 repeat = 0;
618
619 /* Advance to the next segment. */
620 if (!LFS_PARTIAL_FITS(fs)) {
621 /* lfs_avail eats the remaining space */
622 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
623 fs->lfs_curseg);
624 lfs_newseg(fs);
625 repeat = 1;
626 fs->lfs_offset = fs->lfs_curseg;
627
628 sp->seg_number = dtosn(fs, fs->lfs_curseg);
629 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
630
631 /*
632 * If the segment contains a superblock, update the offset
633 * and summary address to skip over it.
634 */
635 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
636 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
637 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
638 sp->seg_bytes_left -= LFS_SBPAD;
639 }
640 brelse(bp);
641 /* Segment zero could also contain the labelpad */
642 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
643 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
644 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
645 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
646 }
647 } else {
648 sp->seg_number = dtosn(fs, fs->lfs_curseg);
649 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
650 (fs->lfs_offset - fs->lfs_curseg));
651 }
652 fs->lfs_lastpseg = fs->lfs_offset;
653
654 sp->fs = fs;
655 sp->ibp = NULL;
656 sp->idp = NULL;
657 sp->ninodes = 0;
658 sp->ndupino = 0;
659
660 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
661 sp->cbpp = sp->bpp;
662 sbp = *sp->cbpp = getblk(fs->lfs_devvp,
663 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
664 sp->segsum = sbp->b_data;
665 memset(sp->segsum, 0, fs->lfs_sumsize);
666 sp->start_bpp = ++sp->cbpp;
667 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
668
669 /* Set point to SEGSUM, initialize it. */
670 ssp = sp->segsum;
671 ssp->ss_next = fs->lfs_nextseg;
672 ssp->ss_nfinfo = ssp->ss_ninos = 0;
673 ssp->ss_magic = SS_MAGIC;
674
675 /* Set pointer to first FINFO, initialize it. */
676 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
677 sp->fip->fi_nblocks = 0;
678 sp->start_lbp = &sp->fip->fi_blocks[0];
679 sp->fip->fi_lastlength = 0;
680
681 sp->seg_bytes_left -= fs->lfs_sumsize;
682 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
683
684 LFS_LOCK_BUF(sbp);
685 brelse(sbp);
686 return repeat;
687 }
688
689 /*
690 * Return the next segment to write.
691 */
692 void
693 lfs_newseg(struct lfs * fs)
694 {
695 CLEANERINFO *cip;
696 SEGUSE *sup;
697 struct ubuf *bp;
698 int curseg, isdirty, sn;
699
700 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
701 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
702 sup->su_nbytes = 0;
703 sup->su_nsums = 0;
704 sup->su_ninos = 0;
705 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
706
707 LFS_CLEANERINFO(cip, fs, bp);
708 --cip->clean;
709 ++cip->dirty;
710 fs->lfs_nclean = cip->clean;
711 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
712
713 fs->lfs_lastseg = fs->lfs_curseg;
714 fs->lfs_curseg = fs->lfs_nextseg;
715 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
716 sn = (sn + 1) % fs->lfs_nseg;
717 if (sn == curseg)
718 errx(1, "lfs_nextseg: no clean segments");
719 LFS_SEGENTRY(sup, fs, sn, bp);
720 isdirty = sup->su_flags & SEGUSE_DIRTY;
721 brelse(bp);
722
723 if (!isdirty)
724 break;
725 }
726
727 ++fs->lfs_nactive;
728 fs->lfs_nextseg = sntod(fs, sn);
729 }
730
731
732 int
733 lfs_writeseg(struct lfs * fs, struct segment * sp)
734 {
735 struct ubuf **bpp, *bp;
736 SEGUSE *sup;
737 SEGSUM *ssp;
738 char *datap, *dp;
739 int i;
740 int do_again, nblocks, byteoffset;
741 size_t el_size;
742 u_short ninos;
743 struct uvnode *devvp;
744
745 /*
746 * If there are no buffers other than the segment summary to write
747 * and it is not a checkpoint, don't do anything. On a checkpoint,
748 * even if there aren't any buffers, you need to write the superblock.
749 */
750 nblocks = sp->cbpp - sp->bpp;
751 #if 0
752 printf("write %d blocks at 0x%x\n",
753 nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
754 #endif
755 if (nblocks == 1)
756 return 0;
757
758 devvp = fs->lfs_devvp;
759
760 /* Update the segment usage information. */
761 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
762 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
763
764 /* Loop through all blocks, except the segment summary. */
765 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
766 if ((*bpp)->b_vp != devvp) {
767 sup->su_nbytes += (*bpp)->b_bcount;
768 }
769 assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
770 }
771
772 ssp = (SEGSUM *) sp->segsum;
773
774 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
775 sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
776
777 if (fs->lfs_version == 1)
778 sup->su_olastmod = write_time;
779 else
780 sup->su_lastmod = write_time;
781 sup->su_ninos += ninos;
782 ++sup->su_nsums;
783 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
784 fs->lfs_ibsize));
785 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
786
787 do_again = !(bp->b_flags & B_GATHERED);
788 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
789
790 /*
791 * Compute checksum across data and then across summary; the first
792 * block (the summary block) is skipped. Set the create time here
793 * so that it's guaranteed to be later than the inode mod times.
794 */
795 if (fs->lfs_version == 1)
796 el_size = sizeof(u_long);
797 else
798 el_size = sizeof(u_int32_t);
799 datap = dp = malloc(nblocks * el_size);
800 if (dp == NULL)
801 err(1, NULL);
802 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
803 ++bpp;
804 /* Loop through gop_write cluster blocks */
805 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
806 byteoffset += fs->lfs_bsize) {
807 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
808 dp += el_size;
809 }
810 bremfree(*bpp);
811 (*bpp)->b_flags |= B_BUSY;
812 }
813 if (fs->lfs_version == 1)
814 ssp->ss_ocreate = write_time;
815 else {
816 ssp->ss_create = write_time;
817 ssp->ss_serial = ++fs->lfs_serial;
818 ssp->ss_ident = fs->lfs_ident;
819 }
820 /* Set the summary block busy too */
821 bremfree(*(sp->bpp));
822 (*(sp->bpp))->b_flags |= B_BUSY;
823
824 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
825 ssp->ss_sumsum =
826 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
827 free(datap);
828 datap = dp = NULL;
829 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
830 btofsb(fs, fs->lfs_sumsize));
831
832 if (devvp == NULL)
833 errx(1, "devvp is NULL");
834 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
835 bp = *bpp;
836 #if 0
837 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
838 nblocks - i, bp, bp->b_flags, bp->b_blkno);
839 printf(" vp = %p\n", bp->b_vp);
840 if (bp->b_vp != fs->lfs_devvp)
841 printf(" ino = %d lbn = %" PRId64 "\n",
842 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
843 #endif
844 if (bp->b_vp == fs->lfs_devvp)
845 written_dev += bp->b_bcount;
846 else {
847 if (bp->b_lblkno >= 0)
848 written_data += bp->b_bcount;
849 else
850 written_indir += bp->b_bcount;
851 }
852 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
853 B_LOCKED);
854 bwrite(bp);
855 written_bytes += bp->b_bcount;
856 }
857 written_inodes += ninos;
858
859 return (lfs_initseg(fs) || do_again);
860 }
861
862 /*
863 * Our own copy of shellsort. XXX use qsort or heapsort.
864 */
865 void
866 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
867 {
868 static int __rsshell_increments[] = {4, 1, 0};
869 int incr, *incrp, t1, t2;
870 struct ubuf *bp_temp;
871
872 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
873 for (t1 = incr; t1 < nmemb; ++t1)
874 for (t2 = t1 - incr; t2 >= 0;)
875 if ((u_int32_t) bp_array[t2]->b_lblkno >
876 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
877 bp_temp = bp_array[t2];
878 bp_array[t2] = bp_array[t2 + incr];
879 bp_array[t2 + incr] = bp_temp;
880 t2 -= incr;
881 } else
882 break;
883
884 /* Reform the list of logical blocks */
885 incr = 0;
886 for (t1 = 0; t1 < nmemb; t1++) {
887 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
888 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
889 }
890 }
891 }
892
893
894 /*
895 * lfs_seglock --
896 * Single thread the segment writer.
897 */
898 int
899 lfs_seglock(struct lfs * fs, unsigned long flags)
900 {
901 struct segment *sp;
902
903 if (fs->lfs_seglock) {
904 ++fs->lfs_seglock;
905 fs->lfs_sp->seg_flags |= flags;
906 return 0;
907 }
908 fs->lfs_seglock = 1;
909
910 sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
911 if (sp == NULL)
912 err(1, NULL);
913 sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
914 if (!sp->bpp)
915 errx(!preen, "Could not allocate %zu bytes: %s",
916 (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
917 strerror(errno));
918 sp->seg_flags = flags;
919 sp->vp = NULL;
920 sp->seg_iocount = 0;
921 (void) lfs_initseg(fs);
922
923 return 0;
924 }
925
926 /*
927 * lfs_segunlock --
928 * Single thread the segment writer.
929 */
930 void
931 lfs_segunlock(struct lfs * fs)
932 {
933 struct segment *sp;
934 struct ubuf *bp;
935
936 sp = fs->lfs_sp;
937
938 if (fs->lfs_seglock == 1) {
939 if (sp->bpp != sp->cbpp) {
940 /* Free allocated segment summary */
941 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
942 bp = *sp->bpp;
943 bremfree(bp);
944 bp->b_flags |= B_DONE | B_INVAL;
945 bp->b_flags &= ~B_DELWRI;
946 reassignbuf(bp, bp->b_vp);
947 bp->b_flags |= B_BUSY; /* XXX */
948 brelse(bp);
949 } else
950 printf("unlock to 0 with no summary");
951
952 free(sp->bpp);
953 sp->bpp = NULL;
954 free(sp);
955 fs->lfs_sp = NULL;
956
957 fs->lfs_nactive = 0;
958
959 /* Since we *know* everything's on disk, write both sbs */
960 lfs_writesuper(fs, fs->lfs_sboffs[0]);
961 lfs_writesuper(fs, fs->lfs_sboffs[1]);
962
963 --fs->lfs_seglock;
964 fs->lfs_lockpid = 0;
965 } else if (fs->lfs_seglock == 0) {
966 errx(1, "Seglock not held");
967 } else {
968 --fs->lfs_seglock;
969 }
970 }
971
972 int
973 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
974 {
975 struct inode *ip;
976 struct uvnode *vp;
977 int inodes_written = 0;
978
979 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
980 if (vp->v_bmap_op != lfs_vop_bmap)
981 continue;
982
983 ip = VTOI(vp);
984
985 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
986 (op != VN_DIROP && (vp->v_flag & VDIROP))) {
987 continue;
988 }
989 /*
990 * Write the inode/file if dirty and it's not the IFILE.
991 */
992 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
993 if (ip->i_number != LFS_IFILE_INUM)
994 lfs_writefile(fs, sp, vp);
995 (void) lfs_writeinode(fs, sp, ip);
996 inodes_written++;
997 }
998 }
999 return inodes_written;
1000 }
1001
1002 void
1003 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
1004 {
1005 struct ubuf *bp;
1006
1007 /* Set timestamp of this version of the superblock */
1008 if (fs->lfs_version == 1)
1009 fs->lfs_otstamp = write_time;
1010 fs->lfs_tstamp = write_time;
1011
1012 /* Checksum the superblock and copy it into a buffer. */
1013 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1014 assert(daddr > 0);
1015 bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
1016 memset(bp->b_data + sizeof(struct dlfs), 0,
1017 LFS_SBPAD - sizeof(struct dlfs));
1018 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1019
1020 bwrite(bp);
1021 }
1022