segwrite.c revision 1.16 1 /* $NetBSD: segwrite.c,v 1.16 2007/10/08 21:39:50 ad Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
66 */
67
68 /*
69 * Partial segment writer, taken from the kernel and adapted for userland.
70 */
71 #include <sys/types.h>
72 #include <sys/param.h>
73 #include <sys/time.h>
74 #include <sys/buf.h>
75 #include <sys/mount.h>
76
77 #include <ufs/ufs/inode.h>
78 #include <ufs/ufs/ufsmount.h>
79
80 /* Override certain things to make <ufs/lfs/lfs.h> work */
81 #define vnode uvnode
82 #define buf ubuf
83 #define panic call_panic
84
85 #include <ufs/lfs/lfs.h>
86
87 #include <assert.h>
88 #include <stdio.h>
89 #include <stdlib.h>
90 #include <string.h>
91 #include <err.h>
92 #include <errno.h>
93 #include <util.h>
94
95 #include "bufcache.h"
96 #include "vnode.h"
97 #include "lfs_user.h"
98 #include "segwrite.h"
99
100 /* Compatibility definitions */
101 extern off_t locked_queue_bytes;
102 int locked_queue_count;
103 off_t written_bytes = 0;
104 off_t written_data = 0;
105 off_t written_indir = 0;
106 off_t written_dev = 0;
107 int written_inodes = 0;
108
109 /* Global variables */
110 time_t write_time;
111
112 extern u_int32_t cksum(void *, size_t);
113 extern u_int32_t lfs_sb_cksum(struct dlfs *);
114 extern int preen;
115
116 /*
117 * Logical block number match routines used when traversing the dirty block
118 * chain.
119 */
120 int
121 lfs_match_data(struct lfs * fs, struct ubuf * bp)
122 {
123 return (bp->b_lblkno >= 0);
124 }
125
126 int
127 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
128 {
129 daddr_t lbn;
130
131 lbn = bp->b_lblkno;
132 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
133 }
134
135 int
136 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
137 {
138 daddr_t lbn;
139
140 lbn = bp->b_lblkno;
141 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
142 }
143
144 int
145 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
146 {
147 daddr_t lbn;
148
149 lbn = bp->b_lblkno;
150 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
151 }
152
153 /*
154 * Do a checkpoint.
155 */
156 int
157 lfs_segwrite(struct lfs * fs, int flags)
158 {
159 struct inode *ip;
160 struct segment *sp;
161 struct uvnode *vp;
162 int redo;
163
164 lfs_seglock(fs, flags | SEGM_CKP);
165 sp = fs->lfs_sp;
166
167 lfs_writevnodes(fs, sp, VN_REG);
168 lfs_writevnodes(fs, sp, VN_DIROP);
169 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
170
171 do {
172 vp = fs->lfs_ivnode;
173 fs->lfs_flags &= ~LFS_IFDIRTY;
174 ip = VTOI(vp);
175 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
176 lfs_writefile(fs, sp, vp);
177
178 redo = lfs_writeinode(fs, sp, ip);
179 redo += lfs_writeseg(fs, sp);
180 redo += (fs->lfs_flags & LFS_IFDIRTY);
181 } while (redo);
182
183 lfs_segunlock(fs);
184 #if 0
185 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
186 written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
187 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
188 written_data, (ufs_daddr_t)btofsb(fs, written_data));
189 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
190 written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
191 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
192 written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
193 printf("wrote %d inodes (%" PRId32 " fsb)\n",
194 written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
195 #endif
196 return 0;
197 }
198
199 /*
200 * Write the dirty blocks associated with a vnode.
201 */
202 void
203 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
204 {
205 struct ubuf *bp;
206 struct finfo *fip;
207 struct inode *ip;
208 IFILE *ifp;
209
210 ip = VTOI(vp);
211
212 if (sp->seg_bytes_left < fs->lfs_bsize ||
213 sp->sum_bytes_left < sizeof(struct finfo))
214 (void) lfs_writeseg(fs, sp);
215
216 sp->sum_bytes_left -= FINFOSIZE;
217 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
218
219 if (vp->v_flag & VDIROP)
220 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
221
222 fip = sp->fip;
223 fip->fi_nblocks = 0;
224 fip->fi_ino = ip->i_number;
225 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
226 fip->fi_version = ifp->if_version;
227 brelse(bp, 0);
228
229 lfs_gather(fs, sp, vp, lfs_match_data);
230 lfs_gather(fs, sp, vp, lfs_match_indir);
231 lfs_gather(fs, sp, vp, lfs_match_dindir);
232 lfs_gather(fs, sp, vp, lfs_match_tindir);
233
234 fip = sp->fip;
235 if (fip->fi_nblocks != 0) {
236 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
237 sizeof(ufs_daddr_t) * (fip->fi_nblocks));
238 sp->start_lbp = &sp->fip->fi_blocks[0];
239 } else {
240 sp->sum_bytes_left += FINFOSIZE;
241 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
242 }
243 }
244
245 int
246 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
247 {
248 struct ubuf *bp, *ibp;
249 struct ufs1_dinode *cdp;
250 IFILE *ifp;
251 SEGUSE *sup;
252 daddr_t daddr;
253 ino_t ino;
254 int error, i, ndx, fsb = 0;
255 int redo_ifile = 0;
256 struct timespec ts;
257 int gotblk = 0;
258
259 /* Allocate a new inode block if necessary. */
260 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
261 sp->ibp == NULL) {
262 /* Allocate a new segment if necessary. */
263 if (sp->seg_bytes_left < fs->lfs_ibsize ||
264 sp->sum_bytes_left < sizeof(ufs_daddr_t))
265 (void) lfs_writeseg(fs, sp);
266
267 /* Get next inode block. */
268 daddr = fs->lfs_offset;
269 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
270 sp->ibp = *sp->cbpp++ =
271 getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
272 fs->lfs_ibsize);
273 sp->ibp->b_flags |= B_GATHERED;
274 gotblk++;
275
276 /* Zero out inode numbers */
277 for (i = 0; i < INOPB(fs); ++i)
278 ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
279
280 ++sp->start_bpp;
281 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
282 /* Set remaining space counters. */
283 sp->seg_bytes_left -= fs->lfs_ibsize;
284 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
285 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
286 sp->ninodes / INOPB(fs) - 1;
287 ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
288 }
289 /* Update the inode times and copy the inode onto the inode page. */
290 ts.tv_nsec = 0;
291 ts.tv_sec = write_time;
292 /* XXX kludge --- don't redirty the ifile just to put times on it */
293 if (ip->i_number != LFS_IFILE_INUM)
294 LFS_ITIMES(ip, &ts, &ts, &ts);
295
296 /*
297 * If this is the Ifile, and we've already written the Ifile in this
298 * partial segment, just overwrite it (it's not on disk yet) and
299 * continue.
300 *
301 * XXX we know that the bp that we get the second time around has
302 * already been gathered.
303 */
304 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
305 *(sp->idp) = *ip->i_din.ffs1_din;
306 ip->i_lfs_osize = ip->i_ffs1_size;
307 return 0;
308 }
309 bp = sp->ibp;
310 cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
311 *cdp = *ip->i_din.ffs1_din;
312
313 /* If all blocks are goig to disk, update the "size on disk" */
314 ip->i_lfs_osize = ip->i_ffs1_size;
315
316 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
317 sp->idp = ((struct ufs1_dinode *) bp->b_data) +
318 (sp->ninodes % INOPB(fs));
319 if (gotblk) {
320 LFS_LOCK_BUF(bp);
321 assert(!(bp->b_flags & B_INVAL));
322 brelse(bp, 0);
323 }
324 /* Increment inode count in segment summary block. */
325 ++((SEGSUM *) (sp->segsum))->ss_ninos;
326
327 /* If this page is full, set flag to allocate a new page. */
328 if (++sp->ninodes % INOPB(fs) == 0)
329 sp->ibp = NULL;
330
331 /*
332 * If updating the ifile, update the super-block. Update the disk
333 * address and access times for this inode in the ifile.
334 */
335 ino = ip->i_number;
336 if (ino == LFS_IFILE_INUM) {
337 daddr = fs->lfs_idaddr;
338 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
339 sbdirty();
340 } else {
341 LFS_IENTRY(ifp, fs, ino, ibp);
342 daddr = ifp->if_daddr;
343 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
344 error = LFS_BWRITE_LOG(ibp); /* Ifile */
345 }
346
347 /*
348 * Account the inode: it no longer belongs to its former segment,
349 * though it will not belong to the new segment until that segment
350 * is actually written.
351 */
352 if (daddr != LFS_UNUSED_DADDR) {
353 u_int32_t oldsn = dtosn(fs, daddr);
354 LFS_SEGENTRY(sup, fs, oldsn, bp);
355 sup->su_nbytes -= DINODE1_SIZE;
356 redo_ifile =
357 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
358 if (redo_ifile)
359 fs->lfs_flags |= LFS_IFDIRTY;
360 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
361 }
362 return redo_ifile;
363 }
364
365 int
366 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
367 {
368 struct lfs *fs;
369 int version;
370 int j, blksinblk;
371
372 /*
373 * If full, finish this segment. We may be doing I/O, so
374 * release and reacquire the splbio().
375 */
376 fs = sp->fs;
377 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
378 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
379 sp->seg_bytes_left < bp->b_bcount) {
380 lfs_updatemeta(sp);
381
382 version = sp->fip->fi_version;
383 (void) lfs_writeseg(fs, sp);
384
385 sp->fip->fi_version = version;
386 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
387 /* Add the current file to the segment summary. */
388 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
389 sp->sum_bytes_left -= FINFOSIZE;
390
391 return 1;
392 }
393 /* Insert into the buffer list, update the FINFO block. */
394 bp->b_flags |= B_GATHERED;
395 /* bp->b_flags &= ~B_DONE; */
396
397 *sp->cbpp++ = bp;
398 for (j = 0; j < blksinblk; j++)
399 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
400
401 sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
402 sp->seg_bytes_left -= bp->b_bcount;
403 return 0;
404 }
405
406 int
407 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
408 {
409 struct ubuf *bp, *nbp;
410 int count = 0;
411
412 sp->vp = vp;
413 loop:
414 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
415 nbp = LIST_NEXT(bp, b_vnbufs);
416
417 assert(bp->b_flags & B_DELWRI);
418 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
419 continue;
420 }
421 if (lfs_gatherblock(sp, bp)) {
422 goto loop;
423 }
424 count++;
425 }
426
427 lfs_updatemeta(sp);
428 sp->vp = NULL;
429 return count;
430 }
431
432
433 /*
434 * Change the given block's address to ndaddr, finding its previous
435 * location using ufs_bmaparray().
436 *
437 * Account for this change in the segment table.
438 */
439 void
440 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
441 ufs_daddr_t ndaddr, int size)
442 {
443 SEGUSE *sup;
444 struct ubuf *bp;
445 struct indir a[NIADDR + 2], *ap;
446 struct inode *ip;
447 struct uvnode *vp;
448 daddr_t daddr, ooff;
449 int num, error;
450 int bb, osize, obb;
451
452 vp = sp->vp;
453 ip = VTOI(vp);
454
455 error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
456 if (error)
457 errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
458 if (daddr > 0)
459 daddr = dbtofsb(fs, daddr);
460
461 bb = fragstofsb(fs, numfrags(fs, size));
462 switch (num) {
463 case 0:
464 ooff = ip->i_ffs1_db[lbn];
465 if (ooff == UNWRITTEN)
466 ip->i_ffs1_blocks += bb;
467 else {
468 /* possible fragment truncation or extension */
469 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
470 ip->i_ffs1_blocks += (bb - obb);
471 }
472 ip->i_ffs1_db[lbn] = ndaddr;
473 break;
474 case 1:
475 ooff = ip->i_ffs1_ib[a[0].in_off];
476 if (ooff == UNWRITTEN)
477 ip->i_ffs1_blocks += bb;
478 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
479 break;
480 default:
481 ap = &a[num - 1];
482 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
483 errx(1, "lfs_updatemeta: bread bno %" PRId64,
484 ap->in_lbn);
485
486 ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
487 if (ooff == UNWRITTEN)
488 ip->i_ffs1_blocks += bb;
489 ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
490 (void) VOP_BWRITE(bp);
491 }
492
493 /*
494 * Update segment usage information, based on old size
495 * and location.
496 */
497 if (daddr > 0) {
498 u_int32_t oldsn = dtosn(fs, daddr);
499 if (lbn >= 0 && lbn < NDADDR)
500 osize = ip->i_lfs_fragsize[lbn];
501 else
502 osize = fs->lfs_bsize;
503 LFS_SEGENTRY(sup, fs, oldsn, bp);
504 sup->su_nbytes -= osize;
505 if (!(bp->b_flags & B_GATHERED))
506 fs->lfs_flags |= LFS_IFDIRTY;
507 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
508 }
509 /*
510 * Now that this block has a new address, and its old
511 * segment no longer owns it, we can forget about its
512 * old size.
513 */
514 if (lbn >= 0 && lbn < NDADDR)
515 ip->i_lfs_fragsize[lbn] = size;
516 }
517
518 /*
519 * Update the metadata that points to the blocks listed in the FINFO
520 * array.
521 */
522 void
523 lfs_updatemeta(struct segment * sp)
524 {
525 struct ubuf *sbp;
526 struct lfs *fs;
527 struct uvnode *vp;
528 daddr_t lbn;
529 int i, nblocks, num;
530 int bb;
531 int bytesleft, size;
532
533 vp = sp->vp;
534 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
535
536 if (vp == NULL || nblocks == 0)
537 return;
538
539 /*
540 * This count may be high due to oversize blocks from lfs_gop_write.
541 * Correct for this. (XXX we should be able to keep track of these.)
542 */
543 fs = sp->fs;
544 for (i = 0; i < nblocks; i++) {
545 if (sp->start_bpp[i] == NULL) {
546 printf("nblocks = %d, not %d\n", i, nblocks);
547 nblocks = i;
548 break;
549 }
550 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
551 nblocks -= num - 1;
552 }
553
554 /*
555 * Sort the blocks.
556 */
557 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
558
559 /*
560 * Record the length of the last block in case it's a fragment.
561 * If there are indirect blocks present, they sort last. An
562 * indirect block will be lfs_bsize and its presence indicates
563 * that you cannot have fragments.
564 */
565 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
566 fs->lfs_bmask) + 1;
567
568 /*
569 * Assign disk addresses, and update references to the logical
570 * block and the segment usage information.
571 */
572 for (i = nblocks; i--; ++sp->start_bpp) {
573 sbp = *sp->start_bpp;
574 lbn = *sp->start_lbp;
575
576 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
577
578 /*
579 * If we write a frag in the wrong place, the cleaner won't
580 * be able to correctly identify its size later, and the
581 * segment will be uncleanable. (Even worse, it will assume
582 * that the indirect block that actually ends the list
583 * is of a smaller size!)
584 */
585 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
586 errx(1, "lfs_updatemeta: fragment is not last block");
587
588 /*
589 * For each subblock in this possibly oversized block,
590 * update its address on disk.
591 */
592 for (bytesleft = sbp->b_bcount; bytesleft > 0;
593 bytesleft -= fs->lfs_bsize) {
594 size = MIN(bytesleft, fs->lfs_bsize);
595 bb = fragstofsb(fs, numfrags(fs, size));
596 lbn = *sp->start_lbp++;
597 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
598 fs->lfs_offset += bb;
599 }
600
601 }
602 }
603
604 /*
605 * Start a new segment.
606 */
607 int
608 lfs_initseg(struct lfs * fs)
609 {
610 struct segment *sp;
611 SEGUSE *sup;
612 SEGSUM *ssp;
613 struct ubuf *bp, *sbp;
614 int repeat;
615
616 sp = fs->lfs_sp;
617
618 repeat = 0;
619
620 /* Advance to the next segment. */
621 if (!LFS_PARTIAL_FITS(fs)) {
622 /* lfs_avail eats the remaining space */
623 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
624 fs->lfs_curseg);
625 lfs_newseg(fs);
626 repeat = 1;
627 fs->lfs_offset = fs->lfs_curseg;
628
629 sp->seg_number = dtosn(fs, fs->lfs_curseg);
630 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
631
632 /*
633 * If the segment contains a superblock, update the offset
634 * and summary address to skip over it.
635 */
636 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
637 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
638 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
639 sp->seg_bytes_left -= LFS_SBPAD;
640 }
641 brelse(bp, 0);
642 /* Segment zero could also contain the labelpad */
643 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
644 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
645 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
646 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
647 }
648 } else {
649 sp->seg_number = dtosn(fs, fs->lfs_curseg);
650 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
651 (fs->lfs_offset - fs->lfs_curseg));
652 }
653 fs->lfs_lastpseg = fs->lfs_offset;
654
655 sp->fs = fs;
656 sp->ibp = NULL;
657 sp->idp = NULL;
658 sp->ninodes = 0;
659 sp->ndupino = 0;
660
661 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
662 sp->cbpp = sp->bpp;
663 sbp = *sp->cbpp = getblk(fs->lfs_devvp,
664 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
665 sp->segsum = sbp->b_data;
666 memset(sp->segsum, 0, fs->lfs_sumsize);
667 sp->start_bpp = ++sp->cbpp;
668 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
669
670 /* Set point to SEGSUM, initialize it. */
671 ssp = sp->segsum;
672 ssp->ss_next = fs->lfs_nextseg;
673 ssp->ss_nfinfo = ssp->ss_ninos = 0;
674 ssp->ss_magic = SS_MAGIC;
675
676 /* Set pointer to first FINFO, initialize it. */
677 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
678 sp->fip->fi_nblocks = 0;
679 sp->start_lbp = &sp->fip->fi_blocks[0];
680 sp->fip->fi_lastlength = 0;
681
682 sp->seg_bytes_left -= fs->lfs_sumsize;
683 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
684
685 LFS_LOCK_BUF(sbp);
686 brelse(sbp, 0);
687 return repeat;
688 }
689
690 /*
691 * Return the next segment to write.
692 */
693 void
694 lfs_newseg(struct lfs * fs)
695 {
696 CLEANERINFO *cip;
697 SEGUSE *sup;
698 struct ubuf *bp;
699 int curseg, isdirty, sn;
700
701 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
702 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
703 sup->su_nbytes = 0;
704 sup->su_nsums = 0;
705 sup->su_ninos = 0;
706 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
707
708 LFS_CLEANERINFO(cip, fs, bp);
709 --cip->clean;
710 ++cip->dirty;
711 fs->lfs_nclean = cip->clean;
712 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
713
714 fs->lfs_lastseg = fs->lfs_curseg;
715 fs->lfs_curseg = fs->lfs_nextseg;
716 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
717 sn = (sn + 1) % fs->lfs_nseg;
718 if (sn == curseg)
719 errx(1, "lfs_nextseg: no clean segments");
720 LFS_SEGENTRY(sup, fs, sn, bp);
721 isdirty = sup->su_flags & SEGUSE_DIRTY;
722 brelse(bp, 0);
723
724 if (!isdirty)
725 break;
726 }
727
728 ++fs->lfs_nactive;
729 fs->lfs_nextseg = sntod(fs, sn);
730 }
731
732
733 int
734 lfs_writeseg(struct lfs * fs, struct segment * sp)
735 {
736 struct ubuf **bpp, *bp;
737 SEGUSE *sup;
738 SEGSUM *ssp;
739 char *datap, *dp;
740 int i;
741 int do_again, nblocks, byteoffset;
742 size_t el_size;
743 u_short ninos;
744 struct uvnode *devvp;
745
746 /*
747 * If there are no buffers other than the segment summary to write
748 * and it is not a checkpoint, don't do anything. On a checkpoint,
749 * even if there aren't any buffers, you need to write the superblock.
750 */
751 nblocks = sp->cbpp - sp->bpp;
752 #if 0
753 printf("write %d blocks at 0x%x\n",
754 nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
755 #endif
756 if (nblocks == 1)
757 return 0;
758
759 devvp = fs->lfs_devvp;
760
761 /* Update the segment usage information. */
762 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
763 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
764
765 /* Loop through all blocks, except the segment summary. */
766 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
767 if ((*bpp)->b_vp != devvp) {
768 sup->su_nbytes += (*bpp)->b_bcount;
769 }
770 assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
771 }
772
773 ssp = (SEGSUM *) sp->segsum;
774 ssp->ss_flags |= SS_RFW;
775
776 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
777 sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
778
779 if (fs->lfs_version == 1)
780 sup->su_olastmod = write_time;
781 else
782 sup->su_lastmod = write_time;
783 sup->su_ninos += ninos;
784 ++sup->su_nsums;
785 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
786 fs->lfs_ibsize));
787 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
788
789 do_again = !(bp->b_flags & B_GATHERED);
790 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
791
792 /*
793 * Compute checksum across data and then across summary; the first
794 * block (the summary block) is skipped. Set the create time here
795 * so that it's guaranteed to be later than the inode mod times.
796 */
797 if (fs->lfs_version == 1)
798 el_size = sizeof(u_long);
799 else
800 el_size = sizeof(u_int32_t);
801 datap = dp = emalloc(nblocks * el_size);
802 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
803 ++bpp;
804 /* Loop through gop_write cluster blocks */
805 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
806 byteoffset += fs->lfs_bsize) {
807 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
808 dp += el_size;
809 }
810 bremfree(*bpp);
811 (*bpp)->b_flags |= B_BUSY;
812 }
813 if (fs->lfs_version == 1)
814 ssp->ss_ocreate = write_time;
815 else {
816 ssp->ss_create = write_time;
817 ssp->ss_serial = ++fs->lfs_serial;
818 ssp->ss_ident = fs->lfs_ident;
819 }
820 /* Set the summary block busy too */
821 bremfree(*(sp->bpp));
822 (*(sp->bpp))->b_flags |= B_BUSY;
823
824 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
825 ssp->ss_sumsum =
826 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
827 free(datap);
828 datap = dp = NULL;
829 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
830 btofsb(fs, fs->lfs_sumsize));
831
832 if (devvp == NULL)
833 errx(1, "devvp is NULL");
834 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
835 bp = *bpp;
836 #if 0
837 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
838 nblocks - i, bp, bp->b_flags, bp->b_blkno);
839 printf(" vp = %p\n", bp->b_vp);
840 if (bp->b_vp != fs->lfs_devvp)
841 printf(" ino = %d lbn = %" PRId64 "\n",
842 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
843 #endif
844 if (bp->b_vp == fs->lfs_devvp)
845 written_dev += bp->b_bcount;
846 else {
847 if (bp->b_lblkno >= 0)
848 written_data += bp->b_bcount;
849 else
850 written_indir += bp->b_bcount;
851 }
852 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
853 B_LOCKED);
854 bwrite(bp);
855 written_bytes += bp->b_bcount;
856 }
857 written_inodes += ninos;
858
859 return (lfs_initseg(fs) || do_again);
860 }
861
862 /*
863 * Our own copy of shellsort. XXX use qsort or heapsort.
864 */
865 void
866 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
867 {
868 static int __rsshell_increments[] = {4, 1, 0};
869 int incr, *incrp, t1, t2;
870 struct ubuf *bp_temp;
871
872 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
873 for (t1 = incr; t1 < nmemb; ++t1)
874 for (t2 = t1 - incr; t2 >= 0;)
875 if ((u_int32_t) bp_array[t2]->b_lblkno >
876 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
877 bp_temp = bp_array[t2];
878 bp_array[t2] = bp_array[t2 + incr];
879 bp_array[t2 + incr] = bp_temp;
880 t2 -= incr;
881 } else
882 break;
883
884 /* Reform the list of logical blocks */
885 incr = 0;
886 for (t1 = 0; t1 < nmemb; t1++) {
887 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
888 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
889 }
890 }
891 }
892
893
894 /*
895 * lfs_seglock --
896 * Single thread the segment writer.
897 */
898 int
899 lfs_seglock(struct lfs * fs, unsigned long flags)
900 {
901 struct segment *sp;
902
903 if (fs->lfs_seglock) {
904 ++fs->lfs_seglock;
905 fs->lfs_sp->seg_flags |= flags;
906 return 0;
907 }
908 fs->lfs_seglock = 1;
909
910 sp = fs->lfs_sp = emalloc(sizeof(*sp));
911 sp->bpp = emalloc(fs->lfs_ssize * sizeof(struct ubuf *));
912 if (!sp->bpp)
913 errx(!preen, "Could not allocate %zu bytes: %s",
914 (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
915 strerror(errno));
916 sp->seg_flags = flags;
917 sp->vp = NULL;
918 sp->seg_iocount = 0;
919 (void) lfs_initseg(fs);
920
921 return 0;
922 }
923
924 /*
925 * lfs_segunlock --
926 * Single thread the segment writer.
927 */
928 void
929 lfs_segunlock(struct lfs * fs)
930 {
931 struct segment *sp;
932 struct ubuf *bp;
933
934 sp = fs->lfs_sp;
935
936 if (fs->lfs_seglock == 1) {
937 if (sp->bpp != sp->cbpp) {
938 /* Free allocated segment summary */
939 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
940 bp = *sp->bpp;
941 bremfree(bp);
942 bp->b_flags |= B_DONE | B_INVAL;
943 bp->b_flags &= ~B_DELWRI;
944 reassignbuf(bp, bp->b_vp);
945 bp->b_flags |= B_BUSY; /* XXX */
946 brelse(bp, 0);
947 } else
948 printf("unlock to 0 with no summary");
949
950 free(sp->bpp);
951 sp->bpp = NULL;
952 free(sp);
953 fs->lfs_sp = NULL;
954
955 fs->lfs_nactive = 0;
956
957 /* Since we *know* everything's on disk, write both sbs */
958 lfs_writesuper(fs, fs->lfs_sboffs[0]);
959 lfs_writesuper(fs, fs->lfs_sboffs[1]);
960
961 --fs->lfs_seglock;
962 fs->lfs_lockpid = 0;
963 } else if (fs->lfs_seglock == 0) {
964 errx(1, "Seglock not held");
965 } else {
966 --fs->lfs_seglock;
967 }
968 }
969
970 int
971 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
972 {
973 struct inode *ip;
974 struct uvnode *vp;
975 int inodes_written = 0;
976
977 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
978 if (vp->v_bmap_op != lfs_vop_bmap)
979 continue;
980
981 ip = VTOI(vp);
982
983 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
984 (op != VN_DIROP && (vp->v_flag & VDIROP))) {
985 continue;
986 }
987 /*
988 * Write the inode/file if dirty and it's not the IFILE.
989 */
990 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
991 if (ip->i_number != LFS_IFILE_INUM)
992 lfs_writefile(fs, sp, vp);
993 (void) lfs_writeinode(fs, sp, ip);
994 inodes_written++;
995 }
996 }
997 return inodes_written;
998 }
999
1000 void
1001 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
1002 {
1003 struct ubuf *bp;
1004
1005 /* Set timestamp of this version of the superblock */
1006 if (fs->lfs_version == 1)
1007 fs->lfs_otstamp = write_time;
1008 fs->lfs_tstamp = write_time;
1009
1010 /* Checksum the superblock and copy it into a buffer. */
1011 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1012 assert(daddr > 0);
1013 bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
1014 memset(bp->b_data + sizeof(struct dlfs), 0,
1015 LFS_SBPAD - sizeof(struct dlfs));
1016 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1017
1018 bwrite(bp);
1019 }
1020