segwrite.c revision 1.2 1 /* $NetBSD: segwrite.c,v 1.2 2003/03/31 19:57:00 perseant Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the NetBSD
20 * Foundation, Inc. and its contributors.
21 * 4. Neither the name of The NetBSD Foundation nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37 /*
38 * Copyright (c) 1991, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by the University of
52 * California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
70 */
71
72 /*
73 * Partial segment writer, taken from the kernel and adapted for userland.
74 */
75 #include <sys/types.h>
76 #include <sys/param.h>
77 #include <sys/time.h>
78 #include <sys/buf.h>
79 #include <sys/mount.h>
80
81 #include <ufs/ufs/inode.h>
82 #include <ufs/ufs/ufsmount.h>
83
84 /* Override certain things to make <ufs/lfs/lfs.h> work */
85 #undef simple_lock
86 #define simple_lock(x)
87 #undef simple_unlock
88 #define simple_unlock(x)
89 #define vnode uvnode
90 #define buf ubuf
91 #define panic call_panic
92
93 #include <ufs/lfs/lfs.h>
94
95 #include <assert.h>
96 #include <stdio.h>
97 #include <stdlib.h>
98 #include <string.h>
99 #include <err.h>
100 #include <errno.h>
101
102 #include "bufcache.h"
103 #include "vnode.h"
104 #include "lfs.h"
105 #include "segwrite.h"
106
107 /* Compatibility definitions */
108 extern off_t locked_queue_bytes;
109 int locked_queue_count;
110 off_t written_bytes = 0;
111 off_t written_data = 0;
112 off_t written_indir = 0;
113 off_t written_dev = 0;
114 int written_inodes = 0;
115
116 /* Global variables */
117 time_t write_time;
118
119 extern u_int32_t cksum(void *, size_t);
120 extern u_int32_t lfs_sb_cksum(struct dlfs *);
121
122 /*
123 * Logical block number match routines used when traversing the dirty block
124 * chain.
125 */
126 int
127 lfs_match_data(struct lfs * fs, struct ubuf * bp)
128 {
129 return (bp->b_lblkno >= 0);
130 }
131
132 int
133 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
134 {
135 daddr_t lbn;
136
137 lbn = bp->b_lblkno;
138 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
139 }
140
141 int
142 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
143 {
144 daddr_t lbn;
145
146 lbn = bp->b_lblkno;
147 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
148 }
149
150 int
151 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
152 {
153 daddr_t lbn;
154
155 lbn = bp->b_lblkno;
156 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
157 }
158
159 /*
160 * Do a checkpoint.
161 */
162 int
163 lfs_segwrite(struct lfs * fs, int flags)
164 {
165 struct inode *ip;
166 struct segment *sp;
167 struct uvnode *vp;
168 int redo;
169
170 lfs_seglock(fs, flags | SEGM_CKP);
171 sp = fs->lfs_sp;
172
173 lfs_writevnodes(fs, sp, VN_REG);
174 lfs_writevnodes(fs, sp, VN_DIROP);
175 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
176
177 do {
178 vp = fs->lfs_ivnode;
179 fs->lfs_flags &= ~LFS_IFDIRTY;
180 ip = VTOI(vp);
181 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
182 lfs_writefile(fs, sp, vp);
183
184 redo = lfs_writeinode(fs, sp, ip);
185 redo += lfs_writeseg(fs, sp);
186 redo += (fs->lfs_flags & LFS_IFDIRTY);
187 } while (redo);
188
189 lfs_segunlock(fs);
190 #if 0
191 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
192 written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
193 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
194 written_data, (ufs_daddr_t)btofsb(fs, written_data));
195 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
196 written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
197 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
198 written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
199 printf("wrote %d inodes (%" PRId32 " fsb)\n",
200 written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
201 #endif
202 return 0;
203 }
204
205 /*
206 * Write the dirty blocks associated with a vnode.
207 */
208 void
209 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
210 {
211 struct ubuf *bp;
212 struct finfo *fip;
213 struct inode *ip;
214 IFILE *ifp;
215
216 ip = VTOI(vp);
217
218 if (sp->seg_bytes_left < fs->lfs_bsize ||
219 sp->sum_bytes_left < sizeof(struct finfo))
220 (void) lfs_writeseg(fs, sp);
221
222 sp->sum_bytes_left -= FINFOSIZE;
223 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
224
225 if (vp->v_flag & VDIROP)
226 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
227
228 fip = sp->fip;
229 fip->fi_nblocks = 0;
230 fip->fi_ino = ip->i_number;
231 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
232 fip->fi_version = ifp->if_version;
233 brelse(bp);
234
235 lfs_gather(fs, sp, vp, lfs_match_data);
236 lfs_gather(fs, sp, vp, lfs_match_indir);
237 lfs_gather(fs, sp, vp, lfs_match_dindir);
238 lfs_gather(fs, sp, vp, lfs_match_tindir);
239
240 fip = sp->fip;
241 if (fip->fi_nblocks != 0) {
242 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
243 sizeof(ufs_daddr_t) * (fip->fi_nblocks));
244 sp->start_lbp = &sp->fip->fi_blocks[0];
245 } else {
246 sp->sum_bytes_left += FINFOSIZE;
247 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
248 }
249 }
250
251 int
252 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
253 {
254 struct ubuf *bp, *ibp;
255 struct dinode *cdp;
256 IFILE *ifp;
257 SEGUSE *sup;
258 daddr_t daddr;
259 ino_t ino;
260 int error, i, ndx, fsb = 0;
261 int redo_ifile = 0;
262 struct timespec ts;
263 int gotblk = 0;
264
265 /* Allocate a new inode block if necessary. */
266 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
267 sp->ibp == NULL) {
268 /* Allocate a new segment if necessary. */
269 if (sp->seg_bytes_left < fs->lfs_ibsize ||
270 sp->sum_bytes_left < sizeof(ufs_daddr_t))
271 (void) lfs_writeseg(fs, sp);
272
273 /* Get next inode block. */
274 daddr = fs->lfs_offset;
275 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
276 sp->ibp = *sp->cbpp++ =
277 getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr),
278 fs->lfs_ibsize);
279 sp->ibp->b_flags |= B_GATHERED;
280 gotblk++;
281
282 /* Zero out inode numbers */
283 for (i = 0; i < INOPB(fs); ++i)
284 ((struct dinode *) sp->ibp->b_data)[i].di_inumber = 0;
285
286 ++sp->start_bpp;
287 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
288 /* Set remaining space counters. */
289 sp->seg_bytes_left -= fs->lfs_ibsize;
290 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
291 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
292 sp->ninodes / INOPB(fs) - 1;
293 ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
294 }
295 /* Update the inode times and copy the inode onto the inode page. */
296 ts.tv_nsec = 0;
297 ts.tv_sec = write_time;
298 /* XXX kludge --- don't redirty the ifile just to put times on it */
299 if (ip->i_number != LFS_IFILE_INUM)
300 LFS_ITIMES(ip, &ts, &ts, &ts);
301
302 /*
303 * If this is the Ifile, and we've already written the Ifile in this
304 * partial segment, just overwrite it (it's not on disk yet) and
305 * continue.
306 *
307 * XXX we know that the bp that we get the second time around has
308 * already been gathered.
309 */
310 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
311 *(sp->idp) = ip->i_din.ffs_din;
312 ip->i_lfs_osize = ip->i_ffs_size;
313 return 0;
314 }
315 bp = sp->ibp;
316 cdp = ((struct dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
317 *cdp = ip->i_din.ffs_din;
318
319 /* If all blocks are goig to disk, update the "size on disk" */
320 ip->i_lfs_osize = ip->i_ffs_size;
321
322 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
323 sp->idp = ((struct dinode *) bp->b_data) +
324 (sp->ninodes % INOPB(fs));
325 if (gotblk) {
326 LFS_LOCK_BUF(bp);
327 brelse(bp);
328 }
329 /* Increment inode count in segment summary block. */
330 ++((SEGSUM *) (sp->segsum))->ss_ninos;
331
332 /* If this page is full, set flag to allocate a new page. */
333 if (++sp->ninodes % INOPB(fs) == 0)
334 sp->ibp = NULL;
335
336 /*
337 * If updating the ifile, update the super-block. Update the disk
338 * address and access times for this inode in the ifile.
339 */
340 ino = ip->i_number;
341 if (ino == LFS_IFILE_INUM) {
342 daddr = fs->lfs_idaddr;
343 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
344 } else {
345 LFS_IENTRY(ifp, fs, ino, ibp);
346 daddr = ifp->if_daddr;
347 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
348 error = LFS_BWRITE_LOG(ibp); /* Ifile */
349 }
350
351 /*
352 * Account the inode: it no longer belongs to its former segment,
353 * though it will not belong to the new segment until that segment
354 * is actually written.
355 */
356 if (daddr != LFS_UNUSED_DADDR) {
357 u_int32_t oldsn = dtosn(fs, daddr);
358 LFS_SEGENTRY(sup, fs, oldsn, bp);
359 sup->su_nbytes -= DINODE_SIZE;
360 redo_ifile =
361 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
362 if (redo_ifile)
363 fs->lfs_flags |= LFS_IFDIRTY;
364 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
365 }
366 return redo_ifile;
367 }
368
369 int
370 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
371 {
372 struct lfs *fs;
373 int version;
374 int j, blksinblk;
375
376 /*
377 * If full, finish this segment. We may be doing I/O, so
378 * release and reacquire the splbio().
379 */
380 fs = sp->fs;
381 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
382 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
383 sp->seg_bytes_left < bp->b_bcount) {
384 lfs_updatemeta(sp);
385
386 version = sp->fip->fi_version;
387 (void) lfs_writeseg(fs, sp);
388
389 sp->fip->fi_version = version;
390 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
391 /* Add the current file to the segment summary. */
392 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
393 sp->sum_bytes_left -= FINFOSIZE;
394
395 return 1;
396 }
397 /* Insert into the buffer list, update the FINFO block. */
398 bp->b_flags |= B_GATHERED;
399 /* bp->b_flags &= ~B_DONE; */
400
401 *sp->cbpp++ = bp;
402 for (j = 0; j < blksinblk; j++)
403 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
404
405 sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
406 sp->seg_bytes_left -= bp->b_bcount;
407 return 0;
408 }
409
410 int
411 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
412 {
413 struct ubuf *bp, *nbp;
414 int count = 0;
415
416 sp->vp = vp;
417 loop:
418 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
419 nbp = LIST_NEXT(bp, b_vnbufs);
420
421 assert(bp->b_flags & B_DELWRI);
422 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
423 continue;
424 }
425 if (lfs_gatherblock(sp, bp)) {
426 goto loop;
427 }
428 count++;
429 }
430
431 lfs_updatemeta(sp);
432 sp->vp = NULL;
433 return count;
434 }
435
436
437 /*
438 * Change the given block's address to ndaddr, finding its previous
439 * location using ufs_bmaparray().
440 *
441 * Account for this change in the segment table.
442 */
443 void
444 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
445 ufs_daddr_t ndaddr, int size)
446 {
447 SEGUSE *sup;
448 struct ubuf *bp;
449 struct indir a[NIADDR + 2], *ap;
450 struct inode *ip;
451 struct uvnode *vp;
452 daddr_t daddr, ooff;
453 int num, error;
454 int bb, osize, obb;
455
456 vp = sp->vp;
457 ip = VTOI(vp);
458
459 error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
460 if (error)
461 errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
462 if (daddr > 0)
463 daddr = dbtofsb(fs, daddr);
464
465 bb = fragstofsb(fs, numfrags(fs, size));
466 switch (num) {
467 case 0:
468 ooff = ip->i_ffs_db[lbn];
469 if (ooff == UNWRITTEN)
470 ip->i_ffs_blocks += bb;
471 else {
472 /* possible fragment truncation or extension */
473 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
474 ip->i_ffs_blocks += (bb - obb);
475 }
476 ip->i_ffs_db[lbn] = ndaddr;
477 break;
478 case 1:
479 ooff = ip->i_ffs_ib[a[0].in_off];
480 if (ooff == UNWRITTEN)
481 ip->i_ffs_blocks += bb;
482 ip->i_ffs_ib[a[0].in_off] = ndaddr;
483 break;
484 default:
485 ap = &a[num - 1];
486 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
487 errx(1, "lfs_updatemeta: bread bno %" PRId64,
488 ap->in_lbn);
489
490 ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
491 if (ooff == UNWRITTEN)
492 ip->i_ffs_blocks += bb;
493 ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
494 (void) VOP_BWRITE(bp);
495 }
496
497 /*
498 * Update segment usage information, based on old size
499 * and location.
500 */
501 if (daddr > 0) {
502 u_int32_t oldsn = dtosn(fs, daddr);
503 if (lbn >= 0 && lbn < NDADDR)
504 osize = ip->i_lfs_fragsize[lbn];
505 else
506 osize = fs->lfs_bsize;
507 LFS_SEGENTRY(sup, fs, oldsn, bp);
508 sup->su_nbytes -= osize;
509 if (!(bp->b_flags & B_GATHERED))
510 fs->lfs_flags |= LFS_IFDIRTY;
511 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
512 }
513 /*
514 * Now that this block has a new address, and its old
515 * segment no longer owns it, we can forget about its
516 * old size.
517 */
518 if (lbn >= 0 && lbn < NDADDR)
519 ip->i_lfs_fragsize[lbn] = size;
520 }
521
522 /*
523 * Update the metadata that points to the blocks listed in the FINFO
524 * array.
525 */
526 void
527 lfs_updatemeta(struct segment * sp)
528 {
529 struct ubuf *sbp;
530 struct lfs *fs;
531 struct uvnode *vp;
532 daddr_t lbn;
533 int i, nblocks, num;
534 int bb;
535 int bytesleft, size;
536
537 vp = sp->vp;
538 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
539
540 if (vp == NULL || nblocks == 0)
541 return;
542
543 /*
544 * This count may be high due to oversize blocks from lfs_gop_write.
545 * Correct for this. (XXX we should be able to keep track of these.)
546 */
547 fs = sp->fs;
548 for (i = 0; i < nblocks; i++) {
549 if (sp->start_bpp[i] == NULL) {
550 printf("nblocks = %d, not %d\n", i, nblocks);
551 nblocks = i;
552 break;
553 }
554 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
555 nblocks -= num - 1;
556 }
557
558 /*
559 * Sort the blocks.
560 */
561 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
562
563 /*
564 * Record the length of the last block in case it's a fragment.
565 * If there are indirect blocks present, they sort last. An
566 * indirect block will be lfs_bsize and its presence indicates
567 * that you cannot have fragments.
568 */
569 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
570 fs->lfs_bmask) + 1;
571
572 /*
573 * Assign disk addresses, and update references to the logical
574 * block and the segment usage information.
575 */
576 for (i = nblocks; i--; ++sp->start_bpp) {
577 sbp = *sp->start_bpp;
578 lbn = *sp->start_lbp;
579
580 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
581
582 /*
583 * If we write a frag in the wrong place, the cleaner won't
584 * be able to correctly identify its size later, and the
585 * segment will be uncleanable. (Even worse, it will assume
586 * that the indirect block that actually ends the list
587 * is of a smaller size!)
588 */
589 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
590 errx(1, "lfs_updatemeta: fragment is not last block");
591
592 /*
593 * For each subblock in this possibly oversized block,
594 * update its address on disk.
595 */
596 for (bytesleft = sbp->b_bcount; bytesleft > 0;
597 bytesleft -= fs->lfs_bsize) {
598 size = MIN(bytesleft, fs->lfs_bsize);
599 bb = fragstofsb(fs, numfrags(fs, size));
600 lbn = *sp->start_lbp++;
601 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
602 fs->lfs_offset += bb;
603 }
604
605 }
606 }
607
608 /*
609 * Start a new segment.
610 */
611 int
612 lfs_initseg(struct lfs * fs)
613 {
614 struct segment *sp;
615 SEGUSE *sup;
616 SEGSUM *ssp;
617 struct ubuf *bp, *sbp;
618 int repeat;
619
620 sp = fs->lfs_sp;
621
622 repeat = 0;
623
624 /* Advance to the next segment. */
625 if (!LFS_PARTIAL_FITS(fs)) {
626 /* lfs_avail eats the remaining space */
627 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
628 fs->lfs_curseg);
629 lfs_newseg(fs);
630 repeat = 1;
631 fs->lfs_offset = fs->lfs_curseg;
632
633 sp->seg_number = dtosn(fs, fs->lfs_curseg);
634 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
635
636 /*
637 * If the segment contains a superblock, update the offset
638 * and summary address to skip over it.
639 */
640 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
641 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
642 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
643 sp->seg_bytes_left -= LFS_SBPAD;
644 }
645 brelse(bp);
646 /* Segment zero could also contain the labelpad */
647 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
648 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
649 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
650 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
651 }
652 } else {
653 sp->seg_number = dtosn(fs, fs->lfs_curseg);
654 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
655 (fs->lfs_offset - fs->lfs_curseg));
656 }
657 fs->lfs_lastpseg = fs->lfs_offset;
658
659 sp->fs = fs;
660 sp->ibp = NULL;
661 sp->idp = NULL;
662 sp->ninodes = 0;
663 sp->ndupino = 0;
664
665 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
666 sp->cbpp = sp->bpp;
667 sbp = *sp->cbpp = getblk(fs->lfs_unlockvp,
668 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
669 sp->segsum = sbp->b_data;
670 memset(sp->segsum, 0, fs->lfs_sumsize);
671 sp->start_bpp = ++sp->cbpp;
672 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
673
674 /* Set point to SEGSUM, initialize it. */
675 ssp = sp->segsum;
676 ssp->ss_next = fs->lfs_nextseg;
677 ssp->ss_nfinfo = ssp->ss_ninos = 0;
678 ssp->ss_magic = SS_MAGIC;
679
680 /* Set pointer to first FINFO, initialize it. */
681 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
682 sp->fip->fi_nblocks = 0;
683 sp->start_lbp = &sp->fip->fi_blocks[0];
684 sp->fip->fi_lastlength = 0;
685
686 sp->seg_bytes_left -= fs->lfs_sumsize;
687 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
688
689 LFS_LOCK_BUF(sbp);
690 brelse(sbp);
691 return repeat;
692 }
693
694 /*
695 * Return the next segment to write.
696 */
697 void
698 lfs_newseg(struct lfs * fs)
699 {
700 CLEANERINFO *cip;
701 SEGUSE *sup;
702 struct ubuf *bp;
703 int curseg, isdirty, sn;
704
705 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
706 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
707 sup->su_nbytes = 0;
708 sup->su_nsums = 0;
709 sup->su_ninos = 0;
710 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
711
712 LFS_CLEANERINFO(cip, fs, bp);
713 --cip->clean;
714 ++cip->dirty;
715 fs->lfs_nclean = cip->clean;
716 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
717
718 fs->lfs_lastseg = fs->lfs_curseg;
719 fs->lfs_curseg = fs->lfs_nextseg;
720 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
721 sn = (sn + 1) % fs->lfs_nseg;
722 if (sn == curseg)
723 errx(1, "lfs_nextseg: no clean segments");
724 LFS_SEGENTRY(sup, fs, sn, bp);
725 isdirty = sup->su_flags & SEGUSE_DIRTY;
726 brelse(bp);
727
728 if (!isdirty)
729 break;
730 }
731
732 ++fs->lfs_nactive;
733 fs->lfs_nextseg = sntod(fs, sn);
734 }
735
736
737 int
738 lfs_writeseg(struct lfs * fs, struct segment * sp)
739 {
740 struct ubuf **bpp, *bp;
741 SEGUSE *sup;
742 SEGSUM *ssp;
743 char *datap, *dp;
744 int i;
745 int do_again, nblocks, byteoffset;
746 size_t el_size;
747 u_short ninos;
748 struct uvnode *devvp;
749
750 /*
751 * If there are no buffers other than the segment summary to write
752 * and it is not a checkpoint, don't do anything. On a checkpoint,
753 * even if there aren't any buffers, you need to write the superblock.
754 */
755 if ((nblocks = sp->cbpp - sp->bpp) == 1)
756 return 0;
757
758 devvp = fs->lfs_unlockvp;
759
760 /* Update the segment usage information. */
761 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
762
763 /* Loop through all blocks, except the segment summary. */
764 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
765 if ((*bpp)->b_vp != devvp) {
766 sup->su_nbytes += (*bpp)->b_bcount;
767 }
768 }
769
770 ssp = (SEGSUM *) sp->segsum;
771
772 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
773 sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
774
775 if (fs->lfs_version == 1)
776 sup->su_olastmod = write_time;
777 else
778 sup->su_lastmod = write_time;
779 sup->su_ninos += ninos;
780 ++sup->su_nsums;
781 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
782 fs->lfs_ibsize));
783 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
784
785 do_again = !(bp->b_flags & B_GATHERED);
786 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
787
788 /*
789 * Compute checksum across data and then across summary; the first
790 * block (the summary block) is skipped. Set the create time here
791 * so that it's guaranteed to be later than the inode mod times.
792 */
793 if (fs->lfs_version == 1)
794 el_size = sizeof(u_long);
795 else
796 el_size = sizeof(u_int32_t);
797 datap = dp = malloc(nblocks * el_size);
798 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
799 ++bpp;
800 /* Loop through gop_write cluster blocks */
801 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
802 byteoffset += fs->lfs_bsize) {
803 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
804 dp += el_size;
805 }
806 bremfree(*bpp);
807 (*bpp)->b_flags |= B_BUSY;
808 }
809 if (fs->lfs_version == 1)
810 ssp->ss_ocreate = write_time;
811 else {
812 ssp->ss_create = write_time;
813 ssp->ss_serial = ++fs->lfs_serial;
814 ssp->ss_ident = fs->lfs_ident;
815 }
816 /* Set the summary block busy too */
817 bremfree(*(sp->bpp));
818 (*(sp->bpp))->b_flags |= B_BUSY;
819
820 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
821 ssp->ss_sumsum =
822 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
823 free(datap);
824 datap = dp = NULL;
825 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
826 btofsb(fs, fs->lfs_sumsize));
827
828 if (devvp == NULL)
829 errx(1, "devvp is NULL");
830 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
831 bp = *bpp;
832 #if 0
833 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
834 nblocks - i, bp, bp->b_flags, bp->b_blkno);
835 printf(" vp = %p\n", bp->b_vp);
836 if (bp->b_vp != fs->lfs_unlockvp)
837 printf(" ino = %d lbn = %" PRId64 "\n",
838 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
839 #endif
840 if (bp->b_vp == fs->lfs_unlockvp)
841 written_dev += bp->b_bcount;
842 else {
843 if (bp->b_lblkno >= 0)
844 written_data += bp->b_bcount;
845 else
846 written_indir += bp->b_bcount;
847 }
848 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
849 B_LOCKED);
850 bwrite(bp);
851 written_bytes += bp->b_bcount;
852 }
853 written_inodes += ninos;
854
855 return (lfs_initseg(fs) || do_again);
856 }
857
858 /*
859 * Our own copy of shellsort. XXX use qsort or heapsort.
860 */
861 void
862 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
863 {
864 static int __rsshell_increments[] = {4, 1, 0};
865 int incr, *incrp, t1, t2;
866 struct ubuf *bp_temp;
867
868 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
869 for (t1 = incr; t1 < nmemb; ++t1)
870 for (t2 = t1 - incr; t2 >= 0;)
871 if ((u_int32_t) bp_array[t2]->b_lblkno >
872 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
873 bp_temp = bp_array[t2];
874 bp_array[t2] = bp_array[t2 + incr];
875 bp_array[t2 + incr] = bp_temp;
876 t2 -= incr;
877 } else
878 break;
879
880 /* Reform the list of logical blocks */
881 incr = 0;
882 for (t1 = 0; t1 < nmemb; t1++) {
883 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
884 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
885 }
886 }
887 }
888
889
890 /*
891 * lfs_seglock --
892 * Single thread the segment writer.
893 */
894 int
895 lfs_seglock(struct lfs * fs, unsigned long flags)
896 {
897 struct segment *sp;
898
899 if (fs->lfs_seglock) {
900 ++fs->lfs_seglock;
901 fs->lfs_sp->seg_flags |= flags;
902 return 0;
903 }
904 fs->lfs_seglock = 1;
905
906 sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
907 sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
908 sp->seg_flags = flags;
909 sp->vp = NULL;
910 sp->seg_iocount = 0;
911 (void) lfs_initseg(fs);
912
913 /*
914 * Keep a cumulative count of the outstanding I/O operations. If the
915 * disk drive catches up with us it could go to zero before we finish,
916 * so we artificially increment it by one until we've scheduled all of
917 * the writes we intend to do.
918 */
919 ++fs->lfs_iocount;
920 return 0;
921 }
922
923 /*
924 * lfs_segunlock --
925 * Single thread the segment writer.
926 */
927 void
928 lfs_segunlock(struct lfs * fs)
929 {
930 struct segment *sp;
931 struct ubuf *bp;
932
933 sp = fs->lfs_sp;
934
935 if (fs->lfs_seglock == 1) {
936 if (sp->bpp != sp->cbpp) {
937 /* Free allocated segment summary */
938 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
939 bp = *sp->bpp;
940 bremfree(bp);
941 bp->b_flags |= B_DONE | B_INVAL;
942 bp->b_flags &= ~B_DELWRI;
943 reassignbuf(bp, bp->b_vp);
944 bp->b_flags |= B_BUSY; /* XXX */
945 brelse(bp);
946 } else
947 printf("unlock to 0 with no summary");
948
949 free(sp->bpp);
950 sp->bpp = NULL;
951 free(sp);
952 fs->lfs_sp = NULL;
953
954 fs->lfs_nactive = 0;
955
956 /* Since we *know* everything's on disk, write both sbs */
957 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
958 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
959
960 --fs->lfs_seglock;
961 fs->lfs_lockpid = 0;
962 } else if (fs->lfs_seglock == 0) {
963 errx(1, "Seglock not held");
964 } else {
965 --fs->lfs_seglock;
966 }
967 }
968
969 int
970 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
971 {
972 struct inode *ip;
973 struct uvnode *vp;
974 int inodes_written = 0;
975
976 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
977 if (vp->v_bmap_op != lfs_vop_bmap)
978 continue;
979
980 ip = VTOI(vp);
981
982 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
983 (op != VN_DIROP && (vp->v_flag & VDIROP))) {
984 continue;
985 }
986 /*
987 * Write the inode/file if dirty and it's not the IFILE.
988 */
989 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
990 if (ip->i_number != LFS_IFILE_INUM)
991 lfs_writefile(fs, sp, vp);
992 (void) lfs_writeinode(fs, sp, ip);
993 inodes_written++;
994 }
995 }
996 return inodes_written;
997 }
998
999 void
1000 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
1001 {
1002 struct ubuf *bp;
1003
1004 /* Set timestamp of this version of the superblock */
1005 if (fs->lfs_version == 1)
1006 fs->lfs_otstamp = write_time;
1007 fs->lfs_tstamp = write_time;
1008
1009 /* Checksum the superblock and copy it into a buffer. */
1010 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1011 assert(daddr > 0);
1012 bp = getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr), LFS_SBPAD);
1013 memset(bp->b_data + sizeof(struct dlfs), 0,
1014 LFS_SBPAD - sizeof(struct dlfs));
1015 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1016
1017 bwrite(bp);
1018 }
1019