Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.2
      1 /* $NetBSD: segwrite.c,v 1.2 2003/03/31 19:57:00 perseant Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. All advertising materials mentioning features or use of this software
     50  *    must display the following acknowledgement:
     51  *	This product includes software developed by the University of
     52  *	California, Berkeley and its contributors.
     53  * 4. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     70  */
     71 
     72 /*
     73  * Partial segment writer, taken from the kernel and adapted for userland.
     74  */
     75 #include <sys/types.h>
     76 #include <sys/param.h>
     77 #include <sys/time.h>
     78 #include <sys/buf.h>
     79 #include <sys/mount.h>
     80 
     81 #include <ufs/ufs/inode.h>
     82 #include <ufs/ufs/ufsmount.h>
     83 
     84 /* Override certain things to make <ufs/lfs/lfs.h> work */
     85 #undef simple_lock
     86 #define simple_lock(x)
     87 #undef simple_unlock
     88 #define simple_unlock(x)
     89 #define vnode uvnode
     90 #define buf ubuf
     91 #define panic call_panic
     92 
     93 #include <ufs/lfs/lfs.h>
     94 
     95 #include <assert.h>
     96 #include <stdio.h>
     97 #include <stdlib.h>
     98 #include <string.h>
     99 #include <err.h>
    100 #include <errno.h>
    101 
    102 #include "bufcache.h"
    103 #include "vnode.h"
    104 #include "lfs.h"
    105 #include "segwrite.h"
    106 
    107 /* Compatibility definitions */
    108 extern off_t locked_queue_bytes;
    109 int locked_queue_count;
    110 off_t written_bytes = 0;
    111 off_t written_data = 0;
    112 off_t written_indir = 0;
    113 off_t written_dev = 0;
    114 int written_inodes = 0;
    115 
    116 /* Global variables */
    117 time_t write_time;
    118 
    119 extern u_int32_t cksum(void *, size_t);
    120 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    121 
    122 /*
    123  * Logical block number match routines used when traversing the dirty block
    124  * chain.
    125  */
    126 int
    127 lfs_match_data(struct lfs * fs, struct ubuf * bp)
    128 {
    129 	return (bp->b_lblkno >= 0);
    130 }
    131 
    132 int
    133 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    134 {
    135 	daddr_t lbn;
    136 
    137 	lbn = bp->b_lblkno;
    138 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    139 }
    140 
    141 int
    142 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    143 {
    144 	daddr_t lbn;
    145 
    146 	lbn = bp->b_lblkno;
    147 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    148 }
    149 
    150 int
    151 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    152 {
    153 	daddr_t lbn;
    154 
    155 	lbn = bp->b_lblkno;
    156 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    157 }
    158 
    159 /*
    160  * Do a checkpoint.
    161  */
    162 int
    163 lfs_segwrite(struct lfs * fs, int flags)
    164 {
    165 	struct inode *ip;
    166 	struct segment *sp;
    167 	struct uvnode *vp;
    168 	int redo;
    169 
    170 	lfs_seglock(fs, flags | SEGM_CKP);
    171 	sp = fs->lfs_sp;
    172 
    173 	lfs_writevnodes(fs, sp, VN_REG);
    174 	lfs_writevnodes(fs, sp, VN_DIROP);
    175 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    176 
    177 	do {
    178 		vp = fs->lfs_ivnode;
    179 		fs->lfs_flags &= ~LFS_IFDIRTY;
    180 		ip = VTOI(vp);
    181 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    182 			lfs_writefile(fs, sp, vp);
    183 
    184 		redo = lfs_writeinode(fs, sp, ip);
    185 		redo += lfs_writeseg(fs, sp);
    186 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    187 	} while (redo);
    188 
    189 	lfs_segunlock(fs);
    190 #if 0
    191 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    192 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    193 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    194 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    195 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    196 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    197 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    198 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    199 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    200 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    201 #endif
    202 	return 0;
    203 }
    204 
    205 /*
    206  * Write the dirty blocks associated with a vnode.
    207  */
    208 void
    209 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    210 {
    211 	struct ubuf *bp;
    212 	struct finfo *fip;
    213 	struct inode *ip;
    214 	IFILE *ifp;
    215 
    216 	ip = VTOI(vp);
    217 
    218 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    219 	    sp->sum_bytes_left < sizeof(struct finfo))
    220 		(void) lfs_writeseg(fs, sp);
    221 
    222 	sp->sum_bytes_left -= FINFOSIZE;
    223 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    224 
    225 	if (vp->v_flag & VDIROP)
    226 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    227 
    228 	fip = sp->fip;
    229 	fip->fi_nblocks = 0;
    230 	fip->fi_ino = ip->i_number;
    231 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    232 	fip->fi_version = ifp->if_version;
    233 	brelse(bp);
    234 
    235 	lfs_gather(fs, sp, vp, lfs_match_data);
    236 	lfs_gather(fs, sp, vp, lfs_match_indir);
    237 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    238 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    239 
    240 	fip = sp->fip;
    241 	if (fip->fi_nblocks != 0) {
    242 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    243 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    244 		sp->start_lbp = &sp->fip->fi_blocks[0];
    245 	} else {
    246 		sp->sum_bytes_left += FINFOSIZE;
    247 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    248 	}
    249 }
    250 
    251 int
    252 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    253 {
    254 	struct ubuf *bp, *ibp;
    255 	struct dinode *cdp;
    256 	IFILE *ifp;
    257 	SEGUSE *sup;
    258 	daddr_t daddr;
    259 	ino_t ino;
    260 	int error, i, ndx, fsb = 0;
    261 	int redo_ifile = 0;
    262 	struct timespec ts;
    263 	int gotblk = 0;
    264 
    265 	/* Allocate a new inode block if necessary. */
    266 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    267 	    sp->ibp == NULL) {
    268 		/* Allocate a new segment if necessary. */
    269 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    270 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    271 			(void) lfs_writeseg(fs, sp);
    272 
    273 		/* Get next inode block. */
    274 		daddr = fs->lfs_offset;
    275 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    276 		sp->ibp = *sp->cbpp++ =
    277 		    getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr),
    278 		    fs->lfs_ibsize);
    279 		sp->ibp->b_flags |= B_GATHERED;
    280 		gotblk++;
    281 
    282 		/* Zero out inode numbers */
    283 		for (i = 0; i < INOPB(fs); ++i)
    284 			((struct dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    285 
    286 		++sp->start_bpp;
    287 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    288 		/* Set remaining space counters. */
    289 		sp->seg_bytes_left -= fs->lfs_ibsize;
    290 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    291 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    292 		    sp->ninodes / INOPB(fs) - 1;
    293 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    294 	}
    295 	/* Update the inode times and copy the inode onto the inode page. */
    296 	ts.tv_nsec = 0;
    297 	ts.tv_sec = write_time;
    298 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    299 	if (ip->i_number != LFS_IFILE_INUM)
    300 		LFS_ITIMES(ip, &ts, &ts, &ts);
    301 
    302 	/*
    303 	 * If this is the Ifile, and we've already written the Ifile in this
    304 	 * partial segment, just overwrite it (it's not on disk yet) and
    305 	 * continue.
    306 	 *
    307 	 * XXX we know that the bp that we get the second time around has
    308 	 * already been gathered.
    309 	 */
    310 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    311 		*(sp->idp) = ip->i_din.ffs_din;
    312 		ip->i_lfs_osize = ip->i_ffs_size;
    313 		return 0;
    314 	}
    315 	bp = sp->ibp;
    316 	cdp = ((struct dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    317 	*cdp = ip->i_din.ffs_din;
    318 
    319 	/* If all blocks are goig to disk, update the "size on disk" */
    320 	ip->i_lfs_osize = ip->i_ffs_size;
    321 
    322 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    323 		sp->idp = ((struct dinode *) bp->b_data) +
    324 		    (sp->ninodes % INOPB(fs));
    325 	if (gotblk) {
    326 		LFS_LOCK_BUF(bp);
    327 		brelse(bp);
    328 	}
    329 	/* Increment inode count in segment summary block. */
    330 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    331 
    332 	/* If this page is full, set flag to allocate a new page. */
    333 	if (++sp->ninodes % INOPB(fs) == 0)
    334 		sp->ibp = NULL;
    335 
    336 	/*
    337 	 * If updating the ifile, update the super-block.  Update the disk
    338 	 * address and access times for this inode in the ifile.
    339 	 */
    340 	ino = ip->i_number;
    341 	if (ino == LFS_IFILE_INUM) {
    342 		daddr = fs->lfs_idaddr;
    343 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    344 	} else {
    345 		LFS_IENTRY(ifp, fs, ino, ibp);
    346 		daddr = ifp->if_daddr;
    347 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    348 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    349 	}
    350 
    351 	/*
    352 	 * Account the inode: it no longer belongs to its former segment,
    353 	 * though it will not belong to the new segment until that segment
    354 	 * is actually written.
    355 	 */
    356 	if (daddr != LFS_UNUSED_DADDR) {
    357 		u_int32_t oldsn = dtosn(fs, daddr);
    358 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    359 		sup->su_nbytes -= DINODE_SIZE;
    360 		redo_ifile =
    361 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    362 		if (redo_ifile)
    363 			fs->lfs_flags |= LFS_IFDIRTY;
    364 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    365 	}
    366 	return redo_ifile;
    367 }
    368 
    369 int
    370 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    371 {
    372 	struct lfs *fs;
    373 	int version;
    374 	int j, blksinblk;
    375 
    376 	/*
    377 	 * If full, finish this segment.  We may be doing I/O, so
    378 	 * release and reacquire the splbio().
    379 	 */
    380 	fs = sp->fs;
    381 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    382 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    383 	    sp->seg_bytes_left < bp->b_bcount) {
    384 		lfs_updatemeta(sp);
    385 
    386 		version = sp->fip->fi_version;
    387 		(void) lfs_writeseg(fs, sp);
    388 
    389 		sp->fip->fi_version = version;
    390 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    391 		/* Add the current file to the segment summary. */
    392 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    393 		sp->sum_bytes_left -= FINFOSIZE;
    394 
    395 		return 1;
    396 	}
    397 	/* Insert into the buffer list, update the FINFO block. */
    398 	bp->b_flags |= B_GATHERED;
    399 	/* bp->b_flags &= ~B_DONE; */
    400 
    401 	*sp->cbpp++ = bp;
    402 	for (j = 0; j < blksinblk; j++)
    403 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    404 
    405 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    406 	sp->seg_bytes_left -= bp->b_bcount;
    407 	return 0;
    408 }
    409 
    410 int
    411 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    412 {
    413 	struct ubuf *bp, *nbp;
    414 	int count = 0;
    415 
    416 	sp->vp = vp;
    417 loop:
    418 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    419 		nbp = LIST_NEXT(bp, b_vnbufs);
    420 
    421 		assert(bp->b_flags & B_DELWRI);
    422 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    423 			continue;
    424 		}
    425 		if (lfs_gatherblock(sp, bp)) {
    426 			goto loop;
    427 		}
    428 		count++;
    429 	}
    430 
    431 	lfs_updatemeta(sp);
    432 	sp->vp = NULL;
    433 	return count;
    434 }
    435 
    436 
    437 /*
    438  * Change the given block's address to ndaddr, finding its previous
    439  * location using ufs_bmaparray().
    440  *
    441  * Account for this change in the segment table.
    442  */
    443 void
    444 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    445     ufs_daddr_t ndaddr, int size)
    446 {
    447 	SEGUSE *sup;
    448 	struct ubuf *bp;
    449 	struct indir a[NIADDR + 2], *ap;
    450 	struct inode *ip;
    451 	struct uvnode *vp;
    452 	daddr_t daddr, ooff;
    453 	int num, error;
    454 	int bb, osize, obb;
    455 
    456 	vp = sp->vp;
    457 	ip = VTOI(vp);
    458 
    459 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    460 	if (error)
    461 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    462 	if (daddr > 0)
    463 		daddr = dbtofsb(fs, daddr);
    464 
    465 	bb = fragstofsb(fs, numfrags(fs, size));
    466 	switch (num) {
    467 	case 0:
    468 		ooff = ip->i_ffs_db[lbn];
    469 		if (ooff == UNWRITTEN)
    470 			ip->i_ffs_blocks += bb;
    471 		else {
    472 			/* possible fragment truncation or extension */
    473 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    474 			ip->i_ffs_blocks += (bb - obb);
    475 		}
    476 		ip->i_ffs_db[lbn] = ndaddr;
    477 		break;
    478 	case 1:
    479 		ooff = ip->i_ffs_ib[a[0].in_off];
    480 		if (ooff == UNWRITTEN)
    481 			ip->i_ffs_blocks += bb;
    482 		ip->i_ffs_ib[a[0].in_off] = ndaddr;
    483 		break;
    484 	default:
    485 		ap = &a[num - 1];
    486 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    487 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    488 			    ap->in_lbn);
    489 
    490 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    491 		if (ooff == UNWRITTEN)
    492 			ip->i_ffs_blocks += bb;
    493 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    494 		(void) VOP_BWRITE(bp);
    495 	}
    496 
    497 	/*
    498 	 * Update segment usage information, based on old size
    499 	 * and location.
    500 	 */
    501 	if (daddr > 0) {
    502 		u_int32_t oldsn = dtosn(fs, daddr);
    503 		if (lbn >= 0 && lbn < NDADDR)
    504 			osize = ip->i_lfs_fragsize[lbn];
    505 		else
    506 			osize = fs->lfs_bsize;
    507 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    508 		sup->su_nbytes -= osize;
    509 		if (!(bp->b_flags & B_GATHERED))
    510 			fs->lfs_flags |= LFS_IFDIRTY;
    511 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    512 	}
    513 	/*
    514 	 * Now that this block has a new address, and its old
    515 	 * segment no longer owns it, we can forget about its
    516 	 * old size.
    517 	 */
    518 	if (lbn >= 0 && lbn < NDADDR)
    519 		ip->i_lfs_fragsize[lbn] = size;
    520 }
    521 
    522 /*
    523  * Update the metadata that points to the blocks listed in the FINFO
    524  * array.
    525  */
    526 void
    527 lfs_updatemeta(struct segment * sp)
    528 {
    529 	struct ubuf *sbp;
    530 	struct lfs *fs;
    531 	struct uvnode *vp;
    532 	daddr_t lbn;
    533 	int i, nblocks, num;
    534 	int bb;
    535 	int bytesleft, size;
    536 
    537 	vp = sp->vp;
    538 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    539 
    540 	if (vp == NULL || nblocks == 0)
    541 		return;
    542 
    543 	/*
    544 	 * This count may be high due to oversize blocks from lfs_gop_write.
    545 	 * Correct for this. (XXX we should be able to keep track of these.)
    546 	 */
    547 	fs = sp->fs;
    548 	for (i = 0; i < nblocks; i++) {
    549 		if (sp->start_bpp[i] == NULL) {
    550 			printf("nblocks = %d, not %d\n", i, nblocks);
    551 			nblocks = i;
    552 			break;
    553 		}
    554 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    555 		nblocks -= num - 1;
    556 	}
    557 
    558 	/*
    559 	 * Sort the blocks.
    560 	 */
    561 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    562 
    563 	/*
    564 	 * Record the length of the last block in case it's a fragment.
    565 	 * If there are indirect blocks present, they sort last.  An
    566 	 * indirect block will be lfs_bsize and its presence indicates
    567 	 * that you cannot have fragments.
    568 	 */
    569 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    570 	    fs->lfs_bmask) + 1;
    571 
    572 	/*
    573 	 * Assign disk addresses, and update references to the logical
    574 	 * block and the segment usage information.
    575 	 */
    576 	for (i = nblocks; i--; ++sp->start_bpp) {
    577 		sbp = *sp->start_bpp;
    578 		lbn = *sp->start_lbp;
    579 
    580 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    581 
    582 		/*
    583 		 * If we write a frag in the wrong place, the cleaner won't
    584 		 * be able to correctly identify its size later, and the
    585 		 * segment will be uncleanable.	 (Even worse, it will assume
    586 		 * that the indirect block that actually ends the list
    587 		 * is of a smaller size!)
    588 		 */
    589 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    590 			errx(1, "lfs_updatemeta: fragment is not last block");
    591 
    592 		/*
    593 		 * For each subblock in this possibly oversized block,
    594 		 * update its address on disk.
    595 		 */
    596 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    597 		    bytesleft -= fs->lfs_bsize) {
    598 			size = MIN(bytesleft, fs->lfs_bsize);
    599 			bb = fragstofsb(fs, numfrags(fs, size));
    600 			lbn = *sp->start_lbp++;
    601 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    602 			fs->lfs_offset += bb;
    603 		}
    604 
    605 	}
    606 }
    607 
    608 /*
    609  * Start a new segment.
    610  */
    611 int
    612 lfs_initseg(struct lfs * fs)
    613 {
    614 	struct segment *sp;
    615 	SEGUSE *sup;
    616 	SEGSUM *ssp;
    617 	struct ubuf *bp, *sbp;
    618 	int repeat;
    619 
    620 	sp = fs->lfs_sp;
    621 
    622 	repeat = 0;
    623 
    624 	/* Advance to the next segment. */
    625 	if (!LFS_PARTIAL_FITS(fs)) {
    626 		/* lfs_avail eats the remaining space */
    627 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    628 		    fs->lfs_curseg);
    629 		lfs_newseg(fs);
    630 		repeat = 1;
    631 		fs->lfs_offset = fs->lfs_curseg;
    632 
    633 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    634 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    635 
    636 		/*
    637 		 * If the segment contains a superblock, update the offset
    638 		 * and summary address to skip over it.
    639 		 */
    640 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    641 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    642 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    643 			sp->seg_bytes_left -= LFS_SBPAD;
    644 		}
    645 		brelse(bp);
    646 		/* Segment zero could also contain the labelpad */
    647 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    648 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    649 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    650 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    651 		}
    652 	} else {
    653 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    654 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    655 		    (fs->lfs_offset - fs->lfs_curseg));
    656 	}
    657 	fs->lfs_lastpseg = fs->lfs_offset;
    658 
    659 	sp->fs = fs;
    660 	sp->ibp = NULL;
    661 	sp->idp = NULL;
    662 	sp->ninodes = 0;
    663 	sp->ndupino = 0;
    664 
    665 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    666 	sp->cbpp = sp->bpp;
    667 	sbp = *sp->cbpp = getblk(fs->lfs_unlockvp,
    668 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    669 	sp->segsum = sbp->b_data;
    670 	memset(sp->segsum, 0, fs->lfs_sumsize);
    671 	sp->start_bpp = ++sp->cbpp;
    672 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    673 
    674 	/* Set point to SEGSUM, initialize it. */
    675 	ssp = sp->segsum;
    676 	ssp->ss_next = fs->lfs_nextseg;
    677 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    678 	ssp->ss_magic = SS_MAGIC;
    679 
    680 	/* Set pointer to first FINFO, initialize it. */
    681 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    682 	sp->fip->fi_nblocks = 0;
    683 	sp->start_lbp = &sp->fip->fi_blocks[0];
    684 	sp->fip->fi_lastlength = 0;
    685 
    686 	sp->seg_bytes_left -= fs->lfs_sumsize;
    687 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    688 
    689 	LFS_LOCK_BUF(sbp);
    690 	brelse(sbp);
    691 	return repeat;
    692 }
    693 
    694 /*
    695  * Return the next segment to write.
    696  */
    697 void
    698 lfs_newseg(struct lfs * fs)
    699 {
    700 	CLEANERINFO *cip;
    701 	SEGUSE *sup;
    702 	struct ubuf *bp;
    703 	int curseg, isdirty, sn;
    704 
    705 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    706 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    707 	sup->su_nbytes = 0;
    708 	sup->su_nsums = 0;
    709 	sup->su_ninos = 0;
    710 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    711 
    712 	LFS_CLEANERINFO(cip, fs, bp);
    713 	--cip->clean;
    714 	++cip->dirty;
    715 	fs->lfs_nclean = cip->clean;
    716 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    717 
    718 	fs->lfs_lastseg = fs->lfs_curseg;
    719 	fs->lfs_curseg = fs->lfs_nextseg;
    720 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    721 		sn = (sn + 1) % fs->lfs_nseg;
    722 		if (sn == curseg)
    723 			errx(1, "lfs_nextseg: no clean segments");
    724 		LFS_SEGENTRY(sup, fs, sn, bp);
    725 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    726 		brelse(bp);
    727 
    728 		if (!isdirty)
    729 			break;
    730 	}
    731 
    732 	++fs->lfs_nactive;
    733 	fs->lfs_nextseg = sntod(fs, sn);
    734 }
    735 
    736 
    737 int
    738 lfs_writeseg(struct lfs * fs, struct segment * sp)
    739 {
    740 	struct ubuf **bpp, *bp;
    741 	SEGUSE *sup;
    742 	SEGSUM *ssp;
    743 	char *datap, *dp;
    744 	int i;
    745 	int do_again, nblocks, byteoffset;
    746 	size_t el_size;
    747 	u_short ninos;
    748 	struct uvnode *devvp;
    749 
    750 	/*
    751 	 * If there are no buffers other than the segment summary to write
    752 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    753 	 * even if there aren't any buffers, you need to write the superblock.
    754 	 */
    755 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    756 		return 0;
    757 
    758 	devvp = fs->lfs_unlockvp;
    759 
    760 	/* Update the segment usage information. */
    761 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    762 
    763 	/* Loop through all blocks, except the segment summary. */
    764 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    765 		if ((*bpp)->b_vp != devvp) {
    766 			sup->su_nbytes += (*bpp)->b_bcount;
    767 		}
    768 	}
    769 
    770 	ssp = (SEGSUM *) sp->segsum;
    771 
    772 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    773 	sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
    774 
    775 	if (fs->lfs_version == 1)
    776 		sup->su_olastmod = write_time;
    777 	else
    778 		sup->su_lastmod = write_time;
    779 	sup->su_ninos += ninos;
    780 	++sup->su_nsums;
    781 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    782 		fs->lfs_ibsize));
    783 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    784 
    785 	do_again = !(bp->b_flags & B_GATHERED);
    786 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    787 
    788 	/*
    789 	 * Compute checksum across data and then across summary; the first
    790 	 * block (the summary block) is skipped.  Set the create time here
    791 	 * so that it's guaranteed to be later than the inode mod times.
    792 	 */
    793 	if (fs->lfs_version == 1)
    794 		el_size = sizeof(u_long);
    795 	else
    796 		el_size = sizeof(u_int32_t);
    797 	datap = dp = malloc(nblocks * el_size);
    798 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    799 		++bpp;
    800 		/* Loop through gop_write cluster blocks */
    801 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    802 		    byteoffset += fs->lfs_bsize) {
    803 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    804 			dp += el_size;
    805 		}
    806 		bremfree(*bpp);
    807 		(*bpp)->b_flags |= B_BUSY;
    808 	}
    809 	if (fs->lfs_version == 1)
    810 		ssp->ss_ocreate = write_time;
    811 	else {
    812 		ssp->ss_create = write_time;
    813 		ssp->ss_serial = ++fs->lfs_serial;
    814 		ssp->ss_ident = fs->lfs_ident;
    815 	}
    816 	/* Set the summary block busy too */
    817 	bremfree(*(sp->bpp));
    818 	(*(sp->bpp))->b_flags |= B_BUSY;
    819 
    820 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    821 	ssp->ss_sumsum =
    822 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    823 	free(datap);
    824 	datap = dp = NULL;
    825 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    826 	    btofsb(fs, fs->lfs_sumsize));
    827 
    828 	if (devvp == NULL)
    829 		errx(1, "devvp is NULL");
    830 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    831 		bp = *bpp;
    832 #if 0
    833 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    834 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    835 		printf("  vp = %p\n", bp->b_vp);
    836 		if (bp->b_vp != fs->lfs_unlockvp)
    837 			printf("  ino = %d lbn = %" PRId64 "\n",
    838 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    839 #endif
    840 		if (bp->b_vp == fs->lfs_unlockvp)
    841 			written_dev += bp->b_bcount;
    842 		else {
    843 			if (bp->b_lblkno >= 0)
    844 				written_data += bp->b_bcount;
    845 			else
    846 				written_indir += bp->b_bcount;
    847 		}
    848 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    849 				 B_LOCKED);
    850 		bwrite(bp);
    851 		written_bytes += bp->b_bcount;
    852 	}
    853 	written_inodes += ninos;
    854 
    855 	return (lfs_initseg(fs) || do_again);
    856 }
    857 
    858 /*
    859  * Our own copy of shellsort.  XXX use qsort or heapsort.
    860  */
    861 void
    862 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    863 {
    864 	static int __rsshell_increments[] = {4, 1, 0};
    865 	int incr, *incrp, t1, t2;
    866 	struct ubuf *bp_temp;
    867 
    868 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    869 		for (t1 = incr; t1 < nmemb; ++t1)
    870 			for (t2 = t1 - incr; t2 >= 0;)
    871 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    872 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    873 					bp_temp = bp_array[t2];
    874 					bp_array[t2] = bp_array[t2 + incr];
    875 					bp_array[t2 + incr] = bp_temp;
    876 					t2 -= incr;
    877 				} else
    878 					break;
    879 
    880 	/* Reform the list of logical blocks */
    881 	incr = 0;
    882 	for (t1 = 0; t1 < nmemb; t1++) {
    883 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    884 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    885 		}
    886 	}
    887 }
    888 
    889 
    890 /*
    891  * lfs_seglock --
    892  *	Single thread the segment writer.
    893  */
    894 int
    895 lfs_seglock(struct lfs * fs, unsigned long flags)
    896 {
    897 	struct segment *sp;
    898 
    899 	if (fs->lfs_seglock) {
    900 		++fs->lfs_seglock;
    901 		fs->lfs_sp->seg_flags |= flags;
    902 		return 0;
    903 	}
    904 	fs->lfs_seglock = 1;
    905 
    906 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    907 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    908 	sp->seg_flags = flags;
    909 	sp->vp = NULL;
    910 	sp->seg_iocount = 0;
    911 	(void) lfs_initseg(fs);
    912 
    913 	/*
    914 	 * Keep a cumulative count of the outstanding I/O operations.  If the
    915 	 * disk drive catches up with us it could go to zero before we finish,
    916 	 * so we artificially increment it by one until we've scheduled all of
    917 	 * the writes we intend to do.
    918 	 */
    919 	++fs->lfs_iocount;
    920 	return 0;
    921 }
    922 
    923 /*
    924  * lfs_segunlock --
    925  *	Single thread the segment writer.
    926  */
    927 void
    928 lfs_segunlock(struct lfs * fs)
    929 {
    930 	struct segment *sp;
    931 	struct ubuf *bp;
    932 
    933 	sp = fs->lfs_sp;
    934 
    935 	if (fs->lfs_seglock == 1) {
    936 		if (sp->bpp != sp->cbpp) {
    937 			/* Free allocated segment summary */
    938 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    939 			bp = *sp->bpp;
    940 			bremfree(bp);
    941 			bp->b_flags |= B_DONE | B_INVAL;
    942 			bp->b_flags &= ~B_DELWRI;
    943 			reassignbuf(bp, bp->b_vp);
    944 			bp->b_flags |= B_BUSY; /* XXX */
    945 			brelse(bp);
    946 		} else
    947 			printf("unlock to 0 with no summary");
    948 
    949 		free(sp->bpp);
    950 		sp->bpp = NULL;
    951 		free(sp);
    952 		fs->lfs_sp = NULL;
    953 
    954 		fs->lfs_nactive = 0;
    955 
    956 		/* Since we *know* everything's on disk, write both sbs */
    957 		lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
    958 		lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
    959 
    960 		--fs->lfs_seglock;
    961 		fs->lfs_lockpid = 0;
    962 	} else if (fs->lfs_seglock == 0) {
    963 		errx(1, "Seglock not held");
    964 	} else {
    965 		--fs->lfs_seglock;
    966 	}
    967 }
    968 
    969 int
    970 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    971 {
    972 	struct inode *ip;
    973 	struct uvnode *vp;
    974 	int inodes_written = 0;
    975 
    976 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    977 		if (vp->v_bmap_op != lfs_vop_bmap)
    978 			continue;
    979 
    980 		ip = VTOI(vp);
    981 
    982 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    983 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    984 			continue;
    985 		}
    986 		/*
    987 		 * Write the inode/file if dirty and it's not the IFILE.
    988 		 */
    989 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    990 			if (ip->i_number != LFS_IFILE_INUM)
    991 				lfs_writefile(fs, sp, vp);
    992 			(void) lfs_writeinode(fs, sp, ip);
    993 			inodes_written++;
    994 		}
    995 	}
    996 	return inodes_written;
    997 }
    998 
    999 void
   1000 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
   1001 {
   1002 	struct ubuf *bp;
   1003 
   1004 	/* Set timestamp of this version of the superblock */
   1005 	if (fs->lfs_version == 1)
   1006 		fs->lfs_otstamp = write_time;
   1007 	fs->lfs_tstamp = write_time;
   1008 
   1009 	/* Checksum the superblock and copy it into a buffer. */
   1010 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1011 	assert(daddr > 0);
   1012 	bp = getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1013 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1014 	    LFS_SBPAD - sizeof(struct dlfs));
   1015 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1016 
   1017 	bwrite(bp);
   1018 }
   1019