segwrite.c revision 1.20 1 /* $NetBSD: segwrite.c,v 1.20 2010/02/16 23:20:30 mlelstv Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 */
60
61 /*
62 * Partial segment writer, taken from the kernel and adapted for userland.
63 */
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/time.h>
67 #include <sys/buf.h>
68 #include <sys/mount.h>
69
70 #include <ufs/ufs/inode.h>
71 #include <ufs/ufs/ufsmount.h>
72
73 /* Override certain things to make <ufs/lfs/lfs.h> work */
74 #define vnode uvnode
75 #define buf ubuf
76 #define panic call_panic
77
78 #include <ufs/lfs/lfs.h>
79
80 #include <assert.h>
81 #include <stdio.h>
82 #include <stdlib.h>
83 #include <string.h>
84 #include <err.h>
85 #include <errno.h>
86 #include <util.h>
87
88 #include "bufcache.h"
89 #include "vnode.h"
90 #include "lfs_user.h"
91 #include "segwrite.h"
92
93 /* Compatibility definitions */
94 extern off_t locked_queue_bytes;
95 int locked_queue_count;
96 off_t written_bytes = 0;
97 off_t written_data = 0;
98 off_t written_indir = 0;
99 off_t written_dev = 0;
100 int written_inodes = 0;
101
102 /* Global variables */
103 time_t write_time;
104
105 extern u_int32_t cksum(void *, size_t);
106 extern u_int32_t lfs_sb_cksum(struct dlfs *);
107 extern int preen;
108
109 /*
110 * Logical block number match routines used when traversing the dirty block
111 * chain.
112 */
113 int
114 lfs_match_data(struct lfs * fs, struct ubuf * bp)
115 {
116 return (bp->b_lblkno >= 0);
117 }
118
119 int
120 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
121 {
122 daddr_t lbn;
123
124 lbn = bp->b_lblkno;
125 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
126 }
127
128 int
129 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
130 {
131 daddr_t lbn;
132
133 lbn = bp->b_lblkno;
134 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
135 }
136
137 int
138 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
139 {
140 daddr_t lbn;
141
142 lbn = bp->b_lblkno;
143 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
144 }
145
146 /*
147 * Do a checkpoint.
148 */
149 int
150 lfs_segwrite(struct lfs * fs, int flags)
151 {
152 struct inode *ip;
153 struct segment *sp;
154 struct uvnode *vp;
155 int redo;
156
157 lfs_seglock(fs, flags | SEGM_CKP);
158 sp = fs->lfs_sp;
159
160 lfs_writevnodes(fs, sp, VN_REG);
161 lfs_writevnodes(fs, sp, VN_DIROP);
162 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
163
164 do {
165 vp = fs->lfs_ivnode;
166 fs->lfs_flags &= ~LFS_IFDIRTY;
167 ip = VTOI(vp);
168 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
169 lfs_writefile(fs, sp, vp);
170
171 redo = lfs_writeinode(fs, sp, ip);
172 redo += lfs_writeseg(fs, sp);
173 redo += (fs->lfs_flags & LFS_IFDIRTY);
174 } while (redo);
175
176 lfs_segunlock(fs);
177 #if 0
178 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
179 written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
180 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
181 written_data, (ufs_daddr_t)btofsb(fs, written_data));
182 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
183 written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
184 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
185 written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
186 printf("wrote %d inodes (%" PRId32 " fsb)\n",
187 written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
188 #endif
189 return 0;
190 }
191
192 /*
193 * Write the dirty blocks associated with a vnode.
194 */
195 void
196 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
197 {
198 struct ubuf *bp;
199 struct finfo *fip;
200 struct inode *ip;
201 IFILE *ifp;
202
203 ip = VTOI(vp);
204
205 if (sp->seg_bytes_left < fs->lfs_bsize ||
206 sp->sum_bytes_left < sizeof(struct finfo))
207 (void) lfs_writeseg(fs, sp);
208
209 sp->sum_bytes_left -= FINFOSIZE;
210 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
211
212 if (vp->v_uflag & VU_DIROP)
213 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
214
215 fip = sp->fip;
216 fip->fi_nblocks = 0;
217 fip->fi_ino = ip->i_number;
218 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
219 fip->fi_version = ifp->if_version;
220 brelse(bp, 0);
221
222 lfs_gather(fs, sp, vp, lfs_match_data);
223 lfs_gather(fs, sp, vp, lfs_match_indir);
224 lfs_gather(fs, sp, vp, lfs_match_dindir);
225 lfs_gather(fs, sp, vp, lfs_match_tindir);
226
227 fip = sp->fip;
228 if (fip->fi_nblocks != 0) {
229 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
230 sizeof(ufs_daddr_t) * (fip->fi_nblocks));
231 sp->start_lbp = &sp->fip->fi_blocks[0];
232 } else {
233 sp->sum_bytes_left += FINFOSIZE;
234 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
235 }
236 }
237
238 int
239 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
240 {
241 struct ubuf *bp, *ibp;
242 struct ufs1_dinode *cdp;
243 IFILE *ifp;
244 SEGUSE *sup;
245 daddr_t daddr;
246 ino_t ino;
247 int error, i, ndx, fsb = 0;
248 int redo_ifile = 0;
249 struct timespec ts;
250 int gotblk = 0;
251
252 /* Allocate a new inode block if necessary. */
253 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
254 sp->ibp == NULL) {
255 /* Allocate a new segment if necessary. */
256 if (sp->seg_bytes_left < fs->lfs_ibsize ||
257 sp->sum_bytes_left < sizeof(ufs_daddr_t))
258 (void) lfs_writeseg(fs, sp);
259
260 /* Get next inode block. */
261 daddr = fs->lfs_offset;
262 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
263 sp->ibp = *sp->cbpp++ =
264 getblk(fs->lfs_devvp, fsbtodb(fs, daddr),
265 fs->lfs_ibsize);
266 sp->ibp->b_flags |= B_GATHERED;
267 gotblk++;
268
269 /* Zero out inode numbers */
270 for (i = 0; i < INOPB(fs); ++i)
271 ((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
272
273 ++sp->start_bpp;
274 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
275 /* Set remaining space counters. */
276 sp->seg_bytes_left -= fs->lfs_ibsize;
277 sp->sum_bytes_left -= sizeof(ufs_daddr_t);
278 ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
279 sp->ninodes / INOPB(fs) - 1;
280 ((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
281 }
282 /* Update the inode times and copy the inode onto the inode page. */
283 ts.tv_nsec = 0;
284 ts.tv_sec = write_time;
285 /* XXX kludge --- don't redirty the ifile just to put times on it */
286 if (ip->i_number != LFS_IFILE_INUM)
287 LFS_ITIMES(ip, &ts, &ts, &ts);
288
289 /*
290 * If this is the Ifile, and we've already written the Ifile in this
291 * partial segment, just overwrite it (it's not on disk yet) and
292 * continue.
293 *
294 * XXX we know that the bp that we get the second time around has
295 * already been gathered.
296 */
297 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
298 *(sp->idp) = *ip->i_din.ffs1_din;
299 ip->i_lfs_osize = ip->i_ffs1_size;
300 return 0;
301 }
302 bp = sp->ibp;
303 cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
304 *cdp = *ip->i_din.ffs1_din;
305
306 /* If all blocks are goig to disk, update the "size on disk" */
307 ip->i_lfs_osize = ip->i_ffs1_size;
308
309 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
310 sp->idp = ((struct ufs1_dinode *) bp->b_data) +
311 (sp->ninodes % INOPB(fs));
312 if (gotblk) {
313 LFS_LOCK_BUF(bp);
314 assert(!(bp->b_flags & B_INVAL));
315 brelse(bp, 0);
316 }
317 /* Increment inode count in segment summary block. */
318 ++((SEGSUM *) (sp->segsum))->ss_ninos;
319
320 /* If this page is full, set flag to allocate a new page. */
321 if (++sp->ninodes % INOPB(fs) == 0)
322 sp->ibp = NULL;
323
324 /*
325 * If updating the ifile, update the super-block. Update the disk
326 * address and access times for this inode in the ifile.
327 */
328 ino = ip->i_number;
329 if (ino == LFS_IFILE_INUM) {
330 daddr = fs->lfs_idaddr;
331 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
332 sbdirty();
333 } else {
334 LFS_IENTRY(ifp, fs, ino, ibp);
335 daddr = ifp->if_daddr;
336 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
337 error = LFS_BWRITE_LOG(ibp); /* Ifile */
338 }
339
340 /*
341 * Account the inode: it no longer belongs to its former segment,
342 * though it will not belong to the new segment until that segment
343 * is actually written.
344 */
345 if (daddr != LFS_UNUSED_DADDR) {
346 u_int32_t oldsn = dtosn(fs, daddr);
347 LFS_SEGENTRY(sup, fs, oldsn, bp);
348 sup->su_nbytes -= DINODE1_SIZE;
349 redo_ifile =
350 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
351 if (redo_ifile)
352 fs->lfs_flags |= LFS_IFDIRTY;
353 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
354 }
355 return redo_ifile;
356 }
357
358 int
359 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
360 {
361 struct lfs *fs;
362 int version;
363 int j, blksinblk;
364
365 /*
366 * If full, finish this segment. We may be doing I/O, so
367 * release and reacquire the splbio().
368 */
369 fs = sp->fs;
370 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
371 if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
372 sp->seg_bytes_left < bp->b_bcount) {
373 lfs_updatemeta(sp);
374
375 version = sp->fip->fi_version;
376 (void) lfs_writeseg(fs, sp);
377
378 sp->fip->fi_version = version;
379 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
380 /* Add the current file to the segment summary. */
381 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
382 sp->sum_bytes_left -= FINFOSIZE;
383
384 return 1;
385 }
386 /* Insert into the buffer list, update the FINFO block. */
387 bp->b_flags |= B_GATHERED;
388 /* bp->b_flags &= ~B_DONE; */
389
390 *sp->cbpp++ = bp;
391 for (j = 0; j < blksinblk; j++)
392 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
393
394 sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
395 sp->seg_bytes_left -= bp->b_bcount;
396 return 0;
397 }
398
399 int
400 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
401 {
402 struct ubuf *bp, *nbp;
403 int count = 0;
404
405 sp->vp = vp;
406 loop:
407 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
408 nbp = LIST_NEXT(bp, b_vnbufs);
409
410 assert(bp->b_flags & B_DELWRI);
411 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
412 continue;
413 }
414 if (lfs_gatherblock(sp, bp)) {
415 goto loop;
416 }
417 count++;
418 }
419
420 lfs_updatemeta(sp);
421 sp->vp = NULL;
422 return count;
423 }
424
425
426 /*
427 * Change the given block's address to ndaddr, finding its previous
428 * location using ufs_bmaparray().
429 *
430 * Account for this change in the segment table.
431 */
432 void
433 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
434 ufs_daddr_t ndaddr, int size)
435 {
436 SEGUSE *sup;
437 struct ubuf *bp;
438 struct indir a[NIADDR + 2], *ap;
439 struct inode *ip;
440 struct uvnode *vp;
441 daddr_t daddr, ooff;
442 int num, error;
443 int osize;
444 int frags, ofrags;
445
446 vp = sp->vp;
447 ip = VTOI(vp);
448
449 error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
450 if (error)
451 errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
452 if (daddr > 0)
453 daddr = dbtofsb(fs, daddr);
454
455 frags = numfrags(fs, size);
456 switch (num) {
457 case 0:
458 ooff = ip->i_ffs1_db[lbn];
459 if (ooff == UNWRITTEN)
460 ip->i_ffs1_blocks += frags;
461 else {
462 /* possible fragment truncation or extension */
463 ofrags = btofsb(fs, ip->i_lfs_fragsize[lbn]);
464 ip->i_ffs1_blocks += (frags - ofrags);
465 }
466 ip->i_ffs1_db[lbn] = ndaddr;
467 break;
468 case 1:
469 ooff = ip->i_ffs1_ib[a[0].in_off];
470 if (ooff == UNWRITTEN)
471 ip->i_ffs1_blocks += frags;
472 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
473 break;
474 default:
475 ap = &a[num - 1];
476 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, 0, &bp))
477 errx(1, "lfs_updatemeta: bread bno %" PRId64,
478 ap->in_lbn);
479
480 ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
481 if (ooff == UNWRITTEN)
482 ip->i_ffs1_blocks += frags;
483 ((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
484 (void) VOP_BWRITE(bp);
485 }
486
487 /*
488 * Update segment usage information, based on old size
489 * and location.
490 */
491 if (daddr > 0) {
492 u_int32_t oldsn = dtosn(fs, daddr);
493 if (lbn >= 0 && lbn < NDADDR)
494 osize = ip->i_lfs_fragsize[lbn];
495 else
496 osize = fs->lfs_bsize;
497 LFS_SEGENTRY(sup, fs, oldsn, bp);
498 sup->su_nbytes -= osize;
499 if (!(bp->b_flags & B_GATHERED))
500 fs->lfs_flags |= LFS_IFDIRTY;
501 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
502 }
503 /*
504 * Now that this block has a new address, and its old
505 * segment no longer owns it, we can forget about its
506 * old size.
507 */
508 if (lbn >= 0 && lbn < NDADDR)
509 ip->i_lfs_fragsize[lbn] = size;
510 }
511
512 /*
513 * Update the metadata that points to the blocks listed in the FINFO
514 * array.
515 */
516 void
517 lfs_updatemeta(struct segment * sp)
518 {
519 struct ubuf *sbp;
520 struct lfs *fs;
521 struct uvnode *vp;
522 daddr_t lbn;
523 int i, nblocks, num;
524 int frags;
525 int bytesleft, size;
526
527 vp = sp->vp;
528 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
529
530 if (vp == NULL || nblocks == 0)
531 return;
532
533 /*
534 * This count may be high due to oversize blocks from lfs_gop_write.
535 * Correct for this. (XXX we should be able to keep track of these.)
536 */
537 fs = sp->fs;
538 for (i = 0; i < nblocks; i++) {
539 if (sp->start_bpp[i] == NULL) {
540 printf("nblocks = %d, not %d\n", i, nblocks);
541 nblocks = i;
542 break;
543 }
544 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
545 nblocks -= num - 1;
546 }
547
548 /*
549 * Sort the blocks.
550 */
551 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
552
553 /*
554 * Record the length of the last block in case it's a fragment.
555 * If there are indirect blocks present, they sort last. An
556 * indirect block will be lfs_bsize and its presence indicates
557 * that you cannot have fragments.
558 */
559 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
560 fs->lfs_bmask) + 1;
561
562 /*
563 * Assign disk addresses, and update references to the logical
564 * block and the segment usage information.
565 */
566 for (i = nblocks; i--; ++sp->start_bpp) {
567 sbp = *sp->start_bpp;
568 lbn = *sp->start_lbp;
569
570 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
571
572 /*
573 * If we write a frag in the wrong place, the cleaner won't
574 * be able to correctly identify its size later, and the
575 * segment will be uncleanable. (Even worse, it will assume
576 * that the indirect block that actually ends the list
577 * is of a smaller size!)
578 */
579 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
580 errx(1, "lfs_updatemeta: fragment is not last block");
581
582 /*
583 * For each subblock in this possibly oversized block,
584 * update its address on disk.
585 */
586 for (bytesleft = sbp->b_bcount; bytesleft > 0;
587 bytesleft -= fs->lfs_bsize) {
588 size = MIN(bytesleft, fs->lfs_bsize);
589 frags = numfrags(fs, size);
590 lbn = *sp->start_lbp++;
591 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
592 fs->lfs_offset += frags;
593 }
594
595 }
596 }
597
598 /*
599 * Start a new segment.
600 */
601 int
602 lfs_initseg(struct lfs * fs)
603 {
604 struct segment *sp;
605 SEGUSE *sup;
606 SEGSUM *ssp;
607 struct ubuf *bp, *sbp;
608 int repeat;
609
610 sp = fs->lfs_sp;
611
612 repeat = 0;
613
614 /* Advance to the next segment. */
615 if (!LFS_PARTIAL_FITS(fs)) {
616 /* lfs_avail eats the remaining space */
617 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
618 fs->lfs_curseg);
619 lfs_newseg(fs);
620 repeat = 1;
621 fs->lfs_offset = fs->lfs_curseg;
622
623 sp->seg_number = dtosn(fs, fs->lfs_curseg);
624 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
625
626 /*
627 * If the segment contains a superblock, update the offset
628 * and summary address to skip over it.
629 */
630 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
631 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
632 fs->lfs_offset += btofsb(fs, LFS_SBPAD);
633 sp->seg_bytes_left -= LFS_SBPAD;
634 }
635 brelse(bp, 0);
636 /* Segment zero could also contain the labelpad */
637 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
638 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
639 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
640 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
641 }
642 } else {
643 sp->seg_number = dtosn(fs, fs->lfs_curseg);
644 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
645 (fs->lfs_offset - fs->lfs_curseg));
646 }
647 fs->lfs_lastpseg = fs->lfs_offset;
648
649 sp->fs = fs;
650 sp->ibp = NULL;
651 sp->idp = NULL;
652 sp->ninodes = 0;
653 sp->ndupino = 0;
654
655 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
656 sp->cbpp = sp->bpp;
657 sbp = *sp->cbpp = getblk(fs->lfs_devvp,
658 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
659 sp->segsum = sbp->b_data;
660 memset(sp->segsum, 0, fs->lfs_sumsize);
661 sp->start_bpp = ++sp->cbpp;
662 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
663
664 /* Set point to SEGSUM, initialize it. */
665 ssp = sp->segsum;
666 ssp->ss_next = fs->lfs_nextseg;
667 ssp->ss_nfinfo = ssp->ss_ninos = 0;
668 ssp->ss_magic = SS_MAGIC;
669
670 /* Set pointer to first FINFO, initialize it. */
671 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
672 sp->fip->fi_nblocks = 0;
673 sp->start_lbp = &sp->fip->fi_blocks[0];
674 sp->fip->fi_lastlength = 0;
675
676 sp->seg_bytes_left -= fs->lfs_sumsize;
677 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
678
679 LFS_LOCK_BUF(sbp);
680 brelse(sbp, 0);
681 return repeat;
682 }
683
684 /*
685 * Return the next segment to write.
686 */
687 void
688 lfs_newseg(struct lfs * fs)
689 {
690 CLEANERINFO *cip;
691 SEGUSE *sup;
692 struct ubuf *bp;
693 int curseg, isdirty, sn;
694
695 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
696 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
697 sup->su_nbytes = 0;
698 sup->su_nsums = 0;
699 sup->su_ninos = 0;
700 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
701
702 LFS_CLEANERINFO(cip, fs, bp);
703 --cip->clean;
704 ++cip->dirty;
705 fs->lfs_nclean = cip->clean;
706 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
707
708 fs->lfs_lastseg = fs->lfs_curseg;
709 fs->lfs_curseg = fs->lfs_nextseg;
710 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
711 sn = (sn + 1) % fs->lfs_nseg;
712 if (sn == curseg)
713 errx(1, "lfs_nextseg: no clean segments");
714 LFS_SEGENTRY(sup, fs, sn, bp);
715 isdirty = sup->su_flags & SEGUSE_DIRTY;
716 brelse(bp, 0);
717
718 if (!isdirty)
719 break;
720 }
721
722 ++fs->lfs_nactive;
723 fs->lfs_nextseg = sntod(fs, sn);
724 }
725
726
727 int
728 lfs_writeseg(struct lfs * fs, struct segment * sp)
729 {
730 struct ubuf **bpp, *bp;
731 SEGUSE *sup;
732 SEGSUM *ssp;
733 char *datap, *dp;
734 int i;
735 int do_again, nblocks, byteoffset;
736 size_t el_size;
737 u_short ninos;
738 struct uvnode *devvp;
739
740 /*
741 * If there are no buffers other than the segment summary to write
742 * and it is not a checkpoint, don't do anything. On a checkpoint,
743 * even if there aren't any buffers, you need to write the superblock.
744 */
745 nblocks = sp->cbpp - sp->bpp;
746 #if 0
747 printf("write %d blocks at 0x%x\n",
748 nblocks, (int)dbtofsb(fs, (*sp->bpp)->b_blkno));
749 #endif
750 if (nblocks == 1)
751 return 0;
752
753 devvp = fs->lfs_devvp;
754
755 /* Update the segment usage information. */
756 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
757 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
758
759 /* Loop through all blocks, except the segment summary. */
760 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
761 if ((*bpp)->b_vp != devvp) {
762 sup->su_nbytes += (*bpp)->b_bcount;
763 }
764 assert(dtosn(fs, dbtofsb(fs, (*bpp)->b_blkno)) == sp->seg_number);
765 }
766
767 ssp = (SEGSUM *) sp->segsum;
768 ssp->ss_flags |= SS_RFW;
769
770 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
771 sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
772
773 if (fs->lfs_version == 1)
774 sup->su_olastmod = write_time;
775 else
776 sup->su_lastmod = write_time;
777 sup->su_ninos += ninos;
778 ++sup->su_nsums;
779 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
780 fs->lfs_ibsize));
781 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
782
783 do_again = !(bp->b_flags & B_GATHERED);
784 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
785
786 /*
787 * Compute checksum across data and then across summary; the first
788 * block (the summary block) is skipped. Set the create time here
789 * so that it's guaranteed to be later than the inode mod times.
790 */
791 if (fs->lfs_version == 1)
792 el_size = sizeof(u_long);
793 else
794 el_size = sizeof(u_int32_t);
795 datap = dp = emalloc(nblocks * el_size);
796 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
797 ++bpp;
798 /* Loop through gop_write cluster blocks */
799 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
800 byteoffset += fs->lfs_bsize) {
801 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
802 dp += el_size;
803 }
804 bremfree(*bpp);
805 (*bpp)->b_flags |= B_BUSY;
806 }
807 if (fs->lfs_version == 1)
808 ssp->ss_ocreate = write_time;
809 else {
810 ssp->ss_create = write_time;
811 ssp->ss_serial = ++fs->lfs_serial;
812 ssp->ss_ident = fs->lfs_ident;
813 }
814 /* Set the summary block busy too */
815 bremfree(*(sp->bpp));
816 (*(sp->bpp))->b_flags |= B_BUSY;
817
818 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
819 ssp->ss_sumsum =
820 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
821 free(datap);
822 datap = dp = NULL;
823 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
824 btofsb(fs, fs->lfs_sumsize));
825
826 if (devvp == NULL)
827 errx(1, "devvp is NULL");
828 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
829 bp = *bpp;
830 #if 0
831 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
832 nblocks - i, bp, bp->b_flags, bp->b_blkno);
833 printf(" vp = %p\n", bp->b_vp);
834 if (bp->b_vp != fs->lfs_devvp)
835 printf(" ino = %d lbn = %" PRId64 "\n",
836 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
837 #endif
838 if (bp->b_vp == fs->lfs_devvp)
839 written_dev += bp->b_bcount;
840 else {
841 if (bp->b_lblkno >= 0)
842 written_data += bp->b_bcount;
843 else
844 written_indir += bp->b_bcount;
845 }
846 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
847 B_LOCKED);
848 bwrite(bp);
849 written_bytes += bp->b_bcount;
850 }
851 written_inodes += ninos;
852
853 return (lfs_initseg(fs) || do_again);
854 }
855
856 /*
857 * Our own copy of shellsort. XXX use qsort or heapsort.
858 */
859 void
860 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
861 {
862 static int __rsshell_increments[] = {4, 1, 0};
863 int incr, *incrp, t1, t2;
864 struct ubuf *bp_temp;
865
866 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
867 for (t1 = incr; t1 < nmemb; ++t1)
868 for (t2 = t1 - incr; t2 >= 0;)
869 if ((u_int32_t) bp_array[t2]->b_lblkno >
870 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
871 bp_temp = bp_array[t2];
872 bp_array[t2] = bp_array[t2 + incr];
873 bp_array[t2 + incr] = bp_temp;
874 t2 -= incr;
875 } else
876 break;
877
878 /* Reform the list of logical blocks */
879 incr = 0;
880 for (t1 = 0; t1 < nmemb; t1++) {
881 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
882 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
883 }
884 }
885 }
886
887
888 /*
889 * lfs_seglock --
890 * Single thread the segment writer.
891 */
892 int
893 lfs_seglock(struct lfs * fs, unsigned long flags)
894 {
895 struct segment *sp;
896
897 if (fs->lfs_seglock) {
898 ++fs->lfs_seglock;
899 fs->lfs_sp->seg_flags |= flags;
900 return 0;
901 }
902 fs->lfs_seglock = 1;
903
904 sp = fs->lfs_sp = emalloc(sizeof(*sp));
905 sp->bpp = emalloc(fs->lfs_ssize * sizeof(struct ubuf *));
906 if (!sp->bpp)
907 errx(!preen, "Could not allocate %zu bytes: %s",
908 (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
909 strerror(errno));
910 sp->seg_flags = flags;
911 sp->vp = NULL;
912 sp->seg_iocount = 0;
913 (void) lfs_initseg(fs);
914
915 return 0;
916 }
917
918 /*
919 * lfs_segunlock --
920 * Single thread the segment writer.
921 */
922 void
923 lfs_segunlock(struct lfs * fs)
924 {
925 struct segment *sp;
926 struct ubuf *bp;
927
928 sp = fs->lfs_sp;
929
930 if (fs->lfs_seglock == 1) {
931 if (sp->bpp != sp->cbpp) {
932 /* Free allocated segment summary */
933 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
934 bp = *sp->bpp;
935 bremfree(bp);
936 bp->b_flags |= B_DONE | B_INVAL;
937 bp->b_flags &= ~B_DELWRI;
938 reassignbuf(bp, bp->b_vp);
939 bp->b_flags |= B_BUSY; /* XXX */
940 brelse(bp, 0);
941 } else
942 printf("unlock to 0 with no summary");
943
944 free(sp->bpp);
945 sp->bpp = NULL;
946 free(sp);
947 fs->lfs_sp = NULL;
948
949 fs->lfs_nactive = 0;
950
951 /* Since we *know* everything's on disk, write both sbs */
952 lfs_writesuper(fs, fs->lfs_sboffs[0]);
953 lfs_writesuper(fs, fs->lfs_sboffs[1]);
954
955 --fs->lfs_seglock;
956 fs->lfs_lockpid = 0;
957 } else if (fs->lfs_seglock == 0) {
958 errx(1, "Seglock not held");
959 } else {
960 --fs->lfs_seglock;
961 }
962 }
963
964 int
965 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
966 {
967 struct inode *ip;
968 struct uvnode *vp;
969 int inodes_written = 0;
970
971 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
972 if (vp->v_bmap_op != lfs_vop_bmap)
973 continue;
974
975 ip = VTOI(vp);
976
977 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
978 (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
979 continue;
980 }
981 /*
982 * Write the inode/file if dirty and it's not the IFILE.
983 */
984 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
985 if (ip->i_number != LFS_IFILE_INUM)
986 lfs_writefile(fs, sp, vp);
987 (void) lfs_writeinode(fs, sp, ip);
988 inodes_written++;
989 }
990 }
991 return inodes_written;
992 }
993
994 void
995 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
996 {
997 struct ubuf *bp;
998
999 /* Set timestamp of this version of the superblock */
1000 if (fs->lfs_version == 1)
1001 fs->lfs_otstamp = write_time;
1002 fs->lfs_tstamp = write_time;
1003
1004 /* Checksum the superblock and copy it into a buffer. */
1005 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1006 assert(daddr > 0);
1007 bp = getblk(fs->lfs_devvp, fsbtodb(fs, daddr), LFS_SBPAD);
1008 memset(bp->b_data + sizeof(struct dlfs), 0,
1009 LFS_SBPAD - sizeof(struct dlfs));
1010 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1011
1012 bwrite(bp);
1013 }
1014