segwrite.c revision 1.29 1 /* $NetBSD: segwrite.c,v 1.29 2015/05/31 15:44:30 hannken Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 */
60
61 /*
62 * Partial segment writer, taken from the kernel and adapted for userland.
63 */
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/time.h>
67 #include <sys/buf.h>
68 #include <sys/mount.h>
69
70 /* Override certain things to make <ufs/lfs/lfs.h> work */
71 #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
72 #define vnode uvnode
73 #define buf ubuf
74 #define panic call_panic
75
76 #include <ufs/lfs/lfs.h>
77 #include <ufs/lfs/lfs_inode.h>
78
79 #include <assert.h>
80 #include <stdio.h>
81 #include <stdlib.h>
82 #include <string.h>
83 #include <err.h>
84 #include <errno.h>
85 #include <util.h>
86
87 #include "bufcache.h"
88 #include "vnode.h"
89 #include "lfs_user.h"
90 #include "segwrite.h"
91
92 /* Compatibility definitions */
93 extern off_t locked_queue_bytes;
94 int locked_queue_count;
95 off_t written_bytes = 0;
96 off_t written_data = 0;
97 off_t written_indir = 0;
98 off_t written_dev = 0;
99 int written_inodes = 0;
100
101 /* Global variables */
102 time_t write_time;
103
104 extern u_int32_t cksum(void *, size_t);
105 extern u_int32_t lfs_sb_cksum(struct dlfs *);
106 extern int preen;
107
108 /*
109 * Logical block number match routines used when traversing the dirty block
110 * chain.
111 */
112 int
113 lfs_match_data(struct lfs * fs, struct ubuf * bp)
114 {
115 return (bp->b_lblkno >= 0);
116 }
117
118 int
119 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
120 {
121 daddr_t lbn;
122
123 lbn = bp->b_lblkno;
124 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
125 }
126
127 int
128 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
129 {
130 daddr_t lbn;
131
132 lbn = bp->b_lblkno;
133 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
134 }
135
136 int
137 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
138 {
139 daddr_t lbn;
140
141 lbn = bp->b_lblkno;
142 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
143 }
144
145 /*
146 * Do a checkpoint.
147 */
148 int
149 lfs_segwrite(struct lfs * fs, int flags)
150 {
151 struct inode *ip;
152 struct segment *sp;
153 struct uvnode *vp;
154 int redo;
155
156 lfs_seglock(fs, flags | SEGM_CKP);
157 sp = fs->lfs_sp;
158
159 lfs_writevnodes(fs, sp, VN_REG);
160 lfs_writevnodes(fs, sp, VN_DIROP);
161 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
162
163 do {
164 vp = fs->lfs_ivnode;
165 fs->lfs_flags &= ~LFS_IFDIRTY;
166 ip = VTOI(vp);
167 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
168 lfs_writefile(fs, sp, vp);
169
170 redo = lfs_writeinode(fs, sp, ip);
171 redo += lfs_writeseg(fs, sp);
172 redo += (fs->lfs_flags & LFS_IFDIRTY);
173 } while (redo);
174
175 lfs_segunlock(fs);
176 #if 0
177 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
178 written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
179 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
180 written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
181 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
182 written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
183 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
184 written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
185 printf("wrote %d inodes (%" PRId32 " fsb)\n",
186 written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
187 #endif
188 return 0;
189 }
190
191 /*
192 * Write the dirty blocks associated with a vnode.
193 */
194 void
195 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
196 {
197 struct ubuf *bp;
198 struct finfo *fip;
199 struct inode *ip;
200 IFILE *ifp;
201
202 ip = VTOI(vp);
203
204 if (sp->seg_bytes_left < fs->lfs_bsize ||
205 sp->sum_bytes_left < sizeof(struct finfo))
206 (void) lfs_writeseg(fs, sp);
207
208 sp->sum_bytes_left -= FINFOSIZE;
209 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
210
211 if (vp->v_uflag & VU_DIROP)
212 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
213
214 fip = sp->fip;
215 fip->fi_nblocks = 0;
216 fip->fi_ino = ip->i_number;
217 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
218 fip->fi_version = ifp->if_version;
219 brelse(bp, 0);
220
221 lfs_gather(fs, sp, vp, lfs_match_data);
222 lfs_gather(fs, sp, vp, lfs_match_indir);
223 lfs_gather(fs, sp, vp, lfs_match_dindir);
224 lfs_gather(fs, sp, vp, lfs_match_tindir);
225
226 fip = sp->fip;
227 if (fip->fi_nblocks != 0) {
228 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
229 sizeof(ulfs_daddr_t) * (fip->fi_nblocks));
230 sp->start_lbp = &sp->fip->fi_blocks[0];
231 } else {
232 sp->sum_bytes_left += FINFOSIZE;
233 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
234 }
235 }
236
237 int
238 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
239 {
240 struct ubuf *bp, *ibp;
241 struct ulfs1_dinode *cdp;
242 IFILE *ifp;
243 SEGUSE *sup;
244 daddr_t daddr;
245 ino_t ino;
246 int i, ndx, fsb = 0;
247 int redo_ifile = 0;
248 struct timespec ts;
249 int gotblk = 0;
250
251 /* Allocate a new inode block if necessary. */
252 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
253 sp->ibp == NULL) {
254 /* Allocate a new segment if necessary. */
255 if (sp->seg_bytes_left < fs->lfs_ibsize ||
256 sp->sum_bytes_left < sizeof(ulfs_daddr_t))
257 (void) lfs_writeseg(fs, sp);
258
259 /* Get next inode block. */
260 daddr = fs->lfs_offset;
261 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_ibsize);
262 sp->ibp = *sp->cbpp++ =
263 getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
264 fs->lfs_ibsize);
265 sp->ibp->b_flags |= B_GATHERED;
266 gotblk++;
267
268 /* Zero out inode numbers */
269 for (i = 0; i < LFS_INOPB(fs); ++i)
270 ((struct ulfs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
271
272 ++sp->start_bpp;
273 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_ibsize);
274 /* Set remaining space counters. */
275 sp->seg_bytes_left -= fs->lfs_ibsize;
276 sp->sum_bytes_left -= sizeof(ulfs_daddr_t);
277 ndx = fs->lfs_sumsize / sizeof(ulfs_daddr_t) -
278 sp->ninodes / LFS_INOPB(fs) - 1;
279 ((ulfs_daddr_t *) (sp->segsum))[ndx] = daddr;
280 }
281 /* Update the inode times and copy the inode onto the inode page. */
282 ts.tv_nsec = 0;
283 ts.tv_sec = write_time;
284 /* XXX kludge --- don't redirty the ifile just to put times on it */
285 if (ip->i_number != LFS_IFILE_INUM)
286 LFS_ITIMES(ip, &ts, &ts, &ts);
287
288 /*
289 * If this is the Ifile, and we've already written the Ifile in this
290 * partial segment, just overwrite it (it's not on disk yet) and
291 * continue.
292 *
293 * XXX we know that the bp that we get the second time around has
294 * already been gathered.
295 */
296 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
297 *(sp->idp) = *ip->i_din.ffs1_din;
298 ip->i_lfs_osize = ip->i_ffs1_size;
299 return 0;
300 }
301 bp = sp->ibp;
302 cdp = ((struct ulfs1_dinode *) bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
303 *cdp = *ip->i_din.ffs1_din;
304
305 /* If all blocks are goig to disk, update the "size on disk" */
306 ip->i_lfs_osize = ip->i_ffs1_size;
307
308 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
309 sp->idp = ((struct ulfs1_dinode *) bp->b_data) +
310 (sp->ninodes % LFS_INOPB(fs));
311 if (gotblk) {
312 LFS_LOCK_BUF(bp);
313 assert(!(bp->b_flags & B_INVAL));
314 brelse(bp, 0);
315 }
316 /* Increment inode count in segment summary block. */
317 ++((SEGSUM *) (sp->segsum))->ss_ninos;
318
319 /* If this page is full, set flag to allocate a new page. */
320 if (++sp->ninodes % LFS_INOPB(fs) == 0)
321 sp->ibp = NULL;
322
323 /*
324 * If updating the ifile, update the super-block. Update the disk
325 * address and access times for this inode in the ifile.
326 */
327 ino = ip->i_number;
328 if (ino == LFS_IFILE_INUM) {
329 daddr = fs->lfs_idaddr;
330 fs->lfs_idaddr = LFS_DBTOFSB(fs, bp->b_blkno);
331 sbdirty();
332 } else {
333 LFS_IENTRY(ifp, fs, ino, ibp);
334 daddr = ifp->if_daddr;
335 ifp->if_daddr = LFS_DBTOFSB(fs, bp->b_blkno) + fsb;
336 (void)LFS_BWRITE_LOG(ibp); /* Ifile */
337 }
338
339 /*
340 * Account the inode: it no longer belongs to its former segment,
341 * though it will not belong to the new segment until that segment
342 * is actually written.
343 */
344 if (daddr != LFS_UNUSED_DADDR) {
345 u_int32_t oldsn = lfs_dtosn(fs, daddr);
346 LFS_SEGENTRY(sup, fs, oldsn, bp);
347 sup->su_nbytes -= LFS_DINODE1_SIZE;
348 redo_ifile =
349 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
350 if (redo_ifile)
351 fs->lfs_flags |= LFS_IFDIRTY;
352 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
353 }
354 return redo_ifile;
355 }
356
357 int
358 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
359 {
360 struct lfs *fs;
361 int version;
362 int j, blksinblk;
363
364 /*
365 * If full, finish this segment. We may be doing I/O, so
366 * release and reacquire the splbio().
367 */
368 fs = sp->fs;
369 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
370 if (sp->sum_bytes_left < sizeof(ulfs_daddr_t) * blksinblk ||
371 sp->seg_bytes_left < bp->b_bcount) {
372 lfs_updatemeta(sp);
373
374 version = sp->fip->fi_version;
375 (void) lfs_writeseg(fs, sp);
376
377 sp->fip->fi_version = version;
378 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
379 /* Add the current file to the segment summary. */
380 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
381 sp->sum_bytes_left -= FINFOSIZE;
382
383 return 1;
384 }
385 /* Insert into the buffer list, update the FINFO block. */
386 bp->b_flags |= B_GATHERED;
387 /* bp->b_flags &= ~B_DONE; */
388
389 *sp->cbpp++ = bp;
390 for (j = 0; j < blksinblk; j++)
391 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
392
393 sp->sum_bytes_left -= sizeof(ulfs_daddr_t) * blksinblk;
394 sp->seg_bytes_left -= bp->b_bcount;
395 return 0;
396 }
397
398 int
399 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
400 {
401 struct ubuf *bp, *nbp;
402 int count = 0;
403
404 sp->vp = vp;
405 loop:
406 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
407 nbp = LIST_NEXT(bp, b_vnbufs);
408
409 assert(bp->b_flags & B_DELWRI);
410 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
411 continue;
412 }
413 if (lfs_gatherblock(sp, bp)) {
414 goto loop;
415 }
416 count++;
417 }
418
419 lfs_updatemeta(sp);
420 sp->vp = NULL;
421 return count;
422 }
423
424
425 /*
426 * Change the given block's address to ndaddr, finding its previous
427 * location using ulfs_bmaparray().
428 *
429 * Account for this change in the segment table.
430 */
431 void
432 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
433 ulfs_daddr_t ndaddr, int size)
434 {
435 SEGUSE *sup;
436 struct ubuf *bp;
437 struct indir a[ULFS_NIADDR + 2], *ap;
438 struct inode *ip;
439 struct uvnode *vp;
440 daddr_t daddr, ooff;
441 int num, error;
442 int osize;
443 int frags, ofrags;
444
445 vp = sp->vp;
446 ip = VTOI(vp);
447
448 error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
449 if (error)
450 errx(1, "lfs_updatemeta: ulfs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
451 if (daddr > 0)
452 daddr = LFS_DBTOFSB(fs, daddr);
453
454 frags = lfs_numfrags(fs, size);
455 switch (num) {
456 case 0:
457 ooff = ip->i_ffs1_db[lbn];
458 if (ooff == UNWRITTEN)
459 ip->i_ffs1_blocks += frags;
460 else {
461 /* possible fragment truncation or extension */
462 ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
463 ip->i_ffs1_blocks += (frags - ofrags);
464 }
465 ip->i_ffs1_db[lbn] = ndaddr;
466 break;
467 case 1:
468 ooff = ip->i_ffs1_ib[a[0].in_off];
469 if (ooff == UNWRITTEN)
470 ip->i_ffs1_blocks += frags;
471 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
472 break;
473 default:
474 ap = &a[num - 1];
475 if (bread(vp, ap->in_lbn, fs->lfs_bsize, 0, &bp))
476 errx(1, "lfs_updatemeta: bread bno %" PRId64,
477 ap->in_lbn);
478
479 ooff = ((ulfs_daddr_t *) bp->b_data)[ap->in_off];
480 if (ooff == UNWRITTEN)
481 ip->i_ffs1_blocks += frags;
482 ((ulfs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
483 (void) VOP_BWRITE(bp);
484 }
485
486 /*
487 * Update segment usage information, based on old size
488 * and location.
489 */
490 if (daddr > 0) {
491 u_int32_t oldsn = lfs_dtosn(fs, daddr);
492 if (lbn >= 0 && lbn < ULFS_NDADDR)
493 osize = ip->i_lfs_fragsize[lbn];
494 else
495 osize = fs->lfs_bsize;
496 LFS_SEGENTRY(sup, fs, oldsn, bp);
497 sup->su_nbytes -= osize;
498 if (!(bp->b_flags & B_GATHERED))
499 fs->lfs_flags |= LFS_IFDIRTY;
500 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
501 }
502 /*
503 * Now that this block has a new address, and its old
504 * segment no longer owns it, we can forget about its
505 * old size.
506 */
507 if (lbn >= 0 && lbn < ULFS_NDADDR)
508 ip->i_lfs_fragsize[lbn] = size;
509 }
510
511 /*
512 * Update the metadata that points to the blocks listed in the FINFO
513 * array.
514 */
515 void
516 lfs_updatemeta(struct segment * sp)
517 {
518 struct ubuf *sbp;
519 struct lfs *fs;
520 struct uvnode *vp;
521 daddr_t lbn;
522 int i, nblocks, num;
523 int frags;
524 int bytesleft, size;
525
526 vp = sp->vp;
527 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
528
529 if (vp == NULL || nblocks == 0)
530 return;
531
532 /*
533 * This count may be high due to oversize blocks from lfs_gop_write.
534 * Correct for this. (XXX we should be able to keep track of these.)
535 */
536 fs = sp->fs;
537 for (i = 0; i < nblocks; i++) {
538 if (sp->start_bpp[i] == NULL) {
539 printf("nblocks = %d, not %d\n", i, nblocks);
540 nblocks = i;
541 break;
542 }
543 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
544 nblocks -= num - 1;
545 }
546
547 /*
548 * Sort the blocks.
549 */
550 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
551
552 /*
553 * Record the length of the last block in case it's a fragment.
554 * If there are indirect blocks present, they sort last. An
555 * indirect block will be lfs_bsize and its presence indicates
556 * that you cannot have fragments.
557 */
558 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
559 fs->lfs_bmask) + 1;
560
561 /*
562 * Assign disk addresses, and update references to the logical
563 * block and the segment usage information.
564 */
565 for (i = nblocks; i--; ++sp->start_bpp) {
566 sbp = *sp->start_bpp;
567 lbn = *sp->start_lbp;
568
569 sbp->b_blkno = LFS_FSBTODB(fs, fs->lfs_offset);
570
571 /*
572 * If we write a frag in the wrong place, the cleaner won't
573 * be able to correctly identify its size later, and the
574 * segment will be uncleanable. (Even worse, it will assume
575 * that the indirect block that actually ends the list
576 * is of a smaller size!)
577 */
578 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
579 errx(1, "lfs_updatemeta: fragment is not last block");
580
581 /*
582 * For each subblock in this possibly oversized block,
583 * update its address on disk.
584 */
585 for (bytesleft = sbp->b_bcount; bytesleft > 0;
586 bytesleft -= fs->lfs_bsize) {
587 size = MIN(bytesleft, fs->lfs_bsize);
588 frags = lfs_numfrags(fs, size);
589 lbn = *sp->start_lbp++;
590 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
591 fs->lfs_offset += frags;
592 }
593
594 }
595 }
596
597 /*
598 * Start a new segment.
599 */
600 int
601 lfs_initseg(struct lfs * fs)
602 {
603 struct segment *sp;
604 SEGUSE *sup;
605 SEGSUM *ssp;
606 struct ubuf *bp, *sbp;
607 int repeat;
608
609 sp = fs->lfs_sp;
610
611 repeat = 0;
612
613 /* Advance to the next segment. */
614 if (!LFS_PARTIAL_FITS(fs)) {
615 /* lfs_avail eats the remaining space */
616 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
617 fs->lfs_curseg);
618 lfs_newseg(fs);
619 repeat = 1;
620 fs->lfs_offset = fs->lfs_curseg;
621
622 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
623 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg);
624
625 /*
626 * If the segment contains a superblock, update the offset
627 * and summary address to skip over it.
628 */
629 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
630 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
631 fs->lfs_offset += lfs_btofsb(fs, LFS_SBPAD);
632 sp->seg_bytes_left -= LFS_SBPAD;
633 }
634 brelse(bp, 0);
635 /* Segment zero could also contain the labelpad */
636 if (fs->lfs_version > 1 && sp->seg_number == 0 &&
637 fs->lfs_s0addr < lfs_btofsb(fs, LFS_LABELPAD)) {
638 fs->lfs_offset += lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_s0addr;
639 sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, fs->lfs_s0addr);
640 }
641 } else {
642 sp->seg_number = lfs_dtosn(fs, fs->lfs_curseg);
643 sp->seg_bytes_left = lfs_fsbtob(fs, fs->lfs_fsbpseg -
644 (fs->lfs_offset - fs->lfs_curseg));
645 }
646 fs->lfs_lastpseg = fs->lfs_offset;
647
648 sp->fs = fs;
649 sp->ibp = NULL;
650 sp->idp = NULL;
651 sp->ninodes = 0;
652 sp->ndupino = 0;
653
654 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
655 sp->cbpp = sp->bpp;
656 sbp = *sp->cbpp = getblk(fs->lfs_devvp,
657 LFS_FSBTODB(fs, fs->lfs_offset), fs->lfs_sumsize);
658 sp->segsum = sbp->b_data;
659 memset(sp->segsum, 0, fs->lfs_sumsize);
660 sp->start_bpp = ++sp->cbpp;
661 fs->lfs_offset += lfs_btofsb(fs, fs->lfs_sumsize);
662
663 /* Set point to SEGSUM, initialize it. */
664 ssp = sp->segsum;
665 ssp->ss_next = fs->lfs_nextseg;
666 ssp->ss_nfinfo = ssp->ss_ninos = 0;
667 ssp->ss_magic = SS_MAGIC;
668
669 /* Set pointer to first FINFO, initialize it. */
670 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
671 sp->fip->fi_nblocks = 0;
672 sp->start_lbp = &sp->fip->fi_blocks[0];
673 sp->fip->fi_lastlength = 0;
674
675 sp->seg_bytes_left -= fs->lfs_sumsize;
676 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
677
678 LFS_LOCK_BUF(sbp);
679 brelse(sbp, 0);
680 return repeat;
681 }
682
683 /*
684 * Return the next segment to write.
685 */
686 void
687 lfs_newseg(struct lfs * fs)
688 {
689 CLEANERINFO *cip;
690 SEGUSE *sup;
691 struct ubuf *bp;
692 int curseg, isdirty, sn;
693
694 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
695 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
696 sup->su_nbytes = 0;
697 sup->su_nsums = 0;
698 sup->su_ninos = 0;
699 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_nextseg), bp);
700
701 LFS_CLEANERINFO(cip, fs, bp);
702 --cip->clean;
703 ++cip->dirty;
704 fs->lfs_nclean = cip->clean;
705 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
706
707 fs->lfs_lastseg = fs->lfs_curseg;
708 fs->lfs_curseg = fs->lfs_nextseg;
709 for (sn = curseg = lfs_dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
710 sn = (sn + 1) % fs->lfs_nseg;
711 if (sn == curseg)
712 errx(1, "lfs_nextseg: no clean segments");
713 LFS_SEGENTRY(sup, fs, sn, bp);
714 isdirty = sup->su_flags & SEGUSE_DIRTY;
715 brelse(bp, 0);
716
717 if (!isdirty)
718 break;
719 }
720
721 ++fs->lfs_nactive;
722 fs->lfs_nextseg = lfs_sntod(fs, sn);
723 }
724
725
726 int
727 lfs_writeseg(struct lfs * fs, struct segment * sp)
728 {
729 struct ubuf **bpp, *bp;
730 SEGUSE *sup;
731 SEGSUM *ssp;
732 char *datap, *dp;
733 int i;
734 int do_again, nblocks, byteoffset;
735 size_t el_size;
736 u_short ninos;
737 struct uvnode *devvp;
738
739 /*
740 * If there are no buffers other than the segment summary to write
741 * and it is not a checkpoint, don't do anything. On a checkpoint,
742 * even if there aren't any buffers, you need to write the superblock.
743 */
744 nblocks = sp->cbpp - sp->bpp;
745 #if 0
746 printf("write %d blocks at 0x%x\n",
747 nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
748 #endif
749 if (nblocks == 1)
750 return 0;
751
752 devvp = fs->lfs_devvp;
753
754 /* Update the segment usage information. */
755 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
756 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
757
758 /* Loop through all blocks, except the segment summary. */
759 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
760 if ((*bpp)->b_vp != devvp) {
761 sup->su_nbytes += (*bpp)->b_bcount;
762 }
763 assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
764 }
765
766 ssp = (SEGSUM *) sp->segsum;
767 ssp->ss_flags |= SS_RFW;
768
769 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
770 sup->su_nbytes += ssp->ss_ninos * LFS_DINODE1_SIZE;
771
772 if (fs->lfs_version == 1)
773 sup->su_olastmod = write_time;
774 else
775 sup->su_lastmod = write_time;
776 sup->su_ninos += ninos;
777 ++sup->su_nsums;
778 fs->lfs_dmeta += (lfs_btofsb(fs, fs->lfs_sumsize) + lfs_btofsb(fs, ninos *
779 fs->lfs_ibsize));
780 fs->lfs_avail -= lfs_btofsb(fs, fs->lfs_sumsize);
781
782 do_again = !(bp->b_flags & B_GATHERED);
783 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
784
785 /*
786 * Compute checksum across data and then across summary; the first
787 * block (the summary block) is skipped. Set the create time here
788 * so that it's guaranteed to be later than the inode mod times.
789 */
790 if (fs->lfs_version == 1)
791 el_size = sizeof(u_long);
792 else
793 el_size = sizeof(u_int32_t);
794 datap = dp = emalloc(nblocks * el_size);
795 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
796 ++bpp;
797 /* Loop through gop_write cluster blocks */
798 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
799 byteoffset += fs->lfs_bsize) {
800 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
801 dp += el_size;
802 }
803 bremfree(*bpp);
804 (*bpp)->b_flags |= B_BUSY;
805 }
806 if (fs->lfs_version == 1)
807 ssp->ss_ocreate = write_time;
808 else {
809 ssp->ss_create = write_time;
810 ssp->ss_serial = ++fs->lfs_serial;
811 ssp->ss_ident = fs->lfs_ident;
812 }
813 /* Set the summary block busy too */
814 bremfree(*(sp->bpp));
815 (*(sp->bpp))->b_flags |= B_BUSY;
816
817 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
818 ssp->ss_sumsum =
819 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
820 free(datap);
821 datap = dp = NULL;
822 fs->lfs_bfree -= (lfs_btofsb(fs, ninos * fs->lfs_ibsize) +
823 lfs_btofsb(fs, fs->lfs_sumsize));
824
825 if (devvp == NULL)
826 errx(1, "devvp is NULL");
827 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
828 bp = *bpp;
829 #if 0
830 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
831 nblocks - i, bp, bp->b_flags, bp->b_blkno);
832 printf(" vp = %p\n", bp->b_vp);
833 if (bp->b_vp != fs->lfs_devvp)
834 printf(" ino = %d lbn = %" PRId64 "\n",
835 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
836 #endif
837 if (bp->b_vp == fs->lfs_devvp)
838 written_dev += bp->b_bcount;
839 else {
840 if (bp->b_lblkno >= 0)
841 written_data += bp->b_bcount;
842 else
843 written_indir += bp->b_bcount;
844 }
845 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
846 B_LOCKED);
847 bwrite(bp);
848 written_bytes += bp->b_bcount;
849 }
850 written_inodes += ninos;
851
852 return (lfs_initseg(fs) || do_again);
853 }
854
855 /*
856 * Our own copy of shellsort. XXX use qsort or heapsort.
857 */
858 void
859 lfs_shellsort(struct ubuf ** bp_array, ulfs_daddr_t * lb_array, int nmemb, int size)
860 {
861 static int __rsshell_increments[] = {4, 1, 0};
862 int incr, *incrp, t1, t2;
863 struct ubuf *bp_temp;
864
865 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
866 for (t1 = incr; t1 < nmemb; ++t1)
867 for (t2 = t1 - incr; t2 >= 0;)
868 if ((u_int32_t) bp_array[t2]->b_lblkno >
869 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
870 bp_temp = bp_array[t2];
871 bp_array[t2] = bp_array[t2 + incr];
872 bp_array[t2 + incr] = bp_temp;
873 t2 -= incr;
874 } else
875 break;
876
877 /* Reform the list of logical blocks */
878 incr = 0;
879 for (t1 = 0; t1 < nmemb; t1++) {
880 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
881 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
882 }
883 }
884 }
885
886
887 /*
888 * lfs_seglock --
889 * Single thread the segment writer.
890 */
891 int
892 lfs_seglock(struct lfs * fs, unsigned long flags)
893 {
894 struct segment *sp;
895
896 if (fs->lfs_seglock) {
897 ++fs->lfs_seglock;
898 fs->lfs_sp->seg_flags |= flags;
899 return 0;
900 }
901 fs->lfs_seglock = 1;
902
903 sp = fs->lfs_sp = emalloc(sizeof(*sp));
904 sp->bpp = emalloc(fs->lfs_ssize * sizeof(struct ubuf *));
905 if (!sp->bpp)
906 errx(!preen, "Could not allocate %zu bytes: %s",
907 (size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
908 strerror(errno));
909 sp->seg_flags = flags;
910 sp->vp = NULL;
911 sp->seg_iocount = 0;
912 (void) lfs_initseg(fs);
913
914 return 0;
915 }
916
917 /*
918 * lfs_segunlock --
919 * Single thread the segment writer.
920 */
921 void
922 lfs_segunlock(struct lfs * fs)
923 {
924 struct segment *sp;
925 struct ubuf *bp;
926
927 sp = fs->lfs_sp;
928
929 if (fs->lfs_seglock == 1) {
930 if (sp->bpp != sp->cbpp) {
931 /* Free allocated segment summary */
932 fs->lfs_offset -= lfs_btofsb(fs, fs->lfs_sumsize);
933 bp = *sp->bpp;
934 bremfree(bp);
935 bp->b_flags |= B_DONE | B_INVAL;
936 bp->b_flags &= ~B_DELWRI;
937 reassignbuf(bp, bp->b_vp);
938 bp->b_flags |= B_BUSY; /* XXX */
939 brelse(bp, 0);
940 } else
941 printf("unlock to 0 with no summary");
942
943 free(sp->bpp);
944 sp->bpp = NULL;
945 free(sp);
946 fs->lfs_sp = NULL;
947
948 fs->lfs_nactive = 0;
949
950 /* Since we *know* everything's on disk, write both sbs */
951 lfs_writesuper(fs, fs->lfs_sboffs[0]);
952 lfs_writesuper(fs, fs->lfs_sboffs[1]);
953
954 --fs->lfs_seglock;
955 fs->lfs_lockpid = 0;
956 } else if (fs->lfs_seglock == 0) {
957 errx(1, "Seglock not held");
958 } else {
959 --fs->lfs_seglock;
960 }
961 }
962
963 int
964 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
965 {
966 struct inode *ip;
967 struct uvnode *vp;
968 int inodes_written = 0;
969
970 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
971 if (vp->v_bmap_op != lfs_vop_bmap)
972 continue;
973
974 ip = VTOI(vp);
975
976 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
977 (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
978 continue;
979 }
980 /*
981 * Write the inode/file if dirty and it's not the IFILE.
982 */
983 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
984 if (ip->i_number != LFS_IFILE_INUM)
985 lfs_writefile(fs, sp, vp);
986 (void) lfs_writeinode(fs, sp, ip);
987 inodes_written++;
988 }
989 }
990 return inodes_written;
991 }
992
993 void
994 lfs_writesuper(struct lfs *fs, ulfs_daddr_t daddr)
995 {
996 struct ubuf *bp;
997
998 /* Set timestamp of this version of the superblock */
999 if (fs->lfs_version == 1)
1000 fs->lfs_otstamp = write_time;
1001 fs->lfs_tstamp = write_time;
1002
1003 /* Checksum the superblock and copy it into a buffer. */
1004 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
1005 assert(daddr > 0);
1006 bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
1007 memset(bp->b_data + sizeof(struct dlfs), 0,
1008 LFS_SBPAD - sizeof(struct dlfs));
1009 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1010
1011 bwrite(bp);
1012 }
1013