segwrite.c revision 1.35 1 /* $NetBSD: segwrite.c,v 1.35 2015/08/02 18:14:16 dholland Exp $ */
2 /*-
3 * Copyright (c) 2003 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Konrad E. Schroder <perseant (at) hhhh.org>.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30 /*
31 * Copyright (c) 1991, 1993
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
59 */
60
61 /*
62 * Partial segment writer, taken from the kernel and adapted for userland.
63 */
64 #include <sys/types.h>
65 #include <sys/param.h>
66 #include <sys/time.h>
67 #include <sys/buf.h>
68 #include <sys/mount.h>
69
70 /* Override certain things to make <ufs/lfs/lfs.h> work */
71 #define VU_DIROP 0x01000000 /* XXX XXX from sys/vnode.h */
72 #define vnode uvnode
73 #define buf ubuf
74 #define panic call_panic
75
76 #include <ufs/lfs/lfs.h>
77 #include <ufs/lfs/lfs_accessors.h>
78 #include <ufs/lfs/lfs_inode.h>
79
80 #include <assert.h>
81 #include <stdio.h>
82 #include <stdlib.h>
83 #include <string.h>
84 #include <err.h>
85 #include <errno.h>
86 #include <util.h>
87
88 #include "bufcache.h"
89 #include "vnode.h"
90 #include "lfs_user.h"
91 #include "segwrite.h"
92
93 /* Compatibility definitions */
94 extern off_t locked_queue_bytes;
95 int locked_queue_count;
96 off_t written_bytes = 0;
97 off_t written_data = 0;
98 off_t written_indir = 0;
99 off_t written_dev = 0;
100 int written_inodes = 0;
101
102 /* Global variables */
103 time_t write_time;
104
105 extern u_int32_t cksum(void *, size_t);
106 extern u_int32_t lfs_sb_cksum(struct dlfs *);
107 extern int preen;
108
109 /*
110 * Logical block number match routines used when traversing the dirty block
111 * chain.
112 */
113 int
114 lfs_match_data(struct lfs * fs, struct ubuf * bp)
115 {
116 return (bp->b_lblkno >= 0);
117 }
118
119 int
120 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
121 {
122 daddr_t lbn;
123
124 lbn = bp->b_lblkno;
125 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0);
126 }
127
128 int
129 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
130 {
131 daddr_t lbn;
132
133 lbn = bp->b_lblkno;
134 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1);
135 }
136
137 int
138 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
139 {
140 daddr_t lbn;
141
142 lbn = bp->b_lblkno;
143 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2);
144 }
145
146 /*
147 * Do a checkpoint.
148 */
149 int
150 lfs_segwrite(struct lfs * fs, int flags)
151 {
152 struct inode *ip;
153 struct segment *sp;
154 struct uvnode *vp;
155 int redo;
156
157 lfs_seglock(fs, flags | SEGM_CKP);
158 sp = fs->lfs_sp;
159
160 lfs_writevnodes(fs, sp, VN_REG);
161 lfs_writevnodes(fs, sp, VN_DIROP);
162 ((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
163
164 do {
165 vp = fs->lfs_ivnode;
166 fs->lfs_flags &= ~LFS_IFDIRTY;
167 ip = VTOI(vp);
168 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || lfs_sb_getidaddr(fs) <= 0)
169 lfs_writefile(fs, sp, vp);
170
171 redo = lfs_writeinode(fs, sp, ip);
172 redo += lfs_writeseg(fs, sp);
173 redo += (fs->lfs_flags & LFS_IFDIRTY);
174 } while (redo);
175
176 lfs_segunlock(fs);
177 #if 0
178 printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
179 written_bytes, (ulfs_daddr_t)lfs_btofsb(fs, written_bytes));
180 printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
181 written_data, (ulfs_daddr_t)lfs_btofsb(fs, written_data));
182 printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
183 written_indir, (ulfs_daddr_t)lfs_btofsb(fs, written_indir));
184 printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
185 written_dev, (ulfs_daddr_t)lfs_btofsb(fs, written_dev));
186 printf("wrote %d inodes (%" PRId32 " fsb)\n",
187 written_inodes, lfs_btofsb(fs, written_inodes * fs->lfs_ibsize));
188 #endif
189 return 0;
190 }
191
192 /*
193 * Write the dirty blocks associated with a vnode.
194 */
195 void
196 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
197 {
198 struct ubuf *bp;
199 struct finfo *fip;
200 struct inode *ip;
201 IFILE *ifp;
202
203 ip = VTOI(vp);
204
205 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) ||
206 sp->sum_bytes_left < sizeof(struct finfo))
207 (void) lfs_writeseg(fs, sp);
208
209 sp->sum_bytes_left -= FINFOSIZE;
210 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
211
212 if (vp->v_uflag & VU_DIROP)
213 ((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
214
215 fip = sp->fip;
216 fip->fi_nblocks = 0;
217 fip->fi_ino = ip->i_number;
218 LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
219 fip->fi_version = ifp->if_version;
220 brelse(bp, 0);
221
222 lfs_gather(fs, sp, vp, lfs_match_data);
223 lfs_gather(fs, sp, vp, lfs_match_indir);
224 lfs_gather(fs, sp, vp, lfs_match_dindir);
225 lfs_gather(fs, sp, vp, lfs_match_tindir);
226
227 fip = sp->fip;
228 if (fip->fi_nblocks != 0) {
229 sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
230 sizeof(ulfs_daddr_t) * (fip->fi_nblocks));
231 sp->start_lbp = &sp->fip->fi_blocks[0];
232 } else {
233 sp->sum_bytes_left += FINFOSIZE;
234 --((SEGSUM *) (sp->segsum))->ss_nfinfo;
235 }
236 }
237
238 int
239 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
240 {
241 struct ubuf *bp, *ibp;
242 struct ulfs1_dinode *cdp;
243 IFILE *ifp;
244 SEGUSE *sup;
245 daddr_t daddr;
246 ino_t ino;
247 int i, ndx, fsb = 0;
248 int redo_ifile = 0;
249 struct timespec ts;
250 int gotblk = 0;
251
252 /* Allocate a new inode block if necessary. */
253 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
254 sp->ibp == NULL) {
255 /* Allocate a new segment if necessary. */
256 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) ||
257 sp->sum_bytes_left < sizeof(ulfs_daddr_t))
258 (void) lfs_writeseg(fs, sp);
259
260 /* Get next inode block. */
261 daddr = lfs_sb_getoffset(fs);
262 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
263 sp->ibp = *sp->cbpp++ =
264 getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
265 lfs_sb_getibsize(fs));
266 sp->ibp->b_flags |= B_GATHERED;
267 gotblk++;
268
269 /* Zero out inode numbers */
270 for (i = 0; i < LFS_INOPB(fs); ++i)
271 ((struct ulfs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
272
273 ++sp->start_bpp;
274 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs)));
275 /* Set remaining space counters. */
276 sp->seg_bytes_left -= lfs_sb_getibsize(fs);
277 sp->sum_bytes_left -= sizeof(ulfs_daddr_t);
278 ndx = lfs_sb_getsumsize(fs) / sizeof(ulfs_daddr_t) -
279 sp->ninodes / LFS_INOPB(fs) - 1;
280 ((ulfs_daddr_t *) (sp->segsum))[ndx] = daddr;
281 }
282 /* Update the inode times and copy the inode onto the inode page. */
283 ts.tv_nsec = 0;
284 ts.tv_sec = write_time;
285 /* XXX kludge --- don't redirty the ifile just to put times on it */
286 if (ip->i_number != LFS_IFILE_INUM)
287 LFS_ITIMES(ip, &ts, &ts, &ts);
288
289 /*
290 * If this is the Ifile, and we've already written the Ifile in this
291 * partial segment, just overwrite it (it's not on disk yet) and
292 * continue.
293 *
294 * XXX we know that the bp that we get the second time around has
295 * already been gathered.
296 */
297 if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
298 *(sp->idp) = *ip->i_din.ffs1_din;
299 ip->i_lfs_osize = ip->i_ffs1_size;
300 return 0;
301 }
302 bp = sp->ibp;
303 cdp = ((struct ulfs1_dinode *) bp->b_data) + (sp->ninodes % LFS_INOPB(fs));
304 *cdp = *ip->i_din.ffs1_din;
305
306 /* If all blocks are goig to disk, update the "size on disk" */
307 ip->i_lfs_osize = ip->i_ffs1_size;
308
309 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
310 sp->idp = ((struct ulfs1_dinode *) bp->b_data) +
311 (sp->ninodes % LFS_INOPB(fs));
312 if (gotblk) {
313 LFS_LOCK_BUF(bp);
314 assert(!(bp->b_flags & B_INVAL));
315 brelse(bp, 0);
316 }
317 /* Increment inode count in segment summary block. */
318 ++((SEGSUM *) (sp->segsum))->ss_ninos;
319
320 /* If this page is full, set flag to allocate a new page. */
321 if (++sp->ninodes % LFS_INOPB(fs) == 0)
322 sp->ibp = NULL;
323
324 /*
325 * If updating the ifile, update the super-block. Update the disk
326 * address and access times for this inode in the ifile.
327 */
328 ino = ip->i_number;
329 if (ino == LFS_IFILE_INUM) {
330 daddr = lfs_sb_getidaddr(fs);
331 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, bp->b_blkno));
332 sbdirty();
333 } else {
334 LFS_IENTRY(ifp, fs, ino, ibp);
335 daddr = ifp->if_daddr;
336 ifp->if_daddr = LFS_DBTOFSB(fs, bp->b_blkno) + fsb;
337 (void)LFS_BWRITE_LOG(ibp); /* Ifile */
338 }
339
340 /*
341 * Account the inode: it no longer belongs to its former segment,
342 * though it will not belong to the new segment until that segment
343 * is actually written.
344 */
345 if (daddr != LFS_UNUSED_DADDR) {
346 u_int32_t oldsn = lfs_dtosn(fs, daddr);
347 LFS_SEGENTRY(sup, fs, oldsn, bp);
348 sup->su_nbytes -= LFS_DINODE1_SIZE;
349 redo_ifile =
350 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
351 if (redo_ifile)
352 fs->lfs_flags |= LFS_IFDIRTY;
353 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
354 }
355 return redo_ifile;
356 }
357
358 int
359 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
360 {
361 struct lfs *fs;
362 int version;
363 int j, blksinblk;
364
365 /*
366 * If full, finish this segment. We may be doing I/O, so
367 * release and reacquire the splbio().
368 */
369 fs = sp->fs;
370 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs));
371 if (sp->sum_bytes_left < sizeof(ulfs_daddr_t) * blksinblk ||
372 sp->seg_bytes_left < bp->b_bcount) {
373 lfs_updatemeta(sp);
374
375 version = sp->fip->fi_version;
376 (void) lfs_writeseg(fs, sp);
377
378 sp->fip->fi_version = version;
379 sp->fip->fi_ino = VTOI(sp->vp)->i_number;
380 /* Add the current file to the segment summary. */
381 ++((SEGSUM *) (sp->segsum))->ss_nfinfo;
382 sp->sum_bytes_left -= FINFOSIZE;
383
384 return 1;
385 }
386 /* Insert into the buffer list, update the FINFO block. */
387 bp->b_flags |= B_GATHERED;
388 /* bp->b_flags &= ~B_DONE; */
389
390 *sp->cbpp++ = bp;
391 for (j = 0; j < blksinblk; j++)
392 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
393
394 sp->sum_bytes_left -= sizeof(ulfs_daddr_t) * blksinblk;
395 sp->seg_bytes_left -= bp->b_bcount;
396 return 0;
397 }
398
399 int
400 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
401 {
402 struct ubuf *bp, *nbp;
403 int count = 0;
404
405 sp->vp = vp;
406 loop:
407 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
408 nbp = LIST_NEXT(bp, b_vnbufs);
409
410 assert(bp->b_flags & B_DELWRI);
411 if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
412 continue;
413 }
414 if (lfs_gatherblock(sp, bp)) {
415 goto loop;
416 }
417 count++;
418 }
419
420 lfs_updatemeta(sp);
421 sp->vp = NULL;
422 return count;
423 }
424
425
426 /*
427 * Change the given block's address to ndaddr, finding its previous
428 * location using ulfs_bmaparray().
429 *
430 * Account for this change in the segment table.
431 */
432 void
433 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
434 ulfs_daddr_t ndaddr, int size)
435 {
436 SEGUSE *sup;
437 struct ubuf *bp;
438 struct indir a[ULFS_NIADDR + 2], *ap;
439 struct inode *ip;
440 struct uvnode *vp;
441 daddr_t daddr, ooff;
442 int num, error;
443 int osize;
444 int frags, ofrags;
445
446 vp = sp->vp;
447 ip = VTOI(vp);
448
449 error = ulfs_bmaparray(fs, vp, lbn, &daddr, a, &num);
450 if (error)
451 errx(EXIT_FAILURE, "%s: ulfs_bmaparray returned %d looking up lbn %"
452 PRId64 "", __func__, error, lbn);
453 if (daddr > 0)
454 daddr = LFS_DBTOFSB(fs, daddr);
455
456 frags = lfs_numfrags(fs, size);
457 switch (num) {
458 case 0:
459 ooff = ip->i_ffs1_db[lbn];
460 if (ooff == UNWRITTEN)
461 ip->i_ffs1_blocks += frags;
462 else {
463 /* possible fragment truncation or extension */
464 ofrags = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]);
465 ip->i_ffs1_blocks += (frags - ofrags);
466 }
467 ip->i_ffs1_db[lbn] = ndaddr;
468 break;
469 case 1:
470 ooff = ip->i_ffs1_ib[a[0].in_off];
471 if (ooff == UNWRITTEN)
472 ip->i_ffs1_blocks += frags;
473 ip->i_ffs1_ib[a[0].in_off] = ndaddr;
474 break;
475 default:
476 ap = &a[num - 1];
477 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 0, &bp))
478 errx(EXIT_FAILURE, "%s: bread bno %" PRId64, __func__,
479 ap->in_lbn);
480
481 ooff = ((ulfs_daddr_t *) bp->b_data)[ap->in_off];
482 if (ooff == UNWRITTEN)
483 ip->i_ffs1_blocks += frags;
484 ((ulfs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
485 (void) VOP_BWRITE(bp);
486 }
487
488 /*
489 * Update segment usage information, based on old size
490 * and location.
491 */
492 if (daddr > 0) {
493 u_int32_t oldsn = lfs_dtosn(fs, daddr);
494 if (lbn >= 0 && lbn < ULFS_NDADDR)
495 osize = ip->i_lfs_fragsize[lbn];
496 else
497 osize = lfs_sb_getbsize(fs);
498 LFS_SEGENTRY(sup, fs, oldsn, bp);
499 sup->su_nbytes -= osize;
500 if (!(bp->b_flags & B_GATHERED))
501 fs->lfs_flags |= LFS_IFDIRTY;
502 LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
503 }
504 /*
505 * Now that this block has a new address, and its old
506 * segment no longer owns it, we can forget about its
507 * old size.
508 */
509 if (lbn >= 0 && lbn < ULFS_NDADDR)
510 ip->i_lfs_fragsize[lbn] = size;
511 }
512
513 /*
514 * Update the metadata that points to the blocks listed in the FINFO
515 * array.
516 */
517 void
518 lfs_updatemeta(struct segment * sp)
519 {
520 struct ubuf *sbp;
521 struct lfs *fs;
522 struct uvnode *vp;
523 daddr_t lbn;
524 int i, nblocks, num;
525 int frags;
526 int bytesleft, size;
527
528 vp = sp->vp;
529 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
530
531 if (vp == NULL || nblocks == 0)
532 return;
533
534 /*
535 * This count may be high due to oversize blocks from lfs_gop_write.
536 * Correct for this. (XXX we should be able to keep track of these.)
537 */
538 fs = sp->fs;
539 for (i = 0; i < nblocks; i++) {
540 if (sp->start_bpp[i] == NULL) {
541 printf("nblocks = %d, not %d\n", i, nblocks);
542 nblocks = i;
543 break;
544 }
545 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs));
546 nblocks -= num - 1;
547 }
548
549 /*
550 * Sort the blocks.
551 */
552 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, lfs_sb_getbsize(fs));
553
554 /*
555 * Record the length of the last block in case it's a fragment.
556 * If there are indirect blocks present, they sort last. An
557 * indirect block will be lfs_bsize and its presence indicates
558 * that you cannot have fragments.
559 */
560 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
561 lfs_sb_getbmask(fs)) + 1;
562
563 /*
564 * Assign disk addresses, and update references to the logical
565 * block and the segment usage information.
566 */
567 for (i = nblocks; i--; ++sp->start_bpp) {
568 sbp = *sp->start_bpp;
569 lbn = *sp->start_lbp;
570
571 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs));
572
573 /*
574 * If we write a frag in the wrong place, the cleaner won't
575 * be able to correctly identify its size later, and the
576 * segment will be uncleanable. (Even worse, it will assume
577 * that the indirect block that actually ends the list
578 * is of a smaller size!)
579 */
580 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0)
581 errx(EXIT_FAILURE, "%s: fragment is not last block", __func__);
582
583 /*
584 * For each subblock in this possibly oversized block,
585 * update its address on disk.
586 */
587 for (bytesleft = sbp->b_bcount; bytesleft > 0;
588 bytesleft -= lfs_sb_getbsize(fs)) {
589 size = MIN(bytesleft, lfs_sb_getbsize(fs));
590 frags = lfs_numfrags(fs, size);
591 lbn = *sp->start_lbp++;
592 lfs_update_single(fs, sp, lbn, lfs_sb_getoffset(fs), size);
593 lfs_sb_addoffset(fs, frags);
594 }
595
596 }
597 }
598
599 /*
600 * Start a new segment.
601 */
602 int
603 lfs_initseg(struct lfs * fs)
604 {
605 struct segment *sp;
606 SEGUSE *sup;
607 SEGSUM *ssp;
608 struct ubuf *bp, *sbp;
609 int repeat;
610
611 sp = fs->lfs_sp;
612
613 repeat = 0;
614
615 /* Advance to the next segment. */
616 if (!LFS_PARTIAL_FITS(fs)) {
617 /* lfs_avail eats the remaining space */
618 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) -
619 lfs_sb_getcurseg(fs)));
620 lfs_newseg(fs);
621 repeat = 1;
622 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs));
623
624 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
625 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs));
626
627 /*
628 * If the segment contains a superblock, update the offset
629 * and summary address to skip over it.
630 */
631 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
632 if (sup->su_flags & SEGUSE_SUPERBLOCK) {
633 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD));
634 sp->seg_bytes_left -= LFS_SBPAD;
635 }
636 brelse(bp, 0);
637 /* Segment zero could also contain the labelpad */
638 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 &&
639 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) {
640 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
641 sp->seg_bytes_left -= LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs));
642 }
643 } else {
644 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs));
645 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) -
646 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)));
647 }
648 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs));
649
650 sp->fs = fs;
651 sp->ibp = NULL;
652 sp->idp = NULL;
653 sp->ninodes = 0;
654 sp->ndupino = 0;
655
656 /* Get a new buffer for SEGSUM and enter it into the buffer list. */
657 sp->cbpp = sp->bpp;
658 sbp = *sp->cbpp = getblk(fs->lfs_devvp,
659 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs));
660 sp->segsum = sbp->b_data;
661 memset(sp->segsum, 0, lfs_sb_getsumsize(fs));
662 sp->start_bpp = ++sp->cbpp;
663 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
664
665 /* Set point to SEGSUM, initialize it. */
666 ssp = sp->segsum;
667 ssp->ss_next = lfs_sb_getnextseg(fs);
668 ssp->ss_nfinfo = ssp->ss_ninos = 0;
669 ssp->ss_magic = SS_MAGIC;
670
671 /* Set pointer to first FINFO, initialize it. */
672 sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
673 sp->fip->fi_nblocks = 0;
674 sp->start_lbp = &sp->fip->fi_blocks[0];
675 sp->fip->fi_lastlength = 0;
676
677 sp->seg_bytes_left -= lfs_sb_getsumsize(fs);
678 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs);
679
680 LFS_LOCK_BUF(sbp);
681 brelse(sbp, 0);
682 return repeat;
683 }
684
685 /*
686 * Return the next segment to write.
687 */
688 void
689 lfs_newseg(struct lfs * fs)
690 {
691 CLEANERINFO *cip;
692 SEGUSE *sup;
693 struct ubuf *bp;
694 int curseg, isdirty, sn;
695
696 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
697 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
698 sup->su_nbytes = 0;
699 sup->su_nsums = 0;
700 sup->su_ninos = 0;
701 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp);
702
703 LFS_CLEANERINFO(cip, fs, bp);
704 --cip->clean;
705 ++cip->dirty;
706 lfs_sb_setnclean(fs, cip->clean);
707 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
708
709 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs));
710 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs));
711 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) {
712 sn = (sn + 1) % lfs_sb_getnseg(fs);
713 if (sn == curseg)
714 errx(EXIT_FAILURE, "%s: no clean segments", __func__);
715 LFS_SEGENTRY(sup, fs, sn, bp);
716 isdirty = sup->su_flags & SEGUSE_DIRTY;
717 brelse(bp, 0);
718
719 if (!isdirty)
720 break;
721 }
722
723 ++fs->lfs_nactive;
724 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn));
725 }
726
727
728 int
729 lfs_writeseg(struct lfs * fs, struct segment * sp)
730 {
731 struct ubuf **bpp, *bp;
732 SEGUSE *sup;
733 SEGSUM *ssp;
734 char *datap, *dp;
735 int i;
736 int do_again, nblocks, byteoffset;
737 size_t el_size;
738 u_short ninos;
739 struct uvnode *devvp;
740
741 /*
742 * If there are no buffers other than the segment summary to write
743 * and it is not a checkpoint, don't do anything. On a checkpoint,
744 * even if there aren't any buffers, you need to write the superblock.
745 */
746 nblocks = sp->cbpp - sp->bpp;
747 #if 0
748 printf("write %d blocks at 0x%x\n",
749 nblocks, (int)LFS_DBTOFSB(fs, (*sp->bpp)->b_blkno));
750 #endif
751 if (nblocks == 1)
752 return 0;
753
754 devvp = fs->lfs_devvp;
755
756 /* Update the segment usage information. */
757 LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
758 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
759
760 /* Loop through all blocks, except the segment summary. */
761 for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
762 if ((*bpp)->b_vp != devvp) {
763 sup->su_nbytes += (*bpp)->b_bcount;
764 }
765 assert(lfs_dtosn(fs, LFS_DBTOFSB(fs, (*bpp)->b_blkno)) == sp->seg_number);
766 }
767
768 ssp = (SEGSUM *) sp->segsum;
769 ssp->ss_flags |= SS_RFW;
770
771 ninos = (ssp->ss_ninos + LFS_INOPB(fs) - 1) / LFS_INOPB(fs);
772 sup->su_nbytes += ssp->ss_ninos * LFS_DINODE1_SIZE;
773
774 if (lfs_sb_getversion(fs) == 1)
775 sup->su_olastmod = write_time;
776 else
777 sup->su_lastmod = write_time;
778 sup->su_ninos += ninos;
779 ++sup->su_nsums;
780 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, lfs_sb_getsumsize(fs)) + lfs_btofsb(fs, ninos *
781 lfs_sb_getibsize(fs))));
782 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
783
784 do_again = !(bp->b_flags & B_GATHERED);
785 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
786
787 /*
788 * Compute checksum across data and then across summary; the first
789 * block (the summary block) is skipped. Set the create time here
790 * so that it's guaranteed to be later than the inode mod times.
791 */
792 if (lfs_sb_getversion(fs) == 1)
793 el_size = sizeof(u_long);
794 else
795 el_size = sizeof(u_int32_t);
796 datap = dp = emalloc(nblocks * el_size);
797 for (bpp = sp->bpp, i = nblocks - 1; i--;) {
798 ++bpp;
799 /* Loop through gop_write cluster blocks */
800 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
801 byteoffset += lfs_sb_getbsize(fs)) {
802 memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
803 dp += el_size;
804 }
805 bremfree(*bpp);
806 (*bpp)->b_flags |= B_BUSY;
807 }
808 if (lfs_sb_getversion(fs) == 1)
809 ssp->ss_ocreate = write_time;
810 else {
811 ssp->ss_create = write_time;
812 lfs_sb_addserial(fs, 1);
813 ssp->ss_serial = lfs_sb_getserial(fs);
814 ssp->ss_ident = lfs_sb_getident(fs);
815 }
816 /* Set the summary block busy too */
817 bremfree(*(sp->bpp));
818 (*(sp->bpp))->b_flags |= B_BUSY;
819
820 ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
821 ssp->ss_sumsum =
822 cksum(&ssp->ss_datasum, lfs_sb_getsumsize(fs) - sizeof(ssp->ss_sumsum));
823 free(datap);
824 datap = dp = NULL;
825 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) +
826 lfs_btofsb(fs, lfs_sb_getsumsize(fs))));
827
828 if (devvp == NULL)
829 errx(EXIT_FAILURE, "devvp is NULL");
830 for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
831 bp = *bpp;
832 #if 0
833 printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
834 nblocks - i, bp, bp->b_flags, bp->b_blkno);
835 printf(" vp = %p\n", bp->b_vp);
836 if (bp->b_vp != fs->lfs_devvp)
837 printf(" ino = %d lbn = %" PRId64 "\n",
838 VTOI(bp->b_vp)->i_number, bp->b_lblkno);
839 #endif
840 if (bp->b_vp == fs->lfs_devvp)
841 written_dev += bp->b_bcount;
842 else {
843 if (bp->b_lblkno >= 0)
844 written_data += bp->b_bcount;
845 else
846 written_indir += bp->b_bcount;
847 }
848 bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
849 B_LOCKED);
850 bwrite(bp);
851 written_bytes += bp->b_bcount;
852 }
853 written_inodes += ninos;
854
855 return (lfs_initseg(fs) || do_again);
856 }
857
858 /*
859 * Our own copy of shellsort. XXX use qsort or heapsort.
860 */
861 void
862 lfs_shellsort(struct ubuf ** bp_array, ulfs_daddr_t * lb_array, int nmemb, int size)
863 {
864 static int __rsshell_increments[] = {4, 1, 0};
865 int incr, *incrp, t1, t2;
866 struct ubuf *bp_temp;
867
868 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
869 for (t1 = incr; t1 < nmemb; ++t1)
870 for (t2 = t1 - incr; t2 >= 0;)
871 if ((u_int32_t) bp_array[t2]->b_lblkno >
872 (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
873 bp_temp = bp_array[t2];
874 bp_array[t2] = bp_array[t2 + incr];
875 bp_array[t2 + incr] = bp_temp;
876 t2 -= incr;
877 } else
878 break;
879
880 /* Reform the list of logical blocks */
881 incr = 0;
882 for (t1 = 0; t1 < nmemb; t1++) {
883 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
884 lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
885 }
886 }
887 }
888
889
890 /*
891 * lfs_seglock --
892 * Single thread the segment writer.
893 */
894 int
895 lfs_seglock(struct lfs * fs, unsigned long flags)
896 {
897 struct segment *sp;
898 size_t allocsize;
899
900 if (fs->lfs_seglock) {
901 ++fs->lfs_seglock;
902 fs->lfs_sp->seg_flags |= flags;
903 return 0;
904 }
905 fs->lfs_seglock = 1;
906
907 sp = fs->lfs_sp = emalloc(sizeof(*sp));
908 allocsize = lfs_sb_getssize(fs) * sizeof(struct ubuf *);
909 sp->bpp = emalloc(allocsize);
910 if (!sp->bpp)
911 err(!preen, "Could not allocate %zu bytes", allocsize);
912 sp->seg_flags = flags;
913 sp->vp = NULL;
914 sp->seg_iocount = 0;
915 (void) lfs_initseg(fs);
916
917 return 0;
918 }
919
920 /*
921 * lfs_segunlock --
922 * Single thread the segment writer.
923 */
924 void
925 lfs_segunlock(struct lfs * fs)
926 {
927 struct segment *sp;
928 struct ubuf *bp;
929
930 sp = fs->lfs_sp;
931
932 if (fs->lfs_seglock == 1) {
933 if (sp->bpp != sp->cbpp) {
934 /* Free allocated segment summary */
935 lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
936 bp = *sp->bpp;
937 bremfree(bp);
938 bp->b_flags |= B_DONE | B_INVAL;
939 bp->b_flags &= ~B_DELWRI;
940 reassignbuf(bp, bp->b_vp);
941 bp->b_flags |= B_BUSY; /* XXX */
942 brelse(bp, 0);
943 } else
944 printf("unlock to 0 with no summary");
945
946 free(sp->bpp);
947 sp->bpp = NULL;
948 free(sp);
949 fs->lfs_sp = NULL;
950
951 fs->lfs_nactive = 0;
952
953 /* Since we *know* everything's on disk, write both sbs */
954 lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
955 lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
956
957 --fs->lfs_seglock;
958 fs->lfs_lockpid = 0;
959 } else if (fs->lfs_seglock == 0) {
960 errx(EXIT_FAILURE, "Seglock not held");
961 } else {
962 --fs->lfs_seglock;
963 }
964 }
965
966 int
967 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
968 {
969 struct inode *ip;
970 struct uvnode *vp;
971 int inodes_written = 0;
972
973 LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
974 if (vp->v_bmap_op != lfs_vop_bmap)
975 continue;
976
977 ip = VTOI(vp);
978
979 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
980 (op != VN_DIROP && (vp->v_uflag & VU_DIROP))) {
981 continue;
982 }
983 /*
984 * Write the inode/file if dirty and it's not the IFILE.
985 */
986 if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
987 if (ip->i_number != LFS_IFILE_INUM)
988 lfs_writefile(fs, sp, vp);
989 (void) lfs_writeinode(fs, sp, ip);
990 inodes_written++;
991 }
992 }
993 return inodes_written;
994 }
995
996 void
997 lfs_writesuper(struct lfs *fs, ulfs_daddr_t daddr)
998 {
999 struct ubuf *bp;
1000
1001 /* Set timestamp of this version of the superblock */
1002 if (lfs_sb_getversion(fs) == 1)
1003 lfs_sb_setotstamp(fs, write_time);
1004 lfs_sb_settstamp(fs, write_time);
1005
1006 /* Checksum the superblock and copy it into a buffer. */
1007 lfs_sb_setcksum(fs, lfs_sb_cksum(&(fs->lfs_dlfs)));
1008 assert(daddr > 0);
1009 bp = getblk(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), LFS_SBPAD);
1010 memset(bp->b_data + sizeof(struct dlfs), 0,
1011 LFS_SBPAD - sizeof(struct dlfs));
1012 *(struct dlfs *) bp->b_data = fs->lfs_dlfs;
1013
1014 bwrite(bp);
1015 }
1016