Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.6
      1 /* $NetBSD: segwrite.c,v 1.6 2003/12/24 01:39:27 heas Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     66  */
     67 
     68 /*
     69  * Partial segment writer, taken from the kernel and adapted for userland.
     70  */
     71 #include <sys/types.h>
     72 #include <sys/param.h>
     73 #include <sys/time.h>
     74 #include <sys/buf.h>
     75 #include <sys/mount.h>
     76 
     77 #include <ufs/ufs/inode.h>
     78 #include <ufs/ufs/ufsmount.h>
     79 
     80 /* Override certain things to make <ufs/lfs/lfs.h> work */
     81 #undef simple_lock
     82 #define simple_lock(x)
     83 #undef simple_unlock
     84 #define simple_unlock(x)
     85 #define vnode uvnode
     86 #define buf ubuf
     87 #define panic call_panic
     88 
     89 #include <ufs/lfs/lfs.h>
     90 
     91 #include <assert.h>
     92 #include <stdio.h>
     93 #include <stdlib.h>
     94 #include <string.h>
     95 #include <err.h>
     96 #include <errno.h>
     97 
     98 #include "bufcache.h"
     99 #include "vnode.h"
    100 #include "lfs.h"
    101 #include "segwrite.h"
    102 
    103 /* Compatibility definitions */
    104 extern off_t locked_queue_bytes;
    105 int locked_queue_count;
    106 off_t written_bytes = 0;
    107 off_t written_data = 0;
    108 off_t written_indir = 0;
    109 off_t written_dev = 0;
    110 int written_inodes = 0;
    111 
    112 /* Global variables */
    113 time_t write_time;
    114 
    115 extern u_int32_t cksum(void *, size_t);
    116 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    117 
    118 /*
    119  * Logical block number match routines used when traversing the dirty block
    120  * chain.
    121  */
    122 int
    123 lfs_match_data(struct lfs * fs, struct ubuf * bp)
    124 {
    125 	return (bp->b_lblkno >= 0);
    126 }
    127 
    128 int
    129 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    130 {
    131 	daddr_t lbn;
    132 
    133 	lbn = bp->b_lblkno;
    134 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    135 }
    136 
    137 int
    138 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    139 {
    140 	daddr_t lbn;
    141 
    142 	lbn = bp->b_lblkno;
    143 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    144 }
    145 
    146 int
    147 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    148 {
    149 	daddr_t lbn;
    150 
    151 	lbn = bp->b_lblkno;
    152 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    153 }
    154 
    155 /*
    156  * Do a checkpoint.
    157  */
    158 int
    159 lfs_segwrite(struct lfs * fs, int flags)
    160 {
    161 	struct inode *ip;
    162 	struct segment *sp;
    163 	struct uvnode *vp;
    164 	int redo;
    165 
    166 	lfs_seglock(fs, flags | SEGM_CKP);
    167 	sp = fs->lfs_sp;
    168 
    169 	lfs_writevnodes(fs, sp, VN_REG);
    170 	lfs_writevnodes(fs, sp, VN_DIROP);
    171 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    172 
    173 	do {
    174 		vp = fs->lfs_ivnode;
    175 		fs->lfs_flags &= ~LFS_IFDIRTY;
    176 		ip = VTOI(vp);
    177 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL)
    178 			lfs_writefile(fs, sp, vp);
    179 
    180 		redo = lfs_writeinode(fs, sp, ip);
    181 		redo += lfs_writeseg(fs, sp);
    182 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    183 	} while (redo);
    184 
    185 	lfs_segunlock(fs);
    186 #if 0
    187 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    188 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    189 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    190 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    191 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    192 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    193 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    194 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    195 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    196 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    197 #endif
    198 	return 0;
    199 }
    200 
    201 /*
    202  * Write the dirty blocks associated with a vnode.
    203  */
    204 void
    205 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    206 {
    207 	struct ubuf *bp;
    208 	struct finfo *fip;
    209 	struct inode *ip;
    210 	IFILE *ifp;
    211 
    212 	ip = VTOI(vp);
    213 
    214 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    215 	    sp->sum_bytes_left < sizeof(struct finfo))
    216 		(void) lfs_writeseg(fs, sp);
    217 
    218 	sp->sum_bytes_left -= FINFOSIZE;
    219 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    220 
    221 	if (vp->v_flag & VDIROP)
    222 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    223 
    224 	fip = sp->fip;
    225 	fip->fi_nblocks = 0;
    226 	fip->fi_ino = ip->i_number;
    227 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    228 	fip->fi_version = ifp->if_version;
    229 	brelse(bp);
    230 
    231 	lfs_gather(fs, sp, vp, lfs_match_data);
    232 	lfs_gather(fs, sp, vp, lfs_match_indir);
    233 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    234 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    235 
    236 	fip = sp->fip;
    237 	if (fip->fi_nblocks != 0) {
    238 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    239 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    240 		sp->start_lbp = &sp->fip->fi_blocks[0];
    241 	} else {
    242 		sp->sum_bytes_left += FINFOSIZE;
    243 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    244 	}
    245 }
    246 
    247 int
    248 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    249 {
    250 	struct ubuf *bp, *ibp;
    251 	struct ufs1_dinode *cdp;
    252 	IFILE *ifp;
    253 	SEGUSE *sup;
    254 	daddr_t daddr;
    255 	ino_t ino;
    256 	int error, i, ndx, fsb = 0;
    257 	int redo_ifile = 0;
    258 	struct timespec ts;
    259 	int gotblk = 0;
    260 
    261 	/* Allocate a new inode block if necessary. */
    262 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    263 	    sp->ibp == NULL) {
    264 		/* Allocate a new segment if necessary. */
    265 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    266 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    267 			(void) lfs_writeseg(fs, sp);
    268 
    269 		/* Get next inode block. */
    270 		daddr = fs->lfs_offset;
    271 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    272 		sp->ibp = *sp->cbpp++ =
    273 		    getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr),
    274 		    fs->lfs_ibsize);
    275 		sp->ibp->b_flags |= B_GATHERED;
    276 		gotblk++;
    277 
    278 		/* Zero out inode numbers */
    279 		for (i = 0; i < INOPB(fs); ++i)
    280 			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    281 
    282 		++sp->start_bpp;
    283 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    284 		/* Set remaining space counters. */
    285 		sp->seg_bytes_left -= fs->lfs_ibsize;
    286 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    287 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    288 		    sp->ninodes / INOPB(fs) - 1;
    289 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    290 	}
    291 	/* Update the inode times and copy the inode onto the inode page. */
    292 	ts.tv_nsec = 0;
    293 	ts.tv_sec = write_time;
    294 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    295 	if (ip->i_number != LFS_IFILE_INUM)
    296 		LFS_ITIMES(ip, &ts, &ts, &ts);
    297 
    298 	/*
    299 	 * If this is the Ifile, and we've already written the Ifile in this
    300 	 * partial segment, just overwrite it (it's not on disk yet) and
    301 	 * continue.
    302 	 *
    303 	 * XXX we know that the bp that we get the second time around has
    304 	 * already been gathered.
    305 	 */
    306 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    307 		*(sp->idp) = *ip->i_din.ffs1_din;
    308 		ip->i_lfs_osize = ip->i_ffs1_size;
    309 		return 0;
    310 	}
    311 	bp = sp->ibp;
    312 	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    313 	*cdp = *ip->i_din.ffs1_din;
    314 
    315 	/* If all blocks are goig to disk, update the "size on disk" */
    316 	ip->i_lfs_osize = ip->i_ffs1_size;
    317 
    318 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    319 		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
    320 		    (sp->ninodes % INOPB(fs));
    321 	if (gotblk) {
    322 		LFS_LOCK_BUF(bp);
    323 		brelse(bp);
    324 	}
    325 	/* Increment inode count in segment summary block. */
    326 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    327 
    328 	/* If this page is full, set flag to allocate a new page. */
    329 	if (++sp->ninodes % INOPB(fs) == 0)
    330 		sp->ibp = NULL;
    331 
    332 	/*
    333 	 * If updating the ifile, update the super-block.  Update the disk
    334 	 * address and access times for this inode in the ifile.
    335 	 */
    336 	ino = ip->i_number;
    337 	if (ino == LFS_IFILE_INUM) {
    338 		daddr = fs->lfs_idaddr;
    339 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    340 	} else {
    341 		LFS_IENTRY(ifp, fs, ino, ibp);
    342 		daddr = ifp->if_daddr;
    343 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    344 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    345 	}
    346 
    347 	/*
    348 	 * Account the inode: it no longer belongs to its former segment,
    349 	 * though it will not belong to the new segment until that segment
    350 	 * is actually written.
    351 	 */
    352 	if (daddr != LFS_UNUSED_DADDR) {
    353 		u_int32_t oldsn = dtosn(fs, daddr);
    354 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    355 		sup->su_nbytes -= DINODE1_SIZE;
    356 		redo_ifile =
    357 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    358 		if (redo_ifile)
    359 			fs->lfs_flags |= LFS_IFDIRTY;
    360 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    361 	}
    362 	return redo_ifile;
    363 }
    364 
    365 int
    366 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    367 {
    368 	struct lfs *fs;
    369 	int version;
    370 	int j, blksinblk;
    371 
    372 	/*
    373 	 * If full, finish this segment.  We may be doing I/O, so
    374 	 * release and reacquire the splbio().
    375 	 */
    376 	fs = sp->fs;
    377 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    378 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    379 	    sp->seg_bytes_left < bp->b_bcount) {
    380 		lfs_updatemeta(sp);
    381 
    382 		version = sp->fip->fi_version;
    383 		(void) lfs_writeseg(fs, sp);
    384 
    385 		sp->fip->fi_version = version;
    386 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    387 		/* Add the current file to the segment summary. */
    388 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    389 		sp->sum_bytes_left -= FINFOSIZE;
    390 
    391 		return 1;
    392 	}
    393 	/* Insert into the buffer list, update the FINFO block. */
    394 	bp->b_flags |= B_GATHERED;
    395 	/* bp->b_flags &= ~B_DONE; */
    396 
    397 	*sp->cbpp++ = bp;
    398 	for (j = 0; j < blksinblk; j++)
    399 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    400 
    401 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    402 	sp->seg_bytes_left -= bp->b_bcount;
    403 	return 0;
    404 }
    405 
    406 int
    407 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    408 {
    409 	struct ubuf *bp, *nbp;
    410 	int count = 0;
    411 
    412 	sp->vp = vp;
    413 loop:
    414 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    415 		nbp = LIST_NEXT(bp, b_vnbufs);
    416 
    417 		assert(bp->b_flags & B_DELWRI);
    418 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    419 			continue;
    420 		}
    421 		if (lfs_gatherblock(sp, bp)) {
    422 			goto loop;
    423 		}
    424 		count++;
    425 	}
    426 
    427 	lfs_updatemeta(sp);
    428 	sp->vp = NULL;
    429 	return count;
    430 }
    431 
    432 
    433 /*
    434  * Change the given block's address to ndaddr, finding its previous
    435  * location using ufs_bmaparray().
    436  *
    437  * Account for this change in the segment table.
    438  */
    439 void
    440 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    441     ufs_daddr_t ndaddr, int size)
    442 {
    443 	SEGUSE *sup;
    444 	struct ubuf *bp;
    445 	struct indir a[NIADDR + 2], *ap;
    446 	struct inode *ip;
    447 	struct uvnode *vp;
    448 	daddr_t daddr, ooff;
    449 	int num, error;
    450 	int bb, osize, obb;
    451 
    452 	vp = sp->vp;
    453 	ip = VTOI(vp);
    454 
    455 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    456 	if (error)
    457 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    458 	if (daddr > 0)
    459 		daddr = dbtofsb(fs, daddr);
    460 
    461 	bb = fragstofsb(fs, numfrags(fs, size));
    462 	switch (num) {
    463 	case 0:
    464 		ooff = ip->i_ffs1_db[lbn];
    465 		if (ooff == UNWRITTEN)
    466 			ip->i_ffs1_blocks += bb;
    467 		else {
    468 			/* possible fragment truncation or extension */
    469 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    470 			ip->i_ffs1_blocks += (bb - obb);
    471 		}
    472 		ip->i_ffs1_db[lbn] = ndaddr;
    473 		break;
    474 	case 1:
    475 		ooff = ip->i_ffs1_ib[a[0].in_off];
    476 		if (ooff == UNWRITTEN)
    477 			ip->i_ffs1_blocks += bb;
    478 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    479 		break;
    480 	default:
    481 		ap = &a[num - 1];
    482 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    483 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    484 			    ap->in_lbn);
    485 
    486 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    487 		if (ooff == UNWRITTEN)
    488 			ip->i_ffs1_blocks += bb;
    489 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    490 		(void) VOP_BWRITE(bp);
    491 	}
    492 
    493 	/*
    494 	 * Update segment usage information, based on old size
    495 	 * and location.
    496 	 */
    497 	if (daddr > 0) {
    498 		u_int32_t oldsn = dtosn(fs, daddr);
    499 		if (lbn >= 0 && lbn < NDADDR)
    500 			osize = ip->i_lfs_fragsize[lbn];
    501 		else
    502 			osize = fs->lfs_bsize;
    503 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    504 		sup->su_nbytes -= osize;
    505 		if (!(bp->b_flags & B_GATHERED))
    506 			fs->lfs_flags |= LFS_IFDIRTY;
    507 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    508 	}
    509 	/*
    510 	 * Now that this block has a new address, and its old
    511 	 * segment no longer owns it, we can forget about its
    512 	 * old size.
    513 	 */
    514 	if (lbn >= 0 && lbn < NDADDR)
    515 		ip->i_lfs_fragsize[lbn] = size;
    516 }
    517 
    518 /*
    519  * Update the metadata that points to the blocks listed in the FINFO
    520  * array.
    521  */
    522 void
    523 lfs_updatemeta(struct segment * sp)
    524 {
    525 	struct ubuf *sbp;
    526 	struct lfs *fs;
    527 	struct uvnode *vp;
    528 	daddr_t lbn;
    529 	int i, nblocks, num;
    530 	int bb;
    531 	int bytesleft, size;
    532 
    533 	vp = sp->vp;
    534 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    535 
    536 	if (vp == NULL || nblocks == 0)
    537 		return;
    538 
    539 	/*
    540 	 * This count may be high due to oversize blocks from lfs_gop_write.
    541 	 * Correct for this. (XXX we should be able to keep track of these.)
    542 	 */
    543 	fs = sp->fs;
    544 	for (i = 0; i < nblocks; i++) {
    545 		if (sp->start_bpp[i] == NULL) {
    546 			printf("nblocks = %d, not %d\n", i, nblocks);
    547 			nblocks = i;
    548 			break;
    549 		}
    550 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    551 		nblocks -= num - 1;
    552 	}
    553 
    554 	/*
    555 	 * Sort the blocks.
    556 	 */
    557 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    558 
    559 	/*
    560 	 * Record the length of the last block in case it's a fragment.
    561 	 * If there are indirect blocks present, they sort last.  An
    562 	 * indirect block will be lfs_bsize and its presence indicates
    563 	 * that you cannot have fragments.
    564 	 */
    565 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    566 	    fs->lfs_bmask) + 1;
    567 
    568 	/*
    569 	 * Assign disk addresses, and update references to the logical
    570 	 * block and the segment usage information.
    571 	 */
    572 	for (i = nblocks; i--; ++sp->start_bpp) {
    573 		sbp = *sp->start_bpp;
    574 		lbn = *sp->start_lbp;
    575 
    576 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    577 
    578 		/*
    579 		 * If we write a frag in the wrong place, the cleaner won't
    580 		 * be able to correctly identify its size later, and the
    581 		 * segment will be uncleanable.	 (Even worse, it will assume
    582 		 * that the indirect block that actually ends the list
    583 		 * is of a smaller size!)
    584 		 */
    585 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    586 			errx(1, "lfs_updatemeta: fragment is not last block");
    587 
    588 		/*
    589 		 * For each subblock in this possibly oversized block,
    590 		 * update its address on disk.
    591 		 */
    592 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    593 		    bytesleft -= fs->lfs_bsize) {
    594 			size = MIN(bytesleft, fs->lfs_bsize);
    595 			bb = fragstofsb(fs, numfrags(fs, size));
    596 			lbn = *sp->start_lbp++;
    597 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    598 			fs->lfs_offset += bb;
    599 		}
    600 
    601 	}
    602 }
    603 
    604 /*
    605  * Start a new segment.
    606  */
    607 int
    608 lfs_initseg(struct lfs * fs)
    609 {
    610 	struct segment *sp;
    611 	SEGUSE *sup;
    612 	SEGSUM *ssp;
    613 	struct ubuf *bp, *sbp;
    614 	int repeat;
    615 
    616 	sp = fs->lfs_sp;
    617 
    618 	repeat = 0;
    619 
    620 	/* Advance to the next segment. */
    621 	if (!LFS_PARTIAL_FITS(fs)) {
    622 		/* lfs_avail eats the remaining space */
    623 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    624 		    fs->lfs_curseg);
    625 		lfs_newseg(fs);
    626 		repeat = 1;
    627 		fs->lfs_offset = fs->lfs_curseg;
    628 
    629 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    630 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    631 
    632 		/*
    633 		 * If the segment contains a superblock, update the offset
    634 		 * and summary address to skip over it.
    635 		 */
    636 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    637 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    638 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    639 			sp->seg_bytes_left -= LFS_SBPAD;
    640 		}
    641 		brelse(bp);
    642 		/* Segment zero could also contain the labelpad */
    643 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    644 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    645 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    646 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    647 		}
    648 	} else {
    649 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    650 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    651 		    (fs->lfs_offset - fs->lfs_curseg));
    652 	}
    653 	fs->lfs_lastpseg = fs->lfs_offset;
    654 
    655 	sp->fs = fs;
    656 	sp->ibp = NULL;
    657 	sp->idp = NULL;
    658 	sp->ninodes = 0;
    659 	sp->ndupino = 0;
    660 
    661 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    662 	sp->cbpp = sp->bpp;
    663 	sbp = *sp->cbpp = getblk(fs->lfs_unlockvp,
    664 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    665 	sp->segsum = sbp->b_data;
    666 	memset(sp->segsum, 0, fs->lfs_sumsize);
    667 	sp->start_bpp = ++sp->cbpp;
    668 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    669 
    670 	/* Set point to SEGSUM, initialize it. */
    671 	ssp = sp->segsum;
    672 	ssp->ss_next = fs->lfs_nextseg;
    673 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    674 	ssp->ss_magic = SS_MAGIC;
    675 
    676 	/* Set pointer to first FINFO, initialize it. */
    677 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    678 	sp->fip->fi_nblocks = 0;
    679 	sp->start_lbp = &sp->fip->fi_blocks[0];
    680 	sp->fip->fi_lastlength = 0;
    681 
    682 	sp->seg_bytes_left -= fs->lfs_sumsize;
    683 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    684 
    685 	LFS_LOCK_BUF(sbp);
    686 	brelse(sbp);
    687 	return repeat;
    688 }
    689 
    690 /*
    691  * Return the next segment to write.
    692  */
    693 void
    694 lfs_newseg(struct lfs * fs)
    695 {
    696 	CLEANERINFO *cip;
    697 	SEGUSE *sup;
    698 	struct ubuf *bp;
    699 	int curseg, isdirty, sn;
    700 
    701 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    702 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    703 	sup->su_nbytes = 0;
    704 	sup->su_nsums = 0;
    705 	sup->su_ninos = 0;
    706 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    707 
    708 	LFS_CLEANERINFO(cip, fs, bp);
    709 	--cip->clean;
    710 	++cip->dirty;
    711 	fs->lfs_nclean = cip->clean;
    712 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    713 
    714 	fs->lfs_lastseg = fs->lfs_curseg;
    715 	fs->lfs_curseg = fs->lfs_nextseg;
    716 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    717 		sn = (sn + 1) % fs->lfs_nseg;
    718 		if (sn == curseg)
    719 			errx(1, "lfs_nextseg: no clean segments");
    720 		LFS_SEGENTRY(sup, fs, sn, bp);
    721 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    722 		brelse(bp);
    723 
    724 		if (!isdirty)
    725 			break;
    726 	}
    727 
    728 	++fs->lfs_nactive;
    729 	fs->lfs_nextseg = sntod(fs, sn);
    730 }
    731 
    732 
    733 int
    734 lfs_writeseg(struct lfs * fs, struct segment * sp)
    735 {
    736 	struct ubuf **bpp, *bp;
    737 	SEGUSE *sup;
    738 	SEGSUM *ssp;
    739 	char *datap, *dp;
    740 	int i;
    741 	int do_again, nblocks, byteoffset;
    742 	size_t el_size;
    743 	u_short ninos;
    744 	struct uvnode *devvp;
    745 
    746 	/*
    747 	 * If there are no buffers other than the segment summary to write
    748 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    749 	 * even if there aren't any buffers, you need to write the superblock.
    750 	 */
    751 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    752 		return 0;
    753 
    754 	devvp = fs->lfs_unlockvp;
    755 
    756 	/* Update the segment usage information. */
    757 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    758 
    759 	/* Loop through all blocks, except the segment summary. */
    760 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    761 		if ((*bpp)->b_vp != devvp) {
    762 			sup->su_nbytes += (*bpp)->b_bcount;
    763 		}
    764 	}
    765 
    766 	ssp = (SEGSUM *) sp->segsum;
    767 
    768 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    769 	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
    770 
    771 	if (fs->lfs_version == 1)
    772 		sup->su_olastmod = write_time;
    773 	else
    774 		sup->su_lastmod = write_time;
    775 	sup->su_ninos += ninos;
    776 	++sup->su_nsums;
    777 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    778 		fs->lfs_ibsize));
    779 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    780 
    781 	do_again = !(bp->b_flags & B_GATHERED);
    782 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    783 
    784 	/*
    785 	 * Compute checksum across data and then across summary; the first
    786 	 * block (the summary block) is skipped.  Set the create time here
    787 	 * so that it's guaranteed to be later than the inode mod times.
    788 	 */
    789 	if (fs->lfs_version == 1)
    790 		el_size = sizeof(u_long);
    791 	else
    792 		el_size = sizeof(u_int32_t);
    793 	datap = dp = malloc(nblocks * el_size);
    794 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    795 		++bpp;
    796 		/* Loop through gop_write cluster blocks */
    797 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    798 		    byteoffset += fs->lfs_bsize) {
    799 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    800 			dp += el_size;
    801 		}
    802 		bremfree(*bpp);
    803 		(*bpp)->b_flags |= B_BUSY;
    804 	}
    805 	if (fs->lfs_version == 1)
    806 		ssp->ss_ocreate = write_time;
    807 	else {
    808 		ssp->ss_create = write_time;
    809 		ssp->ss_serial = ++fs->lfs_serial;
    810 		ssp->ss_ident = fs->lfs_ident;
    811 	}
    812 	/* Set the summary block busy too */
    813 	bremfree(*(sp->bpp));
    814 	(*(sp->bpp))->b_flags |= B_BUSY;
    815 
    816 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    817 	ssp->ss_sumsum =
    818 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    819 	free(datap);
    820 	datap = dp = NULL;
    821 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    822 	    btofsb(fs, fs->lfs_sumsize));
    823 
    824 	if (devvp == NULL)
    825 		errx(1, "devvp is NULL");
    826 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    827 		bp = *bpp;
    828 #if 0
    829 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    830 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    831 		printf("  vp = %p\n", bp->b_vp);
    832 		if (bp->b_vp != fs->lfs_unlockvp)
    833 			printf("  ino = %d lbn = %" PRId64 "\n",
    834 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    835 #endif
    836 		if (bp->b_vp == fs->lfs_unlockvp)
    837 			written_dev += bp->b_bcount;
    838 		else {
    839 			if (bp->b_lblkno >= 0)
    840 				written_data += bp->b_bcount;
    841 			else
    842 				written_indir += bp->b_bcount;
    843 		}
    844 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    845 				 B_LOCKED);
    846 		bwrite(bp);
    847 		written_bytes += bp->b_bcount;
    848 	}
    849 	written_inodes += ninos;
    850 
    851 	return (lfs_initseg(fs) || do_again);
    852 }
    853 
    854 /*
    855  * Our own copy of shellsort.  XXX use qsort or heapsort.
    856  */
    857 void
    858 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    859 {
    860 	static int __rsshell_increments[] = {4, 1, 0};
    861 	int incr, *incrp, t1, t2;
    862 	struct ubuf *bp_temp;
    863 
    864 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    865 		for (t1 = incr; t1 < nmemb; ++t1)
    866 			for (t2 = t1 - incr; t2 >= 0;)
    867 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    868 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    869 					bp_temp = bp_array[t2];
    870 					bp_array[t2] = bp_array[t2 + incr];
    871 					bp_array[t2 + incr] = bp_temp;
    872 					t2 -= incr;
    873 				} else
    874 					break;
    875 
    876 	/* Reform the list of logical blocks */
    877 	incr = 0;
    878 	for (t1 = 0; t1 < nmemb; t1++) {
    879 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    880 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    881 		}
    882 	}
    883 }
    884 
    885 
    886 /*
    887  * lfs_seglock --
    888  *	Single thread the segment writer.
    889  */
    890 int
    891 lfs_seglock(struct lfs * fs, unsigned long flags)
    892 {
    893 	struct segment *sp;
    894 
    895 	if (fs->lfs_seglock) {
    896 		++fs->lfs_seglock;
    897 		fs->lfs_sp->seg_flags |= flags;
    898 		return 0;
    899 	}
    900 	fs->lfs_seglock = 1;
    901 
    902 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    903 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    904 	if (!sp->bpp)
    905 		errx(1, "Could not allocate %zu bytes: %s",
    906 			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
    907 			strerror(errno));
    908 	sp->seg_flags = flags;
    909 	sp->vp = NULL;
    910 	sp->seg_iocount = 0;
    911 	(void) lfs_initseg(fs);
    912 
    913 	return 0;
    914 }
    915 
    916 /*
    917  * lfs_segunlock --
    918  *	Single thread the segment writer.
    919  */
    920 void
    921 lfs_segunlock(struct lfs * fs)
    922 {
    923 	struct segment *sp;
    924 	struct ubuf *bp;
    925 
    926 	sp = fs->lfs_sp;
    927 
    928 	if (fs->lfs_seglock == 1) {
    929 		if (sp->bpp != sp->cbpp) {
    930 			/* Free allocated segment summary */
    931 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    932 			bp = *sp->bpp;
    933 			bremfree(bp);
    934 			bp->b_flags |= B_DONE | B_INVAL;
    935 			bp->b_flags &= ~B_DELWRI;
    936 			reassignbuf(bp, bp->b_vp);
    937 			bp->b_flags |= B_BUSY; /* XXX */
    938 			brelse(bp);
    939 		} else
    940 			printf("unlock to 0 with no summary");
    941 
    942 		free(sp->bpp);
    943 		sp->bpp = NULL;
    944 		free(sp);
    945 		fs->lfs_sp = NULL;
    946 
    947 		fs->lfs_nactive = 0;
    948 
    949 		/* Since we *know* everything's on disk, write both sbs */
    950 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    951 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    952 
    953 		--fs->lfs_seglock;
    954 		fs->lfs_lockpid = 0;
    955 	} else if (fs->lfs_seglock == 0) {
    956 		errx(1, "Seglock not held");
    957 	} else {
    958 		--fs->lfs_seglock;
    959 	}
    960 }
    961 
    962 int
    963 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    964 {
    965 	struct inode *ip;
    966 	struct uvnode *vp;
    967 	int inodes_written = 0;
    968 
    969 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    970 		if (vp->v_bmap_op != lfs_vop_bmap)
    971 			continue;
    972 
    973 		ip = VTOI(vp);
    974 
    975 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    976 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    977 			continue;
    978 		}
    979 		/*
    980 		 * Write the inode/file if dirty and it's not the IFILE.
    981 		 */
    982 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    983 			if (ip->i_number != LFS_IFILE_INUM)
    984 				lfs_writefile(fs, sp, vp);
    985 			(void) lfs_writeinode(fs, sp, ip);
    986 			inodes_written++;
    987 		}
    988 	}
    989 	return inodes_written;
    990 }
    991 
    992 void
    993 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
    994 {
    995 	struct ubuf *bp;
    996 
    997 	/* Set timestamp of this version of the superblock */
    998 	if (fs->lfs_version == 1)
    999 		fs->lfs_otstamp = write_time;
   1000 	fs->lfs_tstamp = write_time;
   1001 
   1002 	/* Checksum the superblock and copy it into a buffer. */
   1003 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1004 	assert(daddr > 0);
   1005 	bp = getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1006 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1007 	    LFS_SBPAD - sizeof(struct dlfs));
   1008 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1009 
   1010 	bwrite(bp);
   1011 }
   1012