Home | History | Annotate | Line # | Download | only in fsck_lfs
segwrite.c revision 1.7
      1 /* $NetBSD: segwrite.c,v 1.7 2005/02/26 05:45:54 perseant Exp $ */
      2 /*-
      3  * Copyright (c) 2003 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the NetBSD
     20  *	Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 /*
     38  * Copyright (c) 1991, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
     66  */
     67 
     68 /*
     69  * Partial segment writer, taken from the kernel and adapted for userland.
     70  */
     71 #include <sys/types.h>
     72 #include <sys/param.h>
     73 #include <sys/time.h>
     74 #include <sys/buf.h>
     75 #include <sys/mount.h>
     76 
     77 #include <ufs/ufs/inode.h>
     78 #include <ufs/ufs/ufsmount.h>
     79 
     80 /* Override certain things to make <ufs/lfs/lfs.h> work */
     81 #undef simple_lock
     82 #define simple_lock(x)
     83 #undef simple_unlock
     84 #define simple_unlock(x)
     85 #define vnode uvnode
     86 #define buf ubuf
     87 #define panic call_panic
     88 
     89 #include <ufs/lfs/lfs.h>
     90 
     91 #include <assert.h>
     92 #include <stdio.h>
     93 #include <stdlib.h>
     94 #include <string.h>
     95 #include <err.h>
     96 #include <errno.h>
     97 
     98 #include "bufcache.h"
     99 #include "vnode.h"
    100 #include "lfs.h"
    101 #include "segwrite.h"
    102 
    103 /* Compatibility definitions */
    104 extern off_t locked_queue_bytes;
    105 int locked_queue_count;
    106 off_t written_bytes = 0;
    107 off_t written_data = 0;
    108 off_t written_indir = 0;
    109 off_t written_dev = 0;
    110 int written_inodes = 0;
    111 
    112 /* Global variables */
    113 time_t write_time;
    114 
    115 extern u_int32_t cksum(void *, size_t);
    116 extern u_int32_t lfs_sb_cksum(struct dlfs *);
    117 extern int preen;
    118 
    119 /*
    120  * Logical block number match routines used when traversing the dirty block
    121  * chain.
    122  */
    123 int
    124 lfs_match_data(struct lfs * fs, struct ubuf * bp)
    125 {
    126 	return (bp->b_lblkno >= 0);
    127 }
    128 
    129 int
    130 lfs_match_indir(struct lfs * fs, struct ubuf * bp)
    131 {
    132 	daddr_t lbn;
    133 
    134 	lbn = bp->b_lblkno;
    135 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
    136 }
    137 
    138 int
    139 lfs_match_dindir(struct lfs * fs, struct ubuf * bp)
    140 {
    141 	daddr_t lbn;
    142 
    143 	lbn = bp->b_lblkno;
    144 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
    145 }
    146 
    147 int
    148 lfs_match_tindir(struct lfs * fs, struct ubuf * bp)
    149 {
    150 	daddr_t lbn;
    151 
    152 	lbn = bp->b_lblkno;
    153 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
    154 }
    155 
    156 /*
    157  * Do a checkpoint.
    158  */
    159 int
    160 lfs_segwrite(struct lfs * fs, int flags)
    161 {
    162 	struct inode *ip;
    163 	struct segment *sp;
    164 	struct uvnode *vp;
    165 	int redo;
    166 
    167 	lfs_seglock(fs, flags | SEGM_CKP);
    168 	sp = fs->lfs_sp;
    169 
    170 	lfs_writevnodes(fs, sp, VN_REG);
    171 	lfs_writevnodes(fs, sp, VN_DIROP);
    172 	((SEGSUM *) (sp->segsum))->ss_flags &= ~(SS_CONT);
    173 
    174 	do {
    175 		vp = fs->lfs_ivnode;
    176 		fs->lfs_flags &= ~LFS_IFDIRTY;
    177 		ip = VTOI(vp);
    178 		if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL || fs->lfs_idaddr <= 0)
    179 			lfs_writefile(fs, sp, vp);
    180 
    181 		redo = lfs_writeinode(fs, sp, ip);
    182 		redo += lfs_writeseg(fs, sp);
    183 		redo += (fs->lfs_flags & LFS_IFDIRTY);
    184 	} while (redo);
    185 
    186 	lfs_segunlock(fs);
    187 #if 0
    188 	printf("wrote %" PRId64 " bytes (%" PRId32 " fsb)\n",
    189 		written_bytes, (ufs_daddr_t)btofsb(fs, written_bytes));
    190 	printf("wrote %" PRId64 " bytes data (%" PRId32 " fsb)\n",
    191 		written_data, (ufs_daddr_t)btofsb(fs, written_data));
    192 	printf("wrote %" PRId64 " bytes indir (%" PRId32 " fsb)\n",
    193 		written_indir, (ufs_daddr_t)btofsb(fs, written_indir));
    194 	printf("wrote %" PRId64 " bytes dev (%" PRId32 " fsb)\n",
    195 		written_dev, (ufs_daddr_t)btofsb(fs, written_dev));
    196 	printf("wrote %d inodes (%" PRId32 " fsb)\n",
    197 		written_inodes, btofsb(fs, written_inodes * fs->lfs_ibsize));
    198 #endif
    199 	return 0;
    200 }
    201 
    202 /*
    203  * Write the dirty blocks associated with a vnode.
    204  */
    205 void
    206 lfs_writefile(struct lfs * fs, struct segment * sp, struct uvnode * vp)
    207 {
    208 	struct ubuf *bp;
    209 	struct finfo *fip;
    210 	struct inode *ip;
    211 	IFILE *ifp;
    212 
    213 	ip = VTOI(vp);
    214 
    215 	if (sp->seg_bytes_left < fs->lfs_bsize ||
    216 	    sp->sum_bytes_left < sizeof(struct finfo))
    217 		(void) lfs_writeseg(fs, sp);
    218 
    219 	sp->sum_bytes_left -= FINFOSIZE;
    220 	++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    221 
    222 	if (vp->v_flag & VDIROP)
    223 		((SEGSUM *) (sp->segsum))->ss_flags |= (SS_DIROP | SS_CONT);
    224 
    225 	fip = sp->fip;
    226 	fip->fi_nblocks = 0;
    227 	fip->fi_ino = ip->i_number;
    228 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
    229 	fip->fi_version = ifp->if_version;
    230 	brelse(bp);
    231 
    232 	lfs_gather(fs, sp, vp, lfs_match_data);
    233 	lfs_gather(fs, sp, vp, lfs_match_indir);
    234 	lfs_gather(fs, sp, vp, lfs_match_dindir);
    235 	lfs_gather(fs, sp, vp, lfs_match_tindir);
    236 
    237 	fip = sp->fip;
    238 	if (fip->fi_nblocks != 0) {
    239 		sp->fip = (FINFO *) ((caddr_t) fip + FINFOSIZE +
    240 		    sizeof(ufs_daddr_t) * (fip->fi_nblocks));
    241 		sp->start_lbp = &sp->fip->fi_blocks[0];
    242 	} else {
    243 		sp->sum_bytes_left += FINFOSIZE;
    244 		--((SEGSUM *) (sp->segsum))->ss_nfinfo;
    245 	}
    246 }
    247 
    248 int
    249 lfs_writeinode(struct lfs * fs, struct segment * sp, struct inode * ip)
    250 {
    251 	struct ubuf *bp, *ibp;
    252 	struct ufs1_dinode *cdp;
    253 	IFILE *ifp;
    254 	SEGUSE *sup;
    255 	daddr_t daddr;
    256 	ino_t ino;
    257 	int error, i, ndx, fsb = 0;
    258 	int redo_ifile = 0;
    259 	struct timespec ts;
    260 	int gotblk = 0;
    261 
    262 	/* Allocate a new inode block if necessary. */
    263 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
    264 	    sp->ibp == NULL) {
    265 		/* Allocate a new segment if necessary. */
    266 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
    267 		    sp->sum_bytes_left < sizeof(ufs_daddr_t))
    268 			(void) lfs_writeseg(fs, sp);
    269 
    270 		/* Get next inode block. */
    271 		daddr = fs->lfs_offset;
    272 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
    273 		sp->ibp = *sp->cbpp++ =
    274 		    getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr),
    275 		    fs->lfs_ibsize);
    276 		sp->ibp->b_flags |= B_GATHERED;
    277 		gotblk++;
    278 
    279 		/* Zero out inode numbers */
    280 		for (i = 0; i < INOPB(fs); ++i)
    281 			((struct ufs1_dinode *) sp->ibp->b_data)[i].di_inumber = 0;
    282 
    283 		++sp->start_bpp;
    284 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
    285 		/* Set remaining space counters. */
    286 		sp->seg_bytes_left -= fs->lfs_ibsize;
    287 		sp->sum_bytes_left -= sizeof(ufs_daddr_t);
    288 		ndx = fs->lfs_sumsize / sizeof(ufs_daddr_t) -
    289 		    sp->ninodes / INOPB(fs) - 1;
    290 		((ufs_daddr_t *) (sp->segsum))[ndx] = daddr;
    291 	}
    292 	/* Update the inode times and copy the inode onto the inode page. */
    293 	ts.tv_nsec = 0;
    294 	ts.tv_sec = write_time;
    295 	/* XXX kludge --- don't redirty the ifile just to put times on it */
    296 	if (ip->i_number != LFS_IFILE_INUM)
    297 		LFS_ITIMES(ip, &ts, &ts, &ts);
    298 
    299 	/*
    300 	 * If this is the Ifile, and we've already written the Ifile in this
    301 	 * partial segment, just overwrite it (it's not on disk yet) and
    302 	 * continue.
    303 	 *
    304 	 * XXX we know that the bp that we get the second time around has
    305 	 * already been gathered.
    306 	 */
    307 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
    308 		*(sp->idp) = *ip->i_din.ffs1_din;
    309 		ip->i_lfs_osize = ip->i_ffs1_size;
    310 		return 0;
    311 	}
    312 	bp = sp->ibp;
    313 	cdp = ((struct ufs1_dinode *) bp->b_data) + (sp->ninodes % INOPB(fs));
    314 	*cdp = *ip->i_din.ffs1_din;
    315 
    316 	/* If all blocks are goig to disk, update the "size on disk" */
    317 	ip->i_lfs_osize = ip->i_ffs1_size;
    318 
    319 	if (ip->i_number == LFS_IFILE_INUM)	/* We know sp->idp == NULL */
    320 		sp->idp = ((struct ufs1_dinode *) bp->b_data) +
    321 		    (sp->ninodes % INOPB(fs));
    322 	if (gotblk) {
    323 		LFS_LOCK_BUF(bp);
    324 		brelse(bp);
    325 	}
    326 	/* Increment inode count in segment summary block. */
    327 	++((SEGSUM *) (sp->segsum))->ss_ninos;
    328 
    329 	/* If this page is full, set flag to allocate a new page. */
    330 	if (++sp->ninodes % INOPB(fs) == 0)
    331 		sp->ibp = NULL;
    332 
    333 	/*
    334 	 * If updating the ifile, update the super-block.  Update the disk
    335 	 * address and access times for this inode in the ifile.
    336 	 */
    337 	ino = ip->i_number;
    338 	if (ino == LFS_IFILE_INUM) {
    339 		daddr = fs->lfs_idaddr;
    340 		fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno);
    341 	} else {
    342 		LFS_IENTRY(ifp, fs, ino, ibp);
    343 		daddr = ifp->if_daddr;
    344 		ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb;
    345 		error = LFS_BWRITE_LOG(ibp);	/* Ifile */
    346 	}
    347 
    348 	/*
    349 	 * Account the inode: it no longer belongs to its former segment,
    350 	 * though it will not belong to the new segment until that segment
    351 	 * is actually written.
    352 	 */
    353 	if (daddr != LFS_UNUSED_DADDR) {
    354 		u_int32_t oldsn = dtosn(fs, daddr);
    355 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    356 		sup->su_nbytes -= DINODE1_SIZE;
    357 		redo_ifile =
    358 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
    359 		if (redo_ifile)
    360 			fs->lfs_flags |= LFS_IFDIRTY;
    361 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);	/* Ifile */
    362 	}
    363 	return redo_ifile;
    364 }
    365 
    366 int
    367 lfs_gatherblock(struct segment * sp, struct ubuf * bp)
    368 {
    369 	struct lfs *fs;
    370 	int version;
    371 	int j, blksinblk;
    372 
    373 	/*
    374 	 * If full, finish this segment.  We may be doing I/O, so
    375 	 * release and reacquire the splbio().
    376 	 */
    377 	fs = sp->fs;
    378 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
    379 	if (sp->sum_bytes_left < sizeof(ufs_daddr_t) * blksinblk ||
    380 	    sp->seg_bytes_left < bp->b_bcount) {
    381 		lfs_updatemeta(sp);
    382 
    383 		version = sp->fip->fi_version;
    384 		(void) lfs_writeseg(fs, sp);
    385 
    386 		sp->fip->fi_version = version;
    387 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
    388 		/* Add the current file to the segment summary. */
    389 		++((SEGSUM *) (sp->segsum))->ss_nfinfo;
    390 		sp->sum_bytes_left -= FINFOSIZE;
    391 
    392 		return 1;
    393 	}
    394 	/* Insert into the buffer list, update the FINFO block. */
    395 	bp->b_flags |= B_GATHERED;
    396 	/* bp->b_flags &= ~B_DONE; */
    397 
    398 	*sp->cbpp++ = bp;
    399 	for (j = 0; j < blksinblk; j++)
    400 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
    401 
    402 	sp->sum_bytes_left -= sizeof(ufs_daddr_t) * blksinblk;
    403 	sp->seg_bytes_left -= bp->b_bcount;
    404 	return 0;
    405 }
    406 
    407 int
    408 lfs_gather(struct lfs * fs, struct segment * sp, struct uvnode * vp, int (*match) (struct lfs *, struct ubuf *))
    409 {
    410 	struct ubuf *bp, *nbp;
    411 	int count = 0;
    412 
    413 	sp->vp = vp;
    414 loop:
    415 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
    416 		nbp = LIST_NEXT(bp, b_vnbufs);
    417 
    418 		assert(bp->b_flags & B_DELWRI);
    419 		if ((bp->b_flags & (B_BUSY | B_GATHERED)) || !match(fs, bp)) {
    420 			continue;
    421 		}
    422 		if (lfs_gatherblock(sp, bp)) {
    423 			goto loop;
    424 		}
    425 		count++;
    426 	}
    427 
    428 	lfs_updatemeta(sp);
    429 	sp->vp = NULL;
    430 	return count;
    431 }
    432 
    433 
    434 /*
    435  * Change the given block's address to ndaddr, finding its previous
    436  * location using ufs_bmaparray().
    437  *
    438  * Account for this change in the segment table.
    439  */
    440 void
    441 lfs_update_single(struct lfs * fs, struct segment * sp, daddr_t lbn,
    442     ufs_daddr_t ndaddr, int size)
    443 {
    444 	SEGUSE *sup;
    445 	struct ubuf *bp;
    446 	struct indir a[NIADDR + 2], *ap;
    447 	struct inode *ip;
    448 	struct uvnode *vp;
    449 	daddr_t daddr, ooff;
    450 	int num, error;
    451 	int bb, osize, obb;
    452 
    453 	vp = sp->vp;
    454 	ip = VTOI(vp);
    455 
    456 	error = ufs_bmaparray(fs, vp, lbn, &daddr, a, &num);
    457 	if (error)
    458 		errx(1, "lfs_updatemeta: ufs_bmaparray returned %d looking up lbn %" PRId64 "\n", error, lbn);
    459 	if (daddr > 0)
    460 		daddr = dbtofsb(fs, daddr);
    461 
    462 	bb = fragstofsb(fs, numfrags(fs, size));
    463 	switch (num) {
    464 	case 0:
    465 		ooff = ip->i_ffs1_db[lbn];
    466 		if (ooff == UNWRITTEN)
    467 			ip->i_ffs1_blocks += bb;
    468 		else {
    469 			/* possible fragment truncation or extension */
    470 			obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
    471 			ip->i_ffs1_blocks += (bb - obb);
    472 		}
    473 		ip->i_ffs1_db[lbn] = ndaddr;
    474 		break;
    475 	case 1:
    476 		ooff = ip->i_ffs1_ib[a[0].in_off];
    477 		if (ooff == UNWRITTEN)
    478 			ip->i_ffs1_blocks += bb;
    479 		ip->i_ffs1_ib[a[0].in_off] = ndaddr;
    480 		break;
    481 	default:
    482 		ap = &a[num - 1];
    483 		if (bread(vp, ap->in_lbn, fs->lfs_bsize, NULL, &bp))
    484 			errx(1, "lfs_updatemeta: bread bno %" PRId64,
    485 			    ap->in_lbn);
    486 
    487 		ooff = ((ufs_daddr_t *) bp->b_data)[ap->in_off];
    488 		if (ooff == UNWRITTEN)
    489 			ip->i_ffs1_blocks += bb;
    490 		((ufs_daddr_t *) bp->b_data)[ap->in_off] = ndaddr;
    491 		(void) VOP_BWRITE(bp);
    492 	}
    493 
    494 	/*
    495 	 * Update segment usage information, based on old size
    496 	 * and location.
    497 	 */
    498 	if (daddr > 0) {
    499 		u_int32_t oldsn = dtosn(fs, daddr);
    500 		if (lbn >= 0 && lbn < NDADDR)
    501 			osize = ip->i_lfs_fragsize[lbn];
    502 		else
    503 			osize = fs->lfs_bsize;
    504 		LFS_SEGENTRY(sup, fs, oldsn, bp);
    505 		sup->su_nbytes -= osize;
    506 		if (!(bp->b_flags & B_GATHERED))
    507 			fs->lfs_flags |= LFS_IFDIRTY;
    508 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
    509 	}
    510 	/*
    511 	 * Now that this block has a new address, and its old
    512 	 * segment no longer owns it, we can forget about its
    513 	 * old size.
    514 	 */
    515 	if (lbn >= 0 && lbn < NDADDR)
    516 		ip->i_lfs_fragsize[lbn] = size;
    517 }
    518 
    519 /*
    520  * Update the metadata that points to the blocks listed in the FINFO
    521  * array.
    522  */
    523 void
    524 lfs_updatemeta(struct segment * sp)
    525 {
    526 	struct ubuf *sbp;
    527 	struct lfs *fs;
    528 	struct uvnode *vp;
    529 	daddr_t lbn;
    530 	int i, nblocks, num;
    531 	int bb;
    532 	int bytesleft, size;
    533 
    534 	vp = sp->vp;
    535 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
    536 
    537 	if (vp == NULL || nblocks == 0)
    538 		return;
    539 
    540 	/*
    541 	 * This count may be high due to oversize blocks from lfs_gop_write.
    542 	 * Correct for this. (XXX we should be able to keep track of these.)
    543 	 */
    544 	fs = sp->fs;
    545 	for (i = 0; i < nblocks; i++) {
    546 		if (sp->start_bpp[i] == NULL) {
    547 			printf("nblocks = %d, not %d\n", i, nblocks);
    548 			nblocks = i;
    549 			break;
    550 		}
    551 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
    552 		nblocks -= num - 1;
    553 	}
    554 
    555 	/*
    556 	 * Sort the blocks.
    557 	 */
    558 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
    559 
    560 	/*
    561 	 * Record the length of the last block in case it's a fragment.
    562 	 * If there are indirect blocks present, they sort last.  An
    563 	 * indirect block will be lfs_bsize and its presence indicates
    564 	 * that you cannot have fragments.
    565 	 */
    566 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
    567 	    fs->lfs_bmask) + 1;
    568 
    569 	/*
    570 	 * Assign disk addresses, and update references to the logical
    571 	 * block and the segment usage information.
    572 	 */
    573 	for (i = nblocks; i--; ++sp->start_bpp) {
    574 		sbp = *sp->start_bpp;
    575 		lbn = *sp->start_lbp;
    576 
    577 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
    578 
    579 		/*
    580 		 * If we write a frag in the wrong place, the cleaner won't
    581 		 * be able to correctly identify its size later, and the
    582 		 * segment will be uncleanable.	 (Even worse, it will assume
    583 		 * that the indirect block that actually ends the list
    584 		 * is of a smaller size!)
    585 		 */
    586 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
    587 			errx(1, "lfs_updatemeta: fragment is not last block");
    588 
    589 		/*
    590 		 * For each subblock in this possibly oversized block,
    591 		 * update its address on disk.
    592 		 */
    593 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
    594 		    bytesleft -= fs->lfs_bsize) {
    595 			size = MIN(bytesleft, fs->lfs_bsize);
    596 			bb = fragstofsb(fs, numfrags(fs, size));
    597 			lbn = *sp->start_lbp++;
    598 			lfs_update_single(fs, sp, lbn, fs->lfs_offset, size);
    599 			fs->lfs_offset += bb;
    600 		}
    601 
    602 	}
    603 }
    604 
    605 /*
    606  * Start a new segment.
    607  */
    608 int
    609 lfs_initseg(struct lfs * fs)
    610 {
    611 	struct segment *sp;
    612 	SEGUSE *sup;
    613 	SEGSUM *ssp;
    614 	struct ubuf *bp, *sbp;
    615 	int repeat;
    616 
    617 	sp = fs->lfs_sp;
    618 
    619 	repeat = 0;
    620 
    621 	/* Advance to the next segment. */
    622 	if (!LFS_PARTIAL_FITS(fs)) {
    623 		/* lfs_avail eats the remaining space */
    624 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
    625 		    fs->lfs_curseg);
    626 		lfs_newseg(fs);
    627 		repeat = 1;
    628 		fs->lfs_offset = fs->lfs_curseg;
    629 
    630 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    631 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
    632 
    633 		/*
    634 		 * If the segment contains a superblock, update the offset
    635 		 * and summary address to skip over it.
    636 		 */
    637 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    638 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
    639 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
    640 			sp->seg_bytes_left -= LFS_SBPAD;
    641 		}
    642 		brelse(bp);
    643 		/* Segment zero could also contain the labelpad */
    644 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
    645 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
    646 			fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    647 			sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
    648 		}
    649 	} else {
    650 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
    651 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
    652 		    (fs->lfs_offset - fs->lfs_curseg));
    653 	}
    654 	fs->lfs_lastpseg = fs->lfs_offset;
    655 
    656 	sp->fs = fs;
    657 	sp->ibp = NULL;
    658 	sp->idp = NULL;
    659 	sp->ninodes = 0;
    660 	sp->ndupino = 0;
    661 
    662 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
    663 	sp->cbpp = sp->bpp;
    664 	sbp = *sp->cbpp = getblk(fs->lfs_unlockvp,
    665 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize);
    666 	sp->segsum = sbp->b_data;
    667 	memset(sp->segsum, 0, fs->lfs_sumsize);
    668 	sp->start_bpp = ++sp->cbpp;
    669 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
    670 
    671 	/* Set point to SEGSUM, initialize it. */
    672 	ssp = sp->segsum;
    673 	ssp->ss_next = fs->lfs_nextseg;
    674 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
    675 	ssp->ss_magic = SS_MAGIC;
    676 
    677 	/* Set pointer to first FINFO, initialize it. */
    678 	sp->fip = (struct finfo *) ((caddr_t) sp->segsum + SEGSUM_SIZE(fs));
    679 	sp->fip->fi_nblocks = 0;
    680 	sp->start_lbp = &sp->fip->fi_blocks[0];
    681 	sp->fip->fi_lastlength = 0;
    682 
    683 	sp->seg_bytes_left -= fs->lfs_sumsize;
    684 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
    685 
    686 	LFS_LOCK_BUF(sbp);
    687 	brelse(sbp);
    688 	return repeat;
    689 }
    690 
    691 /*
    692  * Return the next segment to write.
    693  */
    694 void
    695 lfs_newseg(struct lfs * fs)
    696 {
    697 	CLEANERINFO *cip;
    698 	SEGUSE *sup;
    699 	struct ubuf *bp;
    700 	int curseg, isdirty, sn;
    701 
    702 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    703 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    704 	sup->su_nbytes = 0;
    705 	sup->su_nsums = 0;
    706 	sup->su_ninos = 0;
    707 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
    708 
    709 	LFS_CLEANERINFO(cip, fs, bp);
    710 	--cip->clean;
    711 	++cip->dirty;
    712 	fs->lfs_nclean = cip->clean;
    713 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    714 
    715 	fs->lfs_lastseg = fs->lfs_curseg;
    716 	fs->lfs_curseg = fs->lfs_nextseg;
    717 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
    718 		sn = (sn + 1) % fs->lfs_nseg;
    719 		if (sn == curseg)
    720 			errx(1, "lfs_nextseg: no clean segments");
    721 		LFS_SEGENTRY(sup, fs, sn, bp);
    722 		isdirty = sup->su_flags & SEGUSE_DIRTY;
    723 		brelse(bp);
    724 
    725 		if (!isdirty)
    726 			break;
    727 	}
    728 
    729 	++fs->lfs_nactive;
    730 	fs->lfs_nextseg = sntod(fs, sn);
    731 }
    732 
    733 
    734 int
    735 lfs_writeseg(struct lfs * fs, struct segment * sp)
    736 {
    737 	struct ubuf **bpp, *bp;
    738 	SEGUSE *sup;
    739 	SEGSUM *ssp;
    740 	char *datap, *dp;
    741 	int i;
    742 	int do_again, nblocks, byteoffset;
    743 	size_t el_size;
    744 	u_short ninos;
    745 	struct uvnode *devvp;
    746 
    747 	/*
    748 	 * If there are no buffers other than the segment summary to write
    749 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
    750 	 * even if there aren't any buffers, you need to write the superblock.
    751 	 */
    752 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
    753 		return 0;
    754 
    755 	devvp = fs->lfs_unlockvp;
    756 
    757 	/* Update the segment usage information. */
    758 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
    759 
    760 	/* Loop through all blocks, except the segment summary. */
    761 	for (bpp = sp->bpp; ++bpp < sp->cbpp;) {
    762 		if ((*bpp)->b_vp != devvp) {
    763 			sup->su_nbytes += (*bpp)->b_bcount;
    764 		}
    765 	}
    766 
    767 	ssp = (SEGSUM *) sp->segsum;
    768 
    769 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
    770 	sup->su_nbytes += ssp->ss_ninos * DINODE1_SIZE;
    771 
    772 	if (fs->lfs_version == 1)
    773 		sup->su_olastmod = write_time;
    774 	else
    775 		sup->su_lastmod = write_time;
    776 	sup->su_ninos += ninos;
    777 	++sup->su_nsums;
    778 	fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos *
    779 		fs->lfs_ibsize));
    780 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
    781 
    782 	do_again = !(bp->b_flags & B_GATHERED);
    783 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp);	/* Ifile */
    784 
    785 	/*
    786 	 * Compute checksum across data and then across summary; the first
    787 	 * block (the summary block) is skipped.  Set the create time here
    788 	 * so that it's guaranteed to be later than the inode mod times.
    789 	 */
    790 	if (fs->lfs_version == 1)
    791 		el_size = sizeof(u_long);
    792 	else
    793 		el_size = sizeof(u_int32_t);
    794 	datap = dp = malloc(nblocks * el_size);
    795 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
    796 		++bpp;
    797 		/* Loop through gop_write cluster blocks */
    798 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
    799 		    byteoffset += fs->lfs_bsize) {
    800 			memcpy(dp, (*bpp)->b_data + byteoffset, el_size);
    801 			dp += el_size;
    802 		}
    803 		bremfree(*bpp);
    804 		(*bpp)->b_flags |= B_BUSY;
    805 	}
    806 	if (fs->lfs_version == 1)
    807 		ssp->ss_ocreate = write_time;
    808 	else {
    809 		ssp->ss_create = write_time;
    810 		ssp->ss_serial = ++fs->lfs_serial;
    811 		ssp->ss_ident = fs->lfs_ident;
    812 	}
    813 	/* Set the summary block busy too */
    814 	bremfree(*(sp->bpp));
    815 	(*(sp->bpp))->b_flags |= B_BUSY;
    816 
    817 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * el_size);
    818 	ssp->ss_sumsum =
    819 	    cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
    820 	free(datap);
    821 	datap = dp = NULL;
    822 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
    823 	    btofsb(fs, fs->lfs_sumsize));
    824 
    825 	if (devvp == NULL)
    826 		errx(1, "devvp is NULL");
    827 	for (bpp = sp->bpp, i = nblocks; i; bpp++, i--) {
    828 		bp = *bpp;
    829 #if 0
    830 		printf("i = %d, bp = %p, flags %lx, bn = %" PRIx64 "\n",
    831 		       nblocks - i, bp, bp->b_flags, bp->b_blkno);
    832 		printf("  vp = %p\n", bp->b_vp);
    833 		if (bp->b_vp != fs->lfs_unlockvp)
    834 			printf("  ino = %d lbn = %" PRId64 "\n",
    835 			       VTOI(bp->b_vp)->i_number, bp->b_lblkno);
    836 #endif
    837 		if (bp->b_vp == fs->lfs_unlockvp)
    838 			written_dev += bp->b_bcount;
    839 		else {
    840 			if (bp->b_lblkno >= 0)
    841 				written_data += bp->b_bcount;
    842 			else
    843 				written_indir += bp->b_bcount;
    844 		}
    845 		bp->b_flags &= ~(B_DELWRI | B_READ | B_GATHERED | B_ERROR |
    846 				 B_LOCKED);
    847 		bwrite(bp);
    848 		written_bytes += bp->b_bcount;
    849 	}
    850 	written_inodes += ninos;
    851 
    852 	return (lfs_initseg(fs) || do_again);
    853 }
    854 
    855 /*
    856  * Our own copy of shellsort.  XXX use qsort or heapsort.
    857  */
    858 void
    859 lfs_shellsort(struct ubuf ** bp_array, ufs_daddr_t * lb_array, int nmemb, int size)
    860 {
    861 	static int __rsshell_increments[] = {4, 1, 0};
    862 	int incr, *incrp, t1, t2;
    863 	struct ubuf *bp_temp;
    864 
    865 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
    866 		for (t1 = incr; t1 < nmemb; ++t1)
    867 			for (t2 = t1 - incr; t2 >= 0;)
    868 				if ((u_int32_t) bp_array[t2]->b_lblkno >
    869 				    (u_int32_t) bp_array[t2 + incr]->b_lblkno) {
    870 					bp_temp = bp_array[t2];
    871 					bp_array[t2] = bp_array[t2 + incr];
    872 					bp_array[t2 + incr] = bp_temp;
    873 					t2 -= incr;
    874 				} else
    875 					break;
    876 
    877 	/* Reform the list of logical blocks */
    878 	incr = 0;
    879 	for (t1 = 0; t1 < nmemb; t1++) {
    880 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
    881 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
    882 		}
    883 	}
    884 }
    885 
    886 
    887 /*
    888  * lfs_seglock --
    889  *	Single thread the segment writer.
    890  */
    891 int
    892 lfs_seglock(struct lfs * fs, unsigned long flags)
    893 {
    894 	struct segment *sp;
    895 
    896 	if (fs->lfs_seglock) {
    897 		++fs->lfs_seglock;
    898 		fs->lfs_sp->seg_flags |= flags;
    899 		return 0;
    900 	}
    901 	fs->lfs_seglock = 1;
    902 
    903 	sp = fs->lfs_sp = (struct segment *) malloc(sizeof(*sp));
    904 	sp->bpp = (struct ubuf **) malloc(fs->lfs_ssize * sizeof(struct ubuf *));
    905 	if (!sp->bpp)
    906 		errx(!preen, "Could not allocate %zu bytes: %s",
    907 			(size_t)(fs->lfs_ssize * sizeof(struct ubuf *)),
    908 			strerror(errno));
    909 	sp->seg_flags = flags;
    910 	sp->vp = NULL;
    911 	sp->seg_iocount = 0;
    912 	(void) lfs_initseg(fs);
    913 
    914 	return 0;
    915 }
    916 
    917 /*
    918  * lfs_segunlock --
    919  *	Single thread the segment writer.
    920  */
    921 void
    922 lfs_segunlock(struct lfs * fs)
    923 {
    924 	struct segment *sp;
    925 	struct ubuf *bp;
    926 
    927 	sp = fs->lfs_sp;
    928 
    929 	if (fs->lfs_seglock == 1) {
    930 		if (sp->bpp != sp->cbpp) {
    931 			/* Free allocated segment summary */
    932 			fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
    933 			bp = *sp->bpp;
    934 			bremfree(bp);
    935 			bp->b_flags |= B_DONE | B_INVAL;
    936 			bp->b_flags &= ~B_DELWRI;
    937 			reassignbuf(bp, bp->b_vp);
    938 			bp->b_flags |= B_BUSY; /* XXX */
    939 			brelse(bp);
    940 		} else
    941 			printf("unlock to 0 with no summary");
    942 
    943 		free(sp->bpp);
    944 		sp->bpp = NULL;
    945 		free(sp);
    946 		fs->lfs_sp = NULL;
    947 
    948 		fs->lfs_nactive = 0;
    949 
    950 		/* Since we *know* everything's on disk, write both sbs */
    951 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    952 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    953 
    954 		--fs->lfs_seglock;
    955 		fs->lfs_lockpid = 0;
    956 	} else if (fs->lfs_seglock == 0) {
    957 		errx(1, "Seglock not held");
    958 	} else {
    959 		--fs->lfs_seglock;
    960 	}
    961 }
    962 
    963 int
    964 lfs_writevnodes(struct lfs *fs, struct segment *sp, int op)
    965 {
    966 	struct inode *ip;
    967 	struct uvnode *vp;
    968 	int inodes_written = 0;
    969 
    970 	LIST_FOREACH(vp, &vnodelist, v_mntvnodes) {
    971 		if (vp->v_bmap_op != lfs_vop_bmap)
    972 			continue;
    973 
    974 		ip = VTOI(vp);
    975 
    976 		if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
    977 		    (op != VN_DIROP && (vp->v_flag & VDIROP))) {
    978 			continue;
    979 		}
    980 		/*
    981 		 * Write the inode/file if dirty and it's not the IFILE.
    982 		 */
    983 		if (ip->i_flag & IN_ALLMOD || !LIST_EMPTY(&vp->v_dirtyblkhd)) {
    984 			if (ip->i_number != LFS_IFILE_INUM)
    985 				lfs_writefile(fs, sp, vp);
    986 			(void) lfs_writeinode(fs, sp, ip);
    987 			inodes_written++;
    988 		}
    989 	}
    990 	return inodes_written;
    991 }
    992 
    993 void
    994 lfs_writesuper(struct lfs *fs, ufs_daddr_t daddr)
    995 {
    996 	struct ubuf *bp;
    997 
    998 	/* Set timestamp of this version of the superblock */
    999 	if (fs->lfs_version == 1)
   1000 		fs->lfs_otstamp = write_time;
   1001 	fs->lfs_tstamp = write_time;
   1002 
   1003 	/* Checksum the superblock and copy it into a buffer. */
   1004 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
   1005 	assert(daddr > 0);
   1006 	bp = getblk(fs->lfs_unlockvp, fsbtodb(fs, daddr), LFS_SBPAD);
   1007 	memset(bp->b_data + sizeof(struct dlfs), 0,
   1008 	    LFS_SBPAD - sizeof(struct dlfs));
   1009 	*(struct dlfs *) bp->b_data = fs->lfs_dlfs;
   1010 
   1011 	bwrite(bp);
   1012 }
   1013