Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.52
      1  1.52     lukem /*	$NetBSD: mkfs.c,v 1.52 2001/08/25 01:42:46 lukem Exp $	*/
      2  1.19       cgd 
      3   1.1       cgd /*
      4   1.9   mycroft  * Copyright (c) 1980, 1989, 1993
      5   1.9   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1       cgd  * modification, are permitted provided that the following conditions
      9   1.1       cgd  * are met:
     10   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     15   1.1       cgd  * 3. All advertising materials mentioning features or use of this software
     16   1.1       cgd  *    must display the following acknowledgement:
     17   1.1       cgd  *	This product includes software developed by the University of
     18   1.1       cgd  *	California, Berkeley and its contributors.
     19   1.1       cgd  * 4. Neither the name of the University nor the names of its contributors
     20   1.1       cgd  *    may be used to endorse or promote products derived from this software
     21   1.1       cgd  *    without specific prior written permission.
     22   1.1       cgd  *
     23   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1       cgd  * SUCH DAMAGE.
     34   1.1       cgd  */
     35   1.1       cgd 
     36  1.26  christos #include <sys/cdefs.h>
     37   1.1       cgd #ifndef lint
     38  1.19       cgd #if 0
     39  1.27     lukem static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     40  1.19       cgd #else
     41  1.52     lukem __RCSID("$NetBSD: mkfs.c,v 1.52 2001/08/25 01:42:46 lukem Exp $");
     42  1.19       cgd #endif
     43   1.1       cgd #endif /* not lint */
     44   1.1       cgd 
     45   1.1       cgd #include <sys/param.h>
     46   1.1       cgd #include <sys/time.h>
     47   1.1       cgd #include <sys/resource.h>
     48   1.9   mycroft #include <ufs/ufs/dinode.h>
     49   1.9   mycroft #include <ufs/ufs/dir.h>
     50  1.30    bouyer #include <ufs/ufs/ufs_bswap.h>
     51   1.9   mycroft #include <ufs/ffs/fs.h>
     52  1.30    bouyer #include <ufs/ffs/ffs_extern.h>
     53   1.1       cgd #include <sys/disklabel.h>
     54   1.9   mycroft 
     55  1.14       cgd #include <string.h>
     56  1.14       cgd #include <unistd.h>
     57  1.26  christos #include <stdlib.h>
     58  1.14       cgd 
     59   1.9   mycroft #ifndef STANDALONE
     60   1.9   mycroft #include <stdio.h>
     61   1.9   mycroft #endif
     62  1.40    simonb 
     63  1.40    simonb #include "extern.h"
     64   1.1       cgd 
     65  1.26  christos 
     66  1.39    simonb static void initcg(int, time_t);
     67  1.39    simonb static void fsinit(time_t);
     68  1.39    simonb static int makedir(struct direct *, int);
     69  1.39    simonb static daddr_t alloc(int, int);
     70  1.39    simonb static void iput(struct dinode *, ino_t);
     71  1.39    simonb static void rdfs(daddr_t, int, void *);
     72  1.39    simonb static void wtfs(daddr_t, int, void *);
     73  1.39    simonb static int isblock(struct fs *, unsigned char *, int);
     74  1.39    simonb static void clrblock(struct fs *, unsigned char *, int);
     75  1.39    simonb static void setblock(struct fs *, unsigned char *, int);
     76  1.39    simonb static int32_t calcipg(int32_t, int32_t, off_t *);
     77  1.39    simonb static void swap_cg(struct cg *, struct cg *);
     78  1.27     lukem 
     79  1.39    simonb static int count_digits(int);
     80  1.36  wrstuden 
     81   1.1       cgd /*
     82   1.1       cgd  * make file system for cylinder-group style file systems
     83   1.1       cgd  */
     84   1.1       cgd 
     85   1.1       cgd /*
     86   1.1       cgd  * We limit the size of the inode map to be no more than a
     87   1.1       cgd  * third of the cylinder group space, since we must leave at
     88   1.1       cgd  * least an equal amount of space for the block map.
     89   1.1       cgd  *
     90   1.1       cgd  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     91   1.1       cgd  */
     92   1.1       cgd #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     93   1.1       cgd 
     94   1.1       cgd #define UMASK		0755
     95  1.32   thorpej #define MAXINOPB	(MAXBSIZE / DINODE_SIZE)
     96   1.1       cgd #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
     97   1.1       cgd 
     98   1.1       cgd union {
     99   1.1       cgd 	struct fs fs;
    100   1.1       cgd 	char pad[SBSIZE];
    101   1.1       cgd } fsun;
    102   1.1       cgd #define	sblock	fsun.fs
    103   1.1       cgd struct	csum *fscs;
    104   1.1       cgd 
    105   1.1       cgd union {
    106   1.1       cgd 	struct cg cg;
    107   1.1       cgd 	char pad[MAXBSIZE];
    108   1.1       cgd } cgun;
    109   1.1       cgd #define	acg	cgun.cg
    110   1.1       cgd 
    111  1.32   thorpej struct dinode zino[MAXBSIZE / DINODE_SIZE];
    112   1.1       cgd 
    113  1.30    bouyer char writebuf[MAXBSIZE];
    114  1.30    bouyer 
    115   1.1       cgd int	fsi, fso;
    116   1.1       cgd 
    117  1.26  christos void
    118  1.49     lukem mkfs(struct partition *pp, const char *fsys, int fi, int fo)
    119   1.1       cgd {
    120  1.27     lukem 	int32_t i, mincpc, mincpg, inospercg;
    121  1.27     lukem 	int32_t cylno, rpos, blk, j, warn = 0;
    122  1.27     lukem 	int32_t used, mincpgcnt, bpcg;
    123  1.27     lukem 	off_t usedb;
    124  1.27     lukem 	int32_t mapcramped, inodecramped;
    125  1.27     lukem 	int32_t postblsize, rotblsize, totalsbsize;
    126   1.1       cgd 	time_t utime;
    127  1.52     lukem 	long long sizepb;
    128  1.34  wrstuden 	char *writebuf2;		/* dynamic buffer */
    129  1.36  wrstuden 	int nprintcols, printcolwidth;
    130   1.1       cgd 
    131   1.1       cgd #ifndef STANDALONE
    132   1.1       cgd 	time(&utime);
    133   1.1       cgd #endif
    134   1.1       cgd 	if (mfs) {
    135  1.50     lukem 		(void)malloc(0);
    136   1.1       cgd 		if (fssize * sectorsize > memleft)
    137   1.1       cgd 			fssize = (memleft - 16384) / sectorsize;
    138  1.50     lukem 		if ((membase = malloc(fssize * sectorsize)) == 0)
    139   1.1       cgd 			exit(12);
    140   1.1       cgd 	}
    141   1.1       cgd 	fsi = fi;
    142   1.1       cgd 	fso = fo;
    143   1.9   mycroft 	if (Oflag) {
    144   1.9   mycroft 		sblock.fs_inodefmt = FS_42INODEFMT;
    145   1.9   mycroft 		sblock.fs_maxsymlinklen = 0;
    146   1.9   mycroft 	} else {
    147   1.9   mycroft 		sblock.fs_inodefmt = FS_44INODEFMT;
    148   1.9   mycroft 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    149   1.9   mycroft 	}
    150   1.1       cgd 	/*
    151   1.1       cgd 	 * Validate the given file system size.
    152   1.1       cgd 	 * Verify that its last block can actually be accessed.
    153   1.1       cgd 	 */
    154   1.1       cgd 	if (fssize <= 0)
    155   1.1       cgd 		printf("preposterous size %d\n", fssize), exit(13);
    156   1.1       cgd 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    157  1.30    bouyer 
    158   1.1       cgd 	/*
    159   1.1       cgd 	 * collect and verify the sector and track info
    160   1.1       cgd 	 */
    161   1.1       cgd 	sblock.fs_nsect = nsectors;
    162   1.1       cgd 	sblock.fs_ntrak = ntracks;
    163   1.1       cgd 	if (sblock.fs_ntrak <= 0)
    164   1.1       cgd 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    165   1.1       cgd 	if (sblock.fs_nsect <= 0)
    166   1.1       cgd 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    167   1.1       cgd 	/*
    168   1.1       cgd 	 * collect and verify the block and fragment sizes
    169   1.1       cgd 	 */
    170   1.1       cgd 	sblock.fs_bsize = bsize;
    171   1.1       cgd 	sblock.fs_fsize = fsize;
    172   1.1       cgd 	if (!POWEROF2(sblock.fs_bsize)) {
    173   1.1       cgd 		printf("block size must be a power of 2, not %d\n",
    174   1.1       cgd 		    sblock.fs_bsize);
    175   1.1       cgd 		exit(16);
    176   1.1       cgd 	}
    177   1.1       cgd 	if (!POWEROF2(sblock.fs_fsize)) {
    178   1.1       cgd 		printf("fragment size must be a power of 2, not %d\n",
    179   1.1       cgd 		    sblock.fs_fsize);
    180   1.1       cgd 		exit(17);
    181   1.1       cgd 	}
    182   1.1       cgd 	if (sblock.fs_fsize < sectorsize) {
    183   1.1       cgd 		printf("fragment size %d is too small, minimum is %d\n",
    184   1.1       cgd 		    sblock.fs_fsize, sectorsize);
    185   1.1       cgd 		exit(18);
    186   1.1       cgd 	}
    187   1.1       cgd 	if (sblock.fs_bsize < MINBSIZE) {
    188   1.1       cgd 		printf("block size %d is too small, minimum is %d\n",
    189   1.1       cgd 		    sblock.fs_bsize, MINBSIZE);
    190   1.1       cgd 		exit(19);
    191   1.1       cgd 	}
    192   1.1       cgd 	if (sblock.fs_bsize < sblock.fs_fsize) {
    193   1.1       cgd 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    194   1.1       cgd 		    sblock.fs_bsize, sblock.fs_fsize);
    195   1.1       cgd 		exit(20);
    196   1.1       cgd 	}
    197   1.1       cgd 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    198   1.1       cgd 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    199   1.9   mycroft 	sblock.fs_qbmask = ~sblock.fs_bmask;
    200   1.9   mycroft 	sblock.fs_qfmask = ~sblock.fs_fmask;
    201   1.1       cgd 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    202   1.1       cgd 		sblock.fs_bshift++;
    203   1.1       cgd 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    204   1.1       cgd 		sblock.fs_fshift++;
    205   1.1       cgd 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    206   1.1       cgd 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    207   1.1       cgd 		sblock.fs_fragshift++;
    208   1.1       cgd 	if (sblock.fs_frag > MAXFRAG) {
    209  1.30    bouyer 		printf("fragment size %d is too small, "
    210  1.30    bouyer 			"minimum with block size %d is %d\n",
    211   1.1       cgd 		    sblock.fs_fsize, sblock.fs_bsize,
    212   1.1       cgd 		    sblock.fs_bsize / MAXFRAG);
    213   1.1       cgd 		exit(21);
    214   1.1       cgd 	}
    215   1.1       cgd 	sblock.fs_nrpos = nrpos;
    216   1.1       cgd 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    217  1.32   thorpej 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
    218   1.1       cgd 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    219   1.1       cgd 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    220   1.1       cgd 		sblock.fs_fsbtodb++;
    221   1.1       cgd 	sblock.fs_sblkno =
    222   1.1       cgd 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    223   1.1       cgd 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    224   1.1       cgd 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    225   1.1       cgd 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    226   1.1       cgd 	sblock.fs_cgoffset = roundup(
    227   1.1       cgd 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    228   1.1       cgd 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    229   1.1       cgd 		sblock.fs_cgmask <<= 1;
    230   1.1       cgd 	if (!POWEROF2(sblock.fs_ntrak))
    231   1.1       cgd 		sblock.fs_cgmask <<= 1;
    232   1.9   mycroft 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    233   1.9   mycroft 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    234   1.9   mycroft 		sizepb *= NINDIR(&sblock);
    235   1.9   mycroft 		sblock.fs_maxfilesize += sizepb;
    236   1.9   mycroft 	}
    237   1.1       cgd 	/*
    238   1.1       cgd 	 * Validate specified/determined secpercyl
    239   1.1       cgd 	 * and calculate minimum cylinders per group.
    240   1.1       cgd 	 */
    241   1.1       cgd 	sblock.fs_spc = secpercyl;
    242   1.1       cgd 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    243   1.1       cgd 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    244   1.1       cgd 	     sblock.fs_cpc >>= 1, i >>= 1)
    245   1.1       cgd 		/* void */;
    246   1.1       cgd 	mincpc = sblock.fs_cpc;
    247   1.1       cgd 	bpcg = sblock.fs_spc * sectorsize;
    248  1.32   thorpej 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
    249   1.1       cgd 	if (inospercg > MAXIPG(&sblock))
    250   1.1       cgd 		inospercg = MAXIPG(&sblock);
    251   1.1       cgd 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    252   1.1       cgd 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    253   1.1       cgd 	    sblock.fs_spc);
    254   1.1       cgd 	mincpg = roundup(mincpgcnt, mincpc);
    255   1.1       cgd 	/*
    256   1.9   mycroft 	 * Ensure that cylinder group with mincpg has enough space
    257   1.9   mycroft 	 * for block maps.
    258   1.1       cgd 	 */
    259   1.1       cgd 	sblock.fs_cpg = mincpg;
    260   1.1       cgd 	sblock.fs_ipg = inospercg;
    261   1.9   mycroft 	if (maxcontig > 1)
    262   1.9   mycroft 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    263   1.1       cgd 	mapcramped = 0;
    264   1.1       cgd 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    265   1.1       cgd 		mapcramped = 1;
    266   1.1       cgd 		if (sblock.fs_bsize < MAXBSIZE) {
    267   1.1       cgd 			sblock.fs_bsize <<= 1;
    268   1.1       cgd 			if ((i & 1) == 0) {
    269   1.1       cgd 				i >>= 1;
    270   1.1       cgd 			} else {
    271   1.1       cgd 				sblock.fs_cpc <<= 1;
    272   1.1       cgd 				mincpc <<= 1;
    273   1.1       cgd 				mincpg = roundup(mincpgcnt, mincpc);
    274   1.1       cgd 				sblock.fs_cpg = mincpg;
    275   1.1       cgd 			}
    276   1.1       cgd 			sblock.fs_frag <<= 1;
    277   1.1       cgd 			sblock.fs_fragshift += 1;
    278   1.1       cgd 			if (sblock.fs_frag <= MAXFRAG)
    279   1.1       cgd 				continue;
    280   1.1       cgd 		}
    281   1.1       cgd 		if (sblock.fs_fsize == sblock.fs_bsize) {
    282   1.1       cgd 			printf("There is no block size that");
    283   1.1       cgd 			printf(" can support this disk\n");
    284   1.1       cgd 			exit(22);
    285   1.1       cgd 		}
    286   1.1       cgd 		sblock.fs_frag >>= 1;
    287   1.1       cgd 		sblock.fs_fragshift -= 1;
    288   1.1       cgd 		sblock.fs_fsize <<= 1;
    289   1.1       cgd 		sblock.fs_nspf <<= 1;
    290   1.1       cgd 	}
    291   1.1       cgd 	/*
    292   1.9   mycroft 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    293   1.1       cgd 	 */
    294   1.1       cgd 	inodecramped = 0;
    295  1.27     lukem 	inospercg = calcipg(mincpg, bpcg, &usedb);
    296   1.1       cgd 	sblock.fs_ipg = inospercg;
    297   1.1       cgd 	while (inospercg > MAXIPG(&sblock)) {
    298   1.1       cgd 		inodecramped = 1;
    299   1.1       cgd 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    300   1.1       cgd 		    sblock.fs_bsize == MINBSIZE)
    301   1.1       cgd 			break;
    302  1.27     lukem 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    303  1.27     lukem 		       "minimum bytes per inode is",
    304  1.27     lukem 		       (int)((mincpg * (off_t)bpcg - usedb)
    305  1.27     lukem 			     / MAXIPG(&sblock) + 1));
    306   1.1       cgd 		sblock.fs_bsize >>= 1;
    307   1.1       cgd 		sblock.fs_frag >>= 1;
    308   1.1       cgd 		sblock.fs_fragshift -= 1;
    309   1.1       cgd 		mincpc >>= 1;
    310   1.1       cgd 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    311   1.1       cgd 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    312   1.1       cgd 			sblock.fs_bsize <<= 1;
    313   1.1       cgd 			break;
    314   1.1       cgd 		}
    315   1.1       cgd 		mincpg = sblock.fs_cpg;
    316  1.27     lukem 		inospercg = calcipg(mincpg, bpcg, &usedb);
    317   1.1       cgd 		sblock.fs_ipg = inospercg;
    318   1.1       cgd 	}
    319   1.1       cgd 	if (inodecramped) {
    320   1.1       cgd 		if (inospercg > MAXIPG(&sblock)) {
    321  1.27     lukem 			printf("Minimum bytes per inode is %d\n",
    322  1.27     lukem 			       (int)((mincpg * (off_t)bpcg - usedb)
    323  1.27     lukem 				     / MAXIPG(&sblock) + 1));
    324   1.1       cgd 		} else if (!mapcramped) {
    325   1.1       cgd 			printf("With %d bytes per inode, ", density);
    326  1.27     lukem 			printf("minimum cylinders per group is %d\n", mincpg);
    327   1.1       cgd 		}
    328   1.1       cgd 	}
    329   1.1       cgd 	if (mapcramped) {
    330   1.1       cgd 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    331  1.27     lukem 		printf("minimum cylinders per group is %d\n", mincpg);
    332   1.1       cgd 	}
    333   1.1       cgd 	if (inodecramped || mapcramped) {
    334   1.1       cgd 		if (sblock.fs_bsize != bsize)
    335   1.1       cgd 			printf("%s to be changed from %d to %d\n",
    336   1.1       cgd 			    "This requires the block size",
    337   1.1       cgd 			    bsize, sblock.fs_bsize);
    338   1.1       cgd 		if (sblock.fs_fsize != fsize)
    339   1.1       cgd 			printf("\t%s to be changed from %d to %d\n",
    340   1.1       cgd 			    "and the fragment size",
    341   1.1       cgd 			    fsize, sblock.fs_fsize);
    342   1.1       cgd 		exit(23);
    343   1.1       cgd 	}
    344   1.1       cgd 	/*
    345   1.1       cgd 	 * Calculate the number of cylinders per group
    346   1.1       cgd 	 */
    347   1.1       cgd 	sblock.fs_cpg = cpg;
    348   1.1       cgd 	if (sblock.fs_cpg % mincpc != 0) {
    349  1.27     lukem 		printf("%s groups must have a multiple of %d cylinders\n",
    350   1.1       cgd 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    351   1.1       cgd 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    352   1.1       cgd 		if (!cpgflg)
    353   1.1       cgd 			cpg = sblock.fs_cpg;
    354   1.1       cgd 	}
    355   1.1       cgd 	/*
    356   1.9   mycroft 	 * Must ensure there is enough space for inodes.
    357   1.1       cgd 	 */
    358  1.27     lukem 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    359   1.1       cgd 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    360   1.1       cgd 		inodecramped = 1;
    361   1.1       cgd 		sblock.fs_cpg -= mincpc;
    362  1.27     lukem 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    363   1.1       cgd 	}
    364   1.1       cgd 	/*
    365   1.9   mycroft 	 * Must ensure there is enough space to hold block map.
    366   1.1       cgd 	 */
    367   1.1       cgd 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    368   1.1       cgd 		mapcramped = 1;
    369   1.1       cgd 		sblock.fs_cpg -= mincpc;
    370  1.27     lukem 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
    371   1.1       cgd 	}
    372   1.1       cgd 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    373   1.1       cgd 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    374  1.26  christos 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
    375   1.1       cgd 		exit(24);
    376   1.1       cgd 	}
    377   1.1       cgd 	if (sblock.fs_cpg < mincpg) {
    378  1.27     lukem 		printf("cylinder groups must have at least %d cylinders\n",
    379   1.1       cgd 			mincpg);
    380   1.1       cgd 		exit(25);
    381   1.1       cgd 	} else if (sblock.fs_cpg != cpg) {
    382   1.1       cgd 		if (!cpgflg)
    383   1.1       cgd 			printf("Warning: ");
    384   1.1       cgd 		else if (!mapcramped && !inodecramped)
    385   1.1       cgd 			exit(26);
    386   1.1       cgd 		if (mapcramped && inodecramped)
    387   1.1       cgd 			printf("Block size and bytes per inode restrict");
    388   1.1       cgd 		else if (mapcramped)
    389   1.1       cgd 			printf("Block size restricts");
    390   1.1       cgd 		else
    391   1.1       cgd 			printf("Bytes per inode restrict");
    392   1.1       cgd 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    393   1.1       cgd 		if (cpgflg)
    394   1.1       cgd 			exit(27);
    395   1.1       cgd 	}
    396   1.1       cgd 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    397   1.1       cgd 	/*
    398   1.1       cgd 	 * Now have size for file system and nsect and ntrak.
    399   1.1       cgd 	 * Determine number of cylinders and blocks in the file system.
    400   1.1       cgd 	 */
    401   1.1       cgd 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    402   1.1       cgd 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    403   1.1       cgd 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    404   1.1       cgd 		sblock.fs_ncyl++;
    405   1.1       cgd 		warn = 1;
    406   1.1       cgd 	}
    407   1.1       cgd 	if (sblock.fs_ncyl < 1) {
    408   1.1       cgd 		printf("file systems must have at least one cylinder\n");
    409   1.1       cgd 		exit(28);
    410   1.1       cgd 	}
    411   1.1       cgd 	/*
    412   1.1       cgd 	 * Determine feasability/values of rotational layout tables.
    413   1.1       cgd 	 *
    414   1.1       cgd 	 * The size of the rotational layout tables is limited by the
    415   1.1       cgd 	 * size of the superblock, SBSIZE. The amount of space available
    416   1.1       cgd 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    417   1.1       cgd 	 * The size of these tables is inversely proportional to the block
    418   1.1       cgd 	 * size of the file system. The size increases if sectors per track
    419   1.1       cgd 	 * are not powers of two, because more cylinders must be described
    420   1.1       cgd 	 * by the tables before the rotational pattern repeats (fs_cpc).
    421   1.1       cgd 	 */
    422   1.1       cgd 	sblock.fs_interleave = interleave;
    423   1.1       cgd 	sblock.fs_trackskew = trackskew;
    424   1.1       cgd 	sblock.fs_npsect = nphyssectors;
    425   1.1       cgd 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    426   1.1       cgd 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    427   1.1       cgd 	if (sblock.fs_ntrak == 1) {
    428   1.1       cgd 		sblock.fs_cpc = 0;
    429   1.1       cgd 		goto next;
    430   1.1       cgd 	}
    431  1.20       cgd 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    432   1.1       cgd 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    433   1.1       cgd 	totalsbsize = sizeof(struct fs) + rotblsize;
    434   1.1       cgd 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    435   1.1       cgd 		/* use old static table space */
    436   1.1       cgd 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    437  1.15       cgd 		    (char *)(&sblock.fs_firstfield);
    438   1.1       cgd 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    439  1.15       cgd 		    (u_char *)(&sblock.fs_firstfield);
    440   1.1       cgd 	} else {
    441   1.1       cgd 		/* use dynamic table space */
    442   1.1       cgd 		sblock.fs_postbloff = &sblock.fs_space[0] -
    443  1.15       cgd 		    (u_char *)(&sblock.fs_firstfield);
    444   1.1       cgd 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    445   1.1       cgd 		totalsbsize += postblsize;
    446   1.1       cgd 	}
    447   1.1       cgd 	if (totalsbsize > SBSIZE ||
    448   1.1       cgd 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    449   1.1       cgd 		printf("%s %s %d %s %d.%s",
    450   1.1       cgd 		    "Warning: insufficient space in super block for\n",
    451   1.1       cgd 		    "rotational layout tables with nsect", sblock.fs_nsect,
    452   1.1       cgd 		    "and ntrak", sblock.fs_ntrak,
    453   1.1       cgd 		    "\nFile system performance may be impaired.\n");
    454   1.1       cgd 		sblock.fs_cpc = 0;
    455   1.1       cgd 		goto next;
    456   1.1       cgd 	}
    457   1.1       cgd 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    458   1.1       cgd 	/*
    459   1.1       cgd 	 * calculate the available blocks for each rotational position
    460   1.1       cgd 	 */
    461   1.1       cgd 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    462   1.1       cgd 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    463   1.1       cgd 			fs_postbl(&sblock, cylno)[rpos] = -1;
    464   1.1       cgd 	for (i = (rotblsize - 1) * sblock.fs_frag;
    465   1.1       cgd 	     i >= 0; i -= sblock.fs_frag) {
    466   1.1       cgd 		cylno = cbtocylno(&sblock, i);
    467   1.1       cgd 		rpos = cbtorpos(&sblock, i);
    468   1.1       cgd 		blk = fragstoblks(&sblock, i);
    469   1.1       cgd 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    470   1.1       cgd 			fs_rotbl(&sblock)[blk] = 0;
    471   1.1       cgd 		else
    472  1.30    bouyer 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
    473   1.1       cgd 		fs_postbl(&sblock, cylno)[rpos] = blk;
    474   1.1       cgd 	}
    475   1.1       cgd next:
    476   1.1       cgd 	/*
    477   1.1       cgd 	 * Compute/validate number of cylinder groups.
    478   1.1       cgd 	 */
    479   1.1       cgd 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    480   1.1       cgd 	if (sblock.fs_ncyl % sblock.fs_cpg)
    481   1.1       cgd 		sblock.fs_ncg++;
    482   1.1       cgd 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    483   1.1       cgd 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    484   1.1       cgd 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    485  1.27     lukem 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    486   1.1       cgd 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    487   1.1       cgd 		    sblock.fs_fpg / sblock.fs_frag);
    488   1.1       cgd 		printf("number of cylinders per cylinder group (%d) %s.\n",
    489   1.1       cgd 		    sblock.fs_cpg, "must be increased");
    490   1.1       cgd 		exit(29);
    491   1.1       cgd 	}
    492   1.1       cgd 	j = sblock.fs_ncg - 1;
    493   1.1       cgd 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    494   1.1       cgd 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    495   1.1       cgd 		if (j == 0) {
    496  1.46     lukem 			printf("File system must have at least %d sectors\n",
    497   1.1       cgd 			    NSPF(&sblock) *
    498   1.1       cgd 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    499   1.1       cgd 			exit(30);
    500   1.1       cgd 		}
    501  1.30    bouyer 		printf("Warning: inode blocks/cyl group (%d) >= "
    502  1.30    bouyer 			"data blocks (%d) in last\n",
    503   1.1       cgd 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    504   1.1       cgd 		    i / sblock.fs_frag);
    505  1.30    bouyer 		printf("    cylinder group. This implies %d sector(s) "
    506  1.30    bouyer 			"cannot be allocated.\n",
    507   1.1       cgd 		    i * NSPF(&sblock));
    508   1.1       cgd 		sblock.fs_ncg--;
    509   1.1       cgd 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    510   1.1       cgd 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    511   1.1       cgd 		    NSPF(&sblock);
    512   1.1       cgd 		warn = 0;
    513   1.1       cgd 	}
    514   1.1       cgd 	if (warn && !mfs) {
    515   1.1       cgd 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    516   1.1       cgd 		    sblock.fs_spc -
    517   1.1       cgd 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    518   1.1       cgd 		    * sblock.fs_spc));
    519   1.1       cgd 	}
    520   1.1       cgd 	/*
    521   1.1       cgd 	 * fill in remaining fields of the super block
    522   1.1       cgd 	 */
    523   1.1       cgd 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    524   1.1       cgd 	sblock.fs_cssize =
    525   1.1       cgd 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    526  1.38    bouyer 	if (sblock.fs_cssize / sblock.fs_bsize > MAXCSBUFS) {
    527  1.47     lukem 		printf("With %d cylinder groups, "
    528  1.47     lukem 		    "%d cylinder group summary areas are needed.\n",
    529  1.38    bouyer 		    sblock.fs_ncg, sblock.fs_cssize / sblock.fs_bsize);
    530  1.47     lukem 		printf("Only %ld are available. Reduce the number of cylinder "
    531  1.38    bouyer 		    "groups.\n", (long)MAXCSBUFS);
    532  1.38    bouyer 		exit(38);
    533  1.38    bouyer 	}
    534   1.1       cgd 	i = sblock.fs_bsize / sizeof(struct csum);
    535   1.1       cgd 	sblock.fs_csmask = ~(i - 1);
    536   1.1       cgd 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    537   1.1       cgd 		sblock.fs_csshift++;
    538  1.50     lukem 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    539  1.44     lukem 	if (fscs == NULL)
    540  1.44     lukem 		exit(39);
    541   1.1       cgd 	sblock.fs_magic = FS_MAGIC;
    542   1.1       cgd 	sblock.fs_rotdelay = rotdelay;
    543   1.1       cgd 	sblock.fs_minfree = minfree;
    544   1.1       cgd 	sblock.fs_maxcontig = maxcontig;
    545   1.1       cgd 	sblock.fs_headswitch = headswitch;
    546   1.1       cgd 	sblock.fs_trkseek = trackseek;
    547   1.1       cgd 	sblock.fs_maxbpg = maxbpg;
    548   1.1       cgd 	sblock.fs_rps = rpm / 60;
    549   1.1       cgd 	sblock.fs_optim = opt;
    550   1.1       cgd 	sblock.fs_cgrotor = 0;
    551   1.1       cgd 	sblock.fs_cstotal.cs_ndir = 0;
    552   1.1       cgd 	sblock.fs_cstotal.cs_nbfree = 0;
    553   1.1       cgd 	sblock.fs_cstotal.cs_nifree = 0;
    554   1.1       cgd 	sblock.fs_cstotal.cs_nffree = 0;
    555   1.1       cgd 	sblock.fs_fmod = 0;
    556  1.21   mycroft 	sblock.fs_clean = FS_ISCLEAN;
    557   1.1       cgd 	sblock.fs_ronly = 0;
    558   1.1       cgd 	/*
    559   1.1       cgd 	 * Dump out summary information about file system.
    560   1.1       cgd 	 */
    561   1.1       cgd 	if (!mfs) {
    562   1.1       cgd 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    563   1.1       cgd 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    564   1.1       cgd 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    565   1.9   mycroft #define B2MBFACTOR (1 / (1024.0 * 1024.0))
    566   1.1       cgd 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    567   1.9   mycroft 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    568   1.1       cgd 		    sblock.fs_ncg, sblock.fs_cpg,
    569   1.9   mycroft 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    570   1.1       cgd 		    sblock.fs_ipg);
    571   1.9   mycroft #undef B2MBFACTOR
    572   1.1       cgd 	}
    573   1.1       cgd 	/*
    574  1.36  wrstuden 	 * Now determine how wide each column will be, and calculate how
    575  1.37  wrstuden 	 * many columns will fit in a 76 char line. 76 is the width of the
    576  1.37  wrstuden 	 * subwindows in sysinst.
    577  1.36  wrstuden 	 */
    578  1.36  wrstuden 	printcolwidth = count_digits(
    579  1.36  wrstuden 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
    580  1.37  wrstuden 	nprintcols = 76 / (printcolwidth + 2);
    581  1.36  wrstuden 	/*
    582   1.1       cgd 	 * Now build the cylinders group blocks and
    583   1.1       cgd 	 * then print out indices of cylinder groups.
    584   1.1       cgd 	 */
    585   1.1       cgd 	if (!mfs)
    586   1.1       cgd 		printf("super-block backups (for fsck -b #) at:");
    587   1.1       cgd 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    588   1.1       cgd 		initcg(cylno, utime);
    589   1.1       cgd 		if (mfs)
    590   1.1       cgd 			continue;
    591  1.36  wrstuden 		if (cylno % nprintcols == 0)
    592   1.1       cgd 			printf("\n");
    593  1.36  wrstuden 		printf(" %*d,", printcolwidth,
    594  1.36  wrstuden 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    595  1.22       jtc 		fflush(stdout);
    596   1.1       cgd 	}
    597   1.1       cgd 	if (!mfs)
    598   1.1       cgd 		printf("\n");
    599   1.1       cgd 	if (Nflag && !mfs)
    600   1.1       cgd 		exit(0);
    601   1.1       cgd 	/*
    602   1.1       cgd 	 * Now construct the initial file system,
    603   1.1       cgd 	 * then write out the super-block.
    604   1.1       cgd 	 */
    605   1.1       cgd 	fsinit(utime);
    606   1.1       cgd 	sblock.fs_time = utime;
    607  1.30    bouyer 	memcpy(writebuf, &sblock, sbsize);
    608  1.30    bouyer 	if (needswap)
    609  1.51     lukem 		ffs_sb_swap(&sblock, (struct fs*)writebuf);
    610  1.30    bouyer 	wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
    611   1.1       cgd 	/*
    612   1.1       cgd 	 * Write out the duplicate super blocks
    613   1.1       cgd 	 */
    614   1.1       cgd 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    615   1.1       cgd 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    616  1.30    bouyer 		    sbsize, writebuf);
    617  1.34  wrstuden 
    618  1.34  wrstuden 	/*
    619  1.34  wrstuden 	 * if we need to swap, create a buffer for the cylinder summaries
    620  1.34  wrstuden 	 * to get swapped to.
    621  1.34  wrstuden 	 */
    622  1.34  wrstuden 	if (needswap) {
    623  1.50     lukem 		if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
    624  1.34  wrstuden 			exit(12);
    625  1.34  wrstuden 		ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
    626  1.34  wrstuden 	} else
    627  1.34  wrstuden 		writebuf2 = (char *)fscs;
    628  1.34  wrstuden 
    629  1.30    bouyer 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    630  1.30    bouyer 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    631  1.30    bouyer 			sblock.fs_cssize - i < sblock.fs_bsize ?
    632  1.30    bouyer 			    sblock.fs_cssize - i : sblock.fs_bsize,
    633  1.34  wrstuden 			((char *)writebuf2) + i);
    634  1.34  wrstuden 	if (writebuf2 != (char *)fscs)
    635  1.50     lukem 		free(writebuf2);
    636  1.34  wrstuden 
    637   1.1       cgd 	/*
    638   1.1       cgd 	 * Update information about this partion in pack
    639   1.1       cgd 	 * label, to that it may be updated on disk.
    640   1.1       cgd 	 */
    641   1.1       cgd 	pp->p_fstype = FS_BSDFFS;
    642   1.1       cgd 	pp->p_fsize = sblock.fs_fsize;
    643   1.1       cgd 	pp->p_frag = sblock.fs_frag;
    644   1.1       cgd 	pp->p_cpg = sblock.fs_cpg;
    645   1.1       cgd }
    646   1.1       cgd 
    647   1.1       cgd /*
    648   1.1       cgd  * Initialize a cylinder group.
    649   1.1       cgd  */
    650  1.26  christos void
    651  1.39    simonb initcg(int cylno, time_t utime)
    652   1.1       cgd {
    653   1.9   mycroft 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    654  1.27     lukem 	int32_t i;
    655  1.26  christos 	struct csum *cs;
    656   1.1       cgd 
    657   1.1       cgd 	/*
    658   1.1       cgd 	 * Determine block bounds for cylinder group.
    659   1.1       cgd 	 * Allow space for super block summary information in first
    660   1.1       cgd 	 * cylinder group.
    661   1.1       cgd 	 */
    662   1.1       cgd 	cbase = cgbase(&sblock, cylno);
    663   1.1       cgd 	dmax = cbase + sblock.fs_fpg;
    664   1.1       cgd 	if (dmax > sblock.fs_size)
    665   1.1       cgd 		dmax = sblock.fs_size;
    666   1.1       cgd 	dlower = cgsblock(&sblock, cylno) - cbase;
    667   1.1       cgd 	dupper = cgdmin(&sblock, cylno) - cbase;
    668   1.1       cgd 	if (cylno == 0)
    669   1.1       cgd 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    670   1.1       cgd 	cs = fscs + cylno;
    671  1.12   mycroft 	memset(&acg, 0, sblock.fs_cgsize);
    672   1.1       cgd 	acg.cg_time = utime;
    673   1.1       cgd 	acg.cg_magic = CG_MAGIC;
    674   1.1       cgd 	acg.cg_cgx = cylno;
    675   1.1       cgd 	if (cylno == sblock.fs_ncg - 1)
    676   1.1       cgd 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    677   1.1       cgd 	else
    678   1.1       cgd 		acg.cg_ncyl = sblock.fs_cpg;
    679   1.1       cgd 	acg.cg_niblk = sblock.fs_ipg;
    680   1.1       cgd 	acg.cg_ndblk = dmax - cbase;
    681   1.9   mycroft 	if (sblock.fs_contigsumsize > 0)
    682   1.9   mycroft 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    683  1.15       cgd 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    684  1.14       cgd 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    685   1.1       cgd 	acg.cg_iusedoff = acg.cg_boff +
    686  1.20       cgd 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    687   1.1       cgd 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    688   1.9   mycroft 	if (sblock.fs_contigsumsize <= 0) {
    689   1.9   mycroft 		acg.cg_nextfreeoff = acg.cg_freeoff +
    690   1.9   mycroft 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    691   1.9   mycroft 	} else {
    692   1.9   mycroft 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    693   1.9   mycroft 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    694  1.14       cgd 		    sizeof(int32_t);
    695   1.9   mycroft 		acg.cg_clustersumoff =
    696  1.14       cgd 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    697   1.9   mycroft 		acg.cg_clusteroff = acg.cg_clustersumoff +
    698  1.14       cgd 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    699   1.9   mycroft 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    700   1.9   mycroft 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    701   1.9   mycroft 	}
    702  1.41       scw 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
    703   1.9   mycroft 		printf("Panic: cylinder group too big\n");
    704   1.9   mycroft 		exit(37);
    705   1.1       cgd 	}
    706   1.1       cgd 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    707   1.1       cgd 	if (cylno == 0)
    708   1.1       cgd 		for (i = 0; i < ROOTINO; i++) {
    709  1.30    bouyer 			setbit(cg_inosused(&acg, 0), i);
    710   1.1       cgd 			acg.cg_cs.cs_nifree--;
    711   1.1       cgd 		}
    712   1.1       cgd 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    713   1.1       cgd 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    714   1.1       cgd 		    sblock.fs_bsize, (char *)zino);
    715   1.1       cgd 	if (cylno > 0) {
    716   1.1       cgd 		/*
    717   1.1       cgd 		 * In cylno 0, beginning space is reserved
    718   1.1       cgd 		 * for boot and super blocks.
    719   1.1       cgd 		 */
    720   1.1       cgd 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    721   1.9   mycroft 			blkno = d / sblock.fs_frag;
    722  1.30    bouyer 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    723   1.9   mycroft 			if (sblock.fs_contigsumsize > 0)
    724  1.30    bouyer 				setbit(cg_clustersfree(&acg, 0), blkno);
    725   1.1       cgd 			acg.cg_cs.cs_nbfree++;
    726  1.30    bouyer 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    727  1.30    bouyer 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    728   1.1       cgd 			    [cbtorpos(&sblock, d)]++;
    729   1.1       cgd 		}
    730   1.1       cgd 		sblock.fs_dsize += dlower;
    731   1.1       cgd 	}
    732   1.1       cgd 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    733  1.26  christos 	if ((i = (dupper % sblock.fs_frag)) != 0) {
    734   1.1       cgd 		acg.cg_frsum[sblock.fs_frag - i]++;
    735   1.1       cgd 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    736  1.30    bouyer 			setbit(cg_blksfree(&acg, 0), dupper);
    737   1.1       cgd 			acg.cg_cs.cs_nffree++;
    738   1.1       cgd 		}
    739   1.1       cgd 	}
    740   1.1       cgd 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    741   1.9   mycroft 		blkno = d / sblock.fs_frag;
    742  1.30    bouyer 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    743   1.9   mycroft 		if (sblock.fs_contigsumsize > 0)
    744  1.30    bouyer 			setbit(cg_clustersfree(&acg, 0), blkno);
    745   1.1       cgd 		acg.cg_cs.cs_nbfree++;
    746  1.30    bouyer 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
    747  1.30    bouyer 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
    748   1.1       cgd 		    [cbtorpos(&sblock, d)]++;
    749   1.1       cgd 		d += sblock.fs_frag;
    750   1.1       cgd 	}
    751   1.1       cgd 	if (d < dmax - cbase) {
    752   1.1       cgd 		acg.cg_frsum[dmax - cbase - d]++;
    753   1.1       cgd 		for (; d < dmax - cbase; d++) {
    754  1.30    bouyer 			setbit(cg_blksfree(&acg, 0), d);
    755   1.1       cgd 			acg.cg_cs.cs_nffree++;
    756   1.1       cgd 		}
    757   1.1       cgd 	}
    758   1.9   mycroft 	if (sblock.fs_contigsumsize > 0) {
    759  1.30    bouyer 		int32_t *sump = cg_clustersum(&acg, 0);
    760  1.30    bouyer 		u_char *mapp = cg_clustersfree(&acg, 0);
    761   1.9   mycroft 		int map = *mapp++;
    762   1.9   mycroft 		int bit = 1;
    763   1.9   mycroft 		int run = 0;
    764   1.9   mycroft 
    765   1.9   mycroft 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    766   1.9   mycroft 			if ((map & bit) != 0) {
    767   1.9   mycroft 				run++;
    768   1.9   mycroft 			} else if (run != 0) {
    769   1.9   mycroft 				if (run > sblock.fs_contigsumsize)
    770   1.9   mycroft 					run = sblock.fs_contigsumsize;
    771   1.9   mycroft 				sump[run]++;
    772   1.9   mycroft 				run = 0;
    773   1.9   mycroft 			}
    774   1.9   mycroft 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    775   1.9   mycroft 				bit <<= 1;
    776   1.9   mycroft 			} else {
    777   1.9   mycroft 				map = *mapp++;
    778   1.9   mycroft 				bit = 1;
    779   1.9   mycroft 			}
    780   1.9   mycroft 		}
    781   1.9   mycroft 		if (run != 0) {
    782   1.9   mycroft 			if (run > sblock.fs_contigsumsize)
    783   1.9   mycroft 				run = sblock.fs_contigsumsize;
    784   1.9   mycroft 			sump[run]++;
    785   1.9   mycroft 		}
    786   1.9   mycroft 	}
    787   1.1       cgd 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    788   1.1       cgd 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    789   1.1       cgd 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    790   1.1       cgd 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    791   1.1       cgd 	*cs = acg.cg_cs;
    792  1.30    bouyer 	memcpy(writebuf, &acg, sblock.fs_bsize);
    793  1.30    bouyer 	if (needswap)
    794  1.30    bouyer 		swap_cg(&acg, (struct cg*)writebuf);
    795   1.1       cgd 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    796  1.30    bouyer 		sblock.fs_bsize, writebuf);
    797   1.1       cgd }
    798   1.1       cgd 
    799   1.1       cgd /*
    800   1.1       cgd  * initialize the file system
    801   1.1       cgd  */
    802   1.1       cgd struct dinode node;
    803   1.1       cgd 
    804   1.1       cgd #ifdef LOSTDIR
    805   1.1       cgd #define PREDEFDIR 3
    806   1.1       cgd #else
    807   1.1       cgd #define PREDEFDIR 2
    808   1.1       cgd #endif
    809   1.1       cgd 
    810   1.1       cgd struct direct root_dir[] = {
    811   1.9   mycroft 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    812   1.9   mycroft 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    813   1.9   mycroft #ifdef LOSTDIR
    814   1.9   mycroft 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    815   1.9   mycroft #endif
    816   1.9   mycroft };
    817   1.9   mycroft struct odirect {
    818  1.14       cgd 	u_int32_t d_ino;
    819  1.14       cgd 	u_int16_t d_reclen;
    820  1.14       cgd 	u_int16_t d_namlen;
    821   1.9   mycroft 	u_char	d_name[MAXNAMLEN + 1];
    822   1.9   mycroft } oroot_dir[] = {
    823   1.1       cgd 	{ ROOTINO, sizeof(struct direct), 1, "." },
    824   1.1       cgd 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    825   1.1       cgd #ifdef LOSTDIR
    826   1.1       cgd 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    827   1.1       cgd #endif
    828   1.1       cgd };
    829   1.1       cgd #ifdef LOSTDIR
    830   1.1       cgd struct direct lost_found_dir[] = {
    831   1.9   mycroft 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    832   1.9   mycroft 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    833   1.9   mycroft 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    834   1.9   mycroft };
    835   1.9   mycroft struct odirect olost_found_dir[] = {
    836   1.1       cgd 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    837   1.1       cgd 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    838   1.1       cgd 	{ 0, DIRBLKSIZ, 0, 0 },
    839   1.1       cgd };
    840   1.1       cgd #endif
    841   1.1       cgd char buf[MAXBSIZE];
    842  1.39    simonb static void copy_dir(struct direct *, struct direct *);
    843   1.1       cgd 
    844  1.26  christos void
    845  1.39    simonb fsinit(time_t utime)
    846   1.1       cgd {
    847  1.26  christos #ifdef LOSTDIR
    848   1.1       cgd 	int i;
    849  1.26  christos #endif
    850   1.1       cgd 
    851   1.1       cgd 	/*
    852   1.1       cgd 	 * initialize the node
    853   1.1       cgd 	 */
    854  1.33    simonb 	memset(&node, 0, sizeof(node));
    855  1.25       cgd 	node.di_atime = utime;
    856  1.25       cgd 	node.di_mtime = utime;
    857  1.25       cgd 	node.di_ctime = utime;
    858  1.30    bouyer 
    859   1.1       cgd #ifdef LOSTDIR
    860   1.1       cgd 	/*
    861   1.1       cgd 	 * create the lost+found directory
    862   1.1       cgd 	 */
    863   1.9   mycroft 	if (Oflag) {
    864   1.9   mycroft 		(void)makedir((struct direct *)olost_found_dir, 2);
    865   1.9   mycroft 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    866  1.30    bouyer 			copy_dir((struct direct*)&olost_found_dir[2],
    867  1.30    bouyer 				(struct direct*)&buf[i]);
    868   1.9   mycroft 	} else {
    869   1.9   mycroft 		(void)makedir(lost_found_dir, 2);
    870   1.9   mycroft 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    871  1.30    bouyer 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
    872   1.9   mycroft 	}
    873   1.1       cgd 	node.di_mode = IFDIR | UMASK;
    874   1.1       cgd 	node.di_nlink = 2;
    875   1.1       cgd 	node.di_size = sblock.fs_bsize;
    876   1.1       cgd 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    877   1.1       cgd 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    878  1.35  wrstuden 	node.di_uid = geteuid();
    879  1.35  wrstuden 	node.di_gid = getegid();
    880   1.1       cgd 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    881   1.1       cgd 	iput(&node, LOSTFOUNDINO);
    882   1.1       cgd #endif
    883   1.1       cgd 	/*
    884   1.1       cgd 	 * create the root directory
    885   1.1       cgd 	 */
    886   1.1       cgd 	if (mfs)
    887   1.1       cgd 		node.di_mode = IFDIR | 01777;
    888   1.1       cgd 	else
    889   1.1       cgd 		node.di_mode = IFDIR | UMASK;
    890   1.1       cgd 	node.di_nlink = PREDEFDIR;
    891   1.9   mycroft 	if (Oflag)
    892   1.9   mycroft 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    893   1.9   mycroft 	else
    894   1.9   mycroft 		node.di_size = makedir(root_dir, PREDEFDIR);
    895   1.1       cgd 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    896   1.1       cgd 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    897  1.35  wrstuden 	node.di_uid = geteuid();
    898  1.35  wrstuden 	node.di_gid = getegid();
    899   1.1       cgd 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    900   1.1       cgd 	iput(&node, ROOTINO);
    901   1.1       cgd }
    902   1.1       cgd 
    903   1.1       cgd /*
    904   1.1       cgd  * construct a set of directory entries in "buf".
    905   1.1       cgd  * return size of directory.
    906   1.1       cgd  */
    907  1.26  christos int
    908  1.39    simonb makedir(struct direct *protodir, int entries)
    909   1.1       cgd {
    910   1.1       cgd 	char *cp;
    911   1.1       cgd 	int i, spcleft;
    912   1.1       cgd 
    913   1.1       cgd 	spcleft = DIRBLKSIZ;
    914   1.1       cgd 	for (cp = buf, i = 0; i < entries - 1; i++) {
    915  1.30    bouyer 		protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
    916  1.30    bouyer 		copy_dir(&protodir[i], (struct direct*)cp);
    917   1.1       cgd 		cp += protodir[i].d_reclen;
    918   1.1       cgd 		spcleft -= protodir[i].d_reclen;
    919   1.1       cgd 	}
    920   1.1       cgd 	protodir[i].d_reclen = spcleft;
    921  1.30    bouyer 	copy_dir(&protodir[i], (struct direct*)cp);
    922   1.1       cgd 	return (DIRBLKSIZ);
    923   1.1       cgd }
    924   1.1       cgd 
    925   1.1       cgd /*
    926   1.1       cgd  * allocate a block or frag
    927   1.1       cgd  */
    928   1.1       cgd daddr_t
    929  1.39    simonb alloc(int size, int mode)
    930   1.1       cgd {
    931   1.1       cgd 	int i, frag;
    932   1.9   mycroft 	daddr_t d, blkno;
    933   1.1       cgd 
    934  1.26  christos 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
    935  1.30    bouyer 	/* fs -> host byte order */
    936  1.30    bouyer 	if (needswap)
    937  1.30    bouyer 		swap_cg(&acg, &acg);
    938   1.1       cgd 	if (acg.cg_magic != CG_MAGIC) {
    939   1.1       cgd 		printf("cg 0: bad magic number\n");
    940   1.1       cgd 		return (0);
    941   1.1       cgd 	}
    942   1.1       cgd 	if (acg.cg_cs.cs_nbfree == 0) {
    943   1.1       cgd 		printf("first cylinder group ran out of space\n");
    944   1.1       cgd 		return (0);
    945   1.1       cgd 	}
    946   1.1       cgd 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    947  1.30    bouyer 		if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
    948   1.1       cgd 			goto goth;
    949   1.1       cgd 	printf("internal error: can't find block in cyl 0\n");
    950   1.1       cgd 	return (0);
    951   1.1       cgd goth:
    952   1.9   mycroft 	blkno = fragstoblks(&sblock, d);
    953  1.30    bouyer 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
    954  1.10       cgd 	if (sblock.fs_contigsumsize > 0)
    955  1.30    bouyer 		clrbit(cg_clustersfree(&acg, 0), blkno);
    956   1.1       cgd 	acg.cg_cs.cs_nbfree--;
    957   1.1       cgd 	sblock.fs_cstotal.cs_nbfree--;
    958   1.1       cgd 	fscs[0].cs_nbfree--;
    959   1.1       cgd 	if (mode & IFDIR) {
    960   1.1       cgd 		acg.cg_cs.cs_ndir++;
    961   1.1       cgd 		sblock.fs_cstotal.cs_ndir++;
    962   1.1       cgd 		fscs[0].cs_ndir++;
    963   1.1       cgd 	}
    964  1.30    bouyer 	cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
    965  1.30    bouyer 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
    966   1.1       cgd 	if (size != sblock.fs_bsize) {
    967   1.1       cgd 		frag = howmany(size, sblock.fs_fsize);
    968   1.1       cgd 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    969   1.1       cgd 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    970   1.1       cgd 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    971   1.1       cgd 		acg.cg_frsum[sblock.fs_frag - frag]++;
    972   1.1       cgd 		for (i = frag; i < sblock.fs_frag; i++)
    973  1.30    bouyer 			setbit(cg_blksfree(&acg, 0), d + i);
    974   1.1       cgd 	}
    975  1.30    bouyer 	/* host -> fs byte order */
    976  1.30    bouyer 	if (needswap)
    977  1.30    bouyer 		swap_cg(&acg, &acg);
    978   1.1       cgd 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    979   1.1       cgd 	    (char *)&acg);
    980   1.1       cgd 	return (d);
    981   1.1       cgd }
    982   1.1       cgd 
    983   1.1       cgd /*
    984  1.27     lukem  * Calculate number of inodes per group.
    985  1.27     lukem  */
    986  1.27     lukem int32_t
    987  1.45     lukem calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
    988  1.27     lukem {
    989  1.27     lukem 	int i;
    990  1.27     lukem 	int32_t ipg, new_ipg, ncg, ncyl;
    991  1.27     lukem 	off_t usedb;
    992  1.27     lukem 
    993  1.27     lukem 	/*
    994  1.27     lukem 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
    995  1.46     lukem 	 * Note that fssize is still in sectors, not file system blocks.
    996  1.27     lukem 	 */
    997  1.27     lukem 	ncyl = howmany(fssize, secpercyl);
    998  1.45     lukem 	ncg = howmany(ncyl, cylpg);
    999  1.27     lukem 	/*
   1000  1.27     lukem 	 * Iterate a few times to allow for ipg depending on itself.
   1001  1.27     lukem 	 */
   1002  1.27     lukem 	ipg = 0;
   1003  1.27     lukem 	for (i = 0; i < 10; i++) {
   1004  1.27     lukem 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
   1005  1.27     lukem 			* NSPF(&sblock) * (off_t)sectorsize;
   1006  1.52     lukem 		new_ipg = (cylpg * (long long)bpcg - usedb) /
   1007  1.52     lukem 		    ((long long)density * fssize / (ncg * secpercyl * cylpg));
   1008  1.52     lukem 		if (new_ipg <= 0)
   1009  1.52     lukem 			new_ipg = 1;		/* ensure ipg > 0 */
   1010  1.27     lukem 		new_ipg = roundup(new_ipg, INOPB(&sblock));
   1011  1.27     lukem 		if (new_ipg == ipg)
   1012  1.27     lukem 			break;
   1013  1.27     lukem 		ipg = new_ipg;
   1014  1.27     lukem 	}
   1015  1.27     lukem 	*usedbp = usedb;
   1016  1.27     lukem 	return (ipg);
   1017  1.27     lukem }
   1018  1.27     lukem 
   1019  1.27     lukem /*
   1020   1.1       cgd  * Allocate an inode on the disk
   1021   1.1       cgd  */
   1022  1.26  christos static void
   1023  1.39    simonb iput(struct dinode *ip, ino_t ino)
   1024   1.1       cgd {
   1025  1.45     lukem 	struct dinode ibuf[MAXINOPB];
   1026   1.1       cgd 	daddr_t d;
   1027  1.30    bouyer 	int c, i;
   1028   1.1       cgd 
   1029   1.9   mycroft 	c = ino_to_cg(&sblock, ino);
   1030  1.26  christos 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1031  1.30    bouyer 	/* fs -> host byte order */
   1032  1.30    bouyer 	if (needswap)
   1033  1.30    bouyer 		swap_cg(&acg, &acg);
   1034   1.1       cgd 	if (acg.cg_magic != CG_MAGIC) {
   1035   1.1       cgd 		printf("cg 0: bad magic number\n");
   1036   1.1       cgd 		exit(31);
   1037   1.1       cgd 	}
   1038   1.1       cgd 	acg.cg_cs.cs_nifree--;
   1039  1.30    bouyer 	setbit(cg_inosused(&acg, 0), ino);
   1040  1.30    bouyer 	/* host -> fs byte order */
   1041  1.30    bouyer 	if (needswap)
   1042  1.30    bouyer 		swap_cg(&acg, &acg);
   1043   1.1       cgd 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
   1044   1.1       cgd 	    (char *)&acg);
   1045   1.1       cgd 	sblock.fs_cstotal.cs_nifree--;
   1046   1.1       cgd 	fscs[0].cs_nifree--;
   1047   1.1       cgd 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
   1048   1.1       cgd 		printf("fsinit: inode value out of range (%d).\n", ino);
   1049   1.1       cgd 		exit(32);
   1050   1.1       cgd 	}
   1051   1.9   mycroft 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1052  1.45     lukem 	rdfs(d, sblock.fs_bsize, ibuf);
   1053  1.30    bouyer 	if (needswap) {
   1054  1.45     lukem 		ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
   1055  1.30    bouyer 		/* ffs_dinode_swap() doesn't swap blocks addrs */
   1056  1.30    bouyer 		for (i=0; i<NDADDR + NIADDR; i++)
   1057  1.45     lukem 			(&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
   1058  1.30    bouyer 				bswap32(ip->di_db[i]);
   1059  1.30    bouyer 	} else
   1060  1.45     lukem 		ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
   1061  1.45     lukem 	wtfs(d, sblock.fs_bsize, ibuf);
   1062   1.1       cgd }
   1063   1.1       cgd 
   1064   1.1       cgd /*
   1065   1.1       cgd  * Replace libc function with one suited to our needs.
   1066   1.1       cgd  */
   1067  1.50     lukem void *
   1068  1.50     lukem malloc(size_t size)
   1069   1.1       cgd {
   1070  1.44     lukem 	void *p;
   1071   1.9   mycroft 	char *base, *i;
   1072   1.1       cgd 	static u_long pgsz;
   1073   1.1       cgd 	struct rlimit rlp;
   1074   1.1       cgd 
   1075   1.1       cgd 	if (pgsz == 0) {
   1076   1.1       cgd 		base = sbrk(0);
   1077   1.1       cgd 		pgsz = getpagesize() - 1;
   1078   1.9   mycroft 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
   1079   1.1       cgd 		base = sbrk(i - base);
   1080   1.1       cgd 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1081   1.1       cgd 			perror("getrlimit");
   1082   1.1       cgd 		rlp.rlim_cur = rlp.rlim_max;
   1083   1.1       cgd 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1084   1.1       cgd 			perror("setrlimit");
   1085   1.9   mycroft 		memleft = rlp.rlim_max - (u_long)base;
   1086   1.1       cgd 	}
   1087   1.1       cgd 	size = (size + pgsz) &~ pgsz;
   1088   1.1       cgd 	if (size > memleft)
   1089   1.1       cgd 		size = memleft;
   1090   1.1       cgd 	memleft -= size;
   1091   1.1       cgd 	if (size == 0)
   1092  1.44     lukem 		return (NULL);
   1093  1.44     lukem 	p = sbrk(size);
   1094  1.44     lukem 	if (p == (void *)-1)
   1095  1.44     lukem 		p = NULL;
   1096  1.44     lukem 	return (p);
   1097   1.1       cgd }
   1098   1.1       cgd 
   1099   1.1       cgd /*
   1100   1.1       cgd  * Replace libc function with one suited to our needs.
   1101   1.1       cgd  */
   1102  1.50     lukem void *
   1103  1.50     lukem realloc(void *ptr, size_t size)
   1104   1.1       cgd {
   1105   1.9   mycroft 	void *p;
   1106   1.1       cgd 
   1107  1.50     lukem 	if ((p = malloc(size)) == NULL)
   1108   1.9   mycroft 		return (NULL);
   1109  1.27     lukem 	memmove(p, ptr, size);
   1110  1.50     lukem 	free(ptr);
   1111   1.9   mycroft 	return (p);
   1112   1.1       cgd }
   1113   1.1       cgd 
   1114   1.1       cgd /*
   1115   1.1       cgd  * Replace libc function with one suited to our needs.
   1116   1.1       cgd  */
   1117  1.50     lukem void *
   1118  1.50     lukem calloc(size_t size, size_t numelm)
   1119   1.1       cgd {
   1120  1.26  christos 	void *base;
   1121   1.1       cgd 
   1122   1.1       cgd 	size *= numelm;
   1123  1.50     lukem 	base = malloc(size);
   1124  1.44     lukem 	if (base == NULL)
   1125  1.44     lukem 		return (NULL);
   1126  1.12   mycroft 	memset(base, 0, size);
   1127  1.27     lukem 	return (base);
   1128   1.1       cgd }
   1129   1.1       cgd 
   1130   1.1       cgd /*
   1131   1.1       cgd  * Replace libc function with one suited to our needs.
   1132   1.1       cgd  */
   1133  1.50     lukem void
   1134  1.50     lukem free(void *ptr)
   1135   1.1       cgd {
   1136   1.1       cgd 
   1137   1.1       cgd 	/* do not worry about it for now */
   1138   1.1       cgd }
   1139   1.1       cgd 
   1140   1.1       cgd /*
   1141   1.1       cgd  * read a block from the file system
   1142   1.1       cgd  */
   1143  1.26  christos void
   1144  1.39    simonb rdfs(daddr_t bno, int size, void *bf)
   1145   1.1       cgd {
   1146   1.1       cgd 	int n;
   1147  1.18       cgd 	off_t offset;
   1148   1.1       cgd 
   1149   1.1       cgd 	if (mfs) {
   1150  1.27     lukem 		memmove(bf, membase + bno * sectorsize, size);
   1151   1.1       cgd 		return;
   1152   1.1       cgd 	}
   1153  1.18       cgd 	offset = bno;
   1154  1.18       cgd 	offset *= sectorsize;
   1155  1.18       cgd 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1156  1.26  christos 		printf("seek error: %d\n", bno);
   1157   1.1       cgd 		perror("rdfs");
   1158   1.1       cgd 		exit(33);
   1159   1.1       cgd 	}
   1160   1.1       cgd 	n = read(fsi, bf, size);
   1161   1.9   mycroft 	if (n != size) {
   1162  1.26  christos 		printf("read error: %d\n", bno);
   1163   1.1       cgd 		perror("rdfs");
   1164   1.1       cgd 		exit(34);
   1165   1.1       cgd 	}
   1166   1.1       cgd }
   1167   1.1       cgd 
   1168   1.1       cgd /*
   1169   1.1       cgd  * write a block to the file system
   1170   1.1       cgd  */
   1171  1.26  christos void
   1172  1.39    simonb wtfs(daddr_t bno, int size, void *bf)
   1173   1.1       cgd {
   1174   1.1       cgd 	int n;
   1175  1.18       cgd 	off_t offset;
   1176   1.1       cgd 
   1177   1.1       cgd 	if (mfs) {
   1178  1.27     lukem 		memmove(membase + bno * sectorsize, bf, size);
   1179   1.1       cgd 		return;
   1180   1.1       cgd 	}
   1181   1.1       cgd 	if (Nflag)
   1182   1.1       cgd 		return;
   1183  1.18       cgd 	offset = bno;
   1184  1.18       cgd 	offset *= sectorsize;
   1185  1.18       cgd 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1186  1.26  christos 		printf("seek error: %d\n", bno);
   1187   1.1       cgd 		perror("wtfs");
   1188   1.1       cgd 		exit(35);
   1189   1.1       cgd 	}
   1190   1.1       cgd 	n = write(fso, bf, size);
   1191   1.9   mycroft 	if (n != size) {
   1192  1.26  christos 		printf("write error: %d\n", bno);
   1193   1.1       cgd 		perror("wtfs");
   1194   1.1       cgd 		exit(36);
   1195   1.1       cgd 	}
   1196   1.1       cgd }
   1197   1.1       cgd 
   1198   1.1       cgd /*
   1199   1.1       cgd  * check if a block is available
   1200   1.1       cgd  */
   1201  1.26  christos int
   1202  1.39    simonb isblock(struct fs *fs, unsigned char *cp, int h)
   1203   1.1       cgd {
   1204   1.1       cgd 	unsigned char mask;
   1205   1.1       cgd 
   1206   1.1       cgd 	switch (fs->fs_frag) {
   1207   1.1       cgd 	case 8:
   1208   1.1       cgd 		return (cp[h] == 0xff);
   1209   1.1       cgd 	case 4:
   1210   1.1       cgd 		mask = 0x0f << ((h & 0x1) << 2);
   1211   1.1       cgd 		return ((cp[h >> 1] & mask) == mask);
   1212   1.1       cgd 	case 2:
   1213   1.1       cgd 		mask = 0x03 << ((h & 0x3) << 1);
   1214   1.1       cgd 		return ((cp[h >> 2] & mask) == mask);
   1215   1.1       cgd 	case 1:
   1216   1.1       cgd 		mask = 0x01 << (h & 0x7);
   1217   1.1       cgd 		return ((cp[h >> 3] & mask) == mask);
   1218   1.1       cgd 	default:
   1219   1.1       cgd #ifdef STANDALONE
   1220   1.1       cgd 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1221   1.1       cgd #else
   1222   1.1       cgd 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1223   1.1       cgd #endif
   1224   1.1       cgd 		return (0);
   1225   1.1       cgd 	}
   1226   1.1       cgd }
   1227   1.1       cgd 
   1228   1.1       cgd /*
   1229   1.1       cgd  * take a block out of the map
   1230   1.1       cgd  */
   1231  1.26  christos void
   1232  1.39    simonb clrblock(struct fs *fs, unsigned char *cp, int h)
   1233   1.1       cgd {
   1234   1.1       cgd 	switch ((fs)->fs_frag) {
   1235   1.1       cgd 	case 8:
   1236   1.1       cgd 		cp[h] = 0;
   1237   1.1       cgd 		return;
   1238   1.1       cgd 	case 4:
   1239   1.1       cgd 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1240   1.1       cgd 		return;
   1241   1.1       cgd 	case 2:
   1242   1.1       cgd 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1243   1.1       cgd 		return;
   1244   1.1       cgd 	case 1:
   1245   1.1       cgd 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1246   1.1       cgd 		return;
   1247   1.1       cgd 	default:
   1248   1.1       cgd #ifdef STANDALONE
   1249   1.1       cgd 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1250   1.1       cgd #else
   1251   1.1       cgd 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1252   1.1       cgd #endif
   1253   1.1       cgd 		return;
   1254   1.1       cgd 	}
   1255   1.1       cgd }
   1256   1.1       cgd 
   1257   1.1       cgd /*
   1258   1.1       cgd  * put a block into the map
   1259   1.1       cgd  */
   1260  1.26  christos void
   1261  1.39    simonb setblock(struct fs *fs, unsigned char *cp, int h)
   1262   1.1       cgd {
   1263   1.1       cgd 	switch (fs->fs_frag) {
   1264   1.1       cgd 	case 8:
   1265   1.1       cgd 		cp[h] = 0xff;
   1266   1.1       cgd 		return;
   1267   1.1       cgd 	case 4:
   1268   1.1       cgd 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1269   1.1       cgd 		return;
   1270   1.1       cgd 	case 2:
   1271   1.1       cgd 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1272   1.1       cgd 		return;
   1273   1.1       cgd 	case 1:
   1274   1.1       cgd 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1275   1.1       cgd 		return;
   1276   1.1       cgd 	default:
   1277   1.1       cgd #ifdef STANDALONE
   1278   1.1       cgd 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1279   1.1       cgd #else
   1280   1.1       cgd 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1281   1.1       cgd #endif
   1282   1.1       cgd 		return;
   1283  1.30    bouyer 	}
   1284  1.30    bouyer }
   1285  1.30    bouyer 
   1286  1.30    bouyer /* swap byte order of cylinder group */
   1287  1.30    bouyer static void
   1288  1.39    simonb swap_cg(struct cg *o, struct cg *n)
   1289  1.30    bouyer {
   1290  1.30    bouyer 	int i, btotsize, fbsize;
   1291  1.30    bouyer 	u_int32_t *n32, *o32;
   1292  1.30    bouyer 	u_int16_t *n16, *o16;
   1293  1.30    bouyer 
   1294  1.30    bouyer 	n->cg_firstfield = bswap32(o->cg_firstfield);
   1295  1.30    bouyer 	n->cg_magic = bswap32(o->cg_magic);
   1296  1.30    bouyer 	n->cg_time = bswap32(o->cg_time);
   1297  1.30    bouyer 	n->cg_cgx = bswap32(o->cg_cgx);
   1298  1.30    bouyer 	n->cg_ncyl = bswap16(o->cg_ncyl);
   1299  1.30    bouyer 	n->cg_niblk = bswap16(o->cg_niblk);
   1300  1.30    bouyer 	n->cg_ndblk = bswap32(o->cg_ndblk);
   1301  1.30    bouyer 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
   1302  1.30    bouyer 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
   1303  1.30    bouyer 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
   1304  1.30    bouyer 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
   1305  1.30    bouyer 	n->cg_rotor = bswap32(o->cg_rotor);
   1306  1.30    bouyer 	n->cg_frotor = bswap32(o->cg_frotor);
   1307  1.30    bouyer 	n->cg_irotor = bswap32(o->cg_irotor);
   1308  1.30    bouyer 	n->cg_btotoff = bswap32(o->cg_btotoff);
   1309  1.30    bouyer 	n->cg_boff = bswap32(o->cg_boff);
   1310  1.30    bouyer 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
   1311  1.30    bouyer 	n->cg_freeoff = bswap32(o->cg_freeoff);
   1312  1.30    bouyer 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
   1313  1.30    bouyer 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
   1314  1.30    bouyer 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
   1315  1.30    bouyer 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
   1316  1.30    bouyer 	for (i=0; i < MAXFRAG; i++)
   1317  1.30    bouyer 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
   1318  1.30    bouyer 
   1319  1.30    bouyer 	/* alays new format */
   1320  1.30    bouyer 	if (n->cg_magic == CG_MAGIC) {
   1321  1.30    bouyer 		btotsize = n->cg_boff - n->cg_btotoff;
   1322  1.30    bouyer 		fbsize = n->cg_iusedoff - n->cg_boff;
   1323  1.30    bouyer 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
   1324  1.30    bouyer 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
   1325  1.30    bouyer 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
   1326  1.30    bouyer 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
   1327  1.30    bouyer 	} else {
   1328  1.30    bouyer 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
   1329  1.30    bouyer 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
   1330  1.30    bouyer 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
   1331  1.30    bouyer 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
   1332  1.30    bouyer 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
   1333  1.30    bouyer 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
   1334  1.30    bouyer 	}
   1335  1.30    bouyer 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
   1336  1.30    bouyer 		n32[i] = bswap32(o32[i]);
   1337  1.30    bouyer 
   1338  1.30    bouyer 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
   1339  1.30    bouyer 		n16[i] = bswap16(o16[i]);
   1340  1.30    bouyer 
   1341  1.30    bouyer 	if (n->cg_magic == CG_MAGIC) {
   1342  1.30    bouyer 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
   1343  1.30    bouyer 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
   1344  1.30    bouyer 	} else {
   1345  1.30    bouyer 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
   1346  1.30    bouyer 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
   1347  1.30    bouyer 	}
   1348  1.42     enami 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
   1349  1.30    bouyer 		n32[i] = bswap32(o32[i]);
   1350  1.30    bouyer }
   1351  1.30    bouyer 
   1352  1.30    bouyer /* copy a direntry to a buffer, in fs byte order */
   1353  1.30    bouyer static void
   1354  1.39    simonb copy_dir(struct direct *dir, struct direct *dbuf)
   1355  1.30    bouyer {
   1356  1.30    bouyer 	memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
   1357  1.30    bouyer 	if (needswap) {
   1358  1.30    bouyer 		dbuf->d_ino = bswap32(dir->d_ino);
   1359  1.30    bouyer 		dbuf->d_reclen = bswap16(dir->d_reclen);
   1360  1.30    bouyer 		if (Oflag)
   1361  1.30    bouyer 			((struct odirect*)dbuf)->d_namlen =
   1362  1.30    bouyer 				bswap16(((struct odirect*)dir)->d_namlen);
   1363   1.1       cgd 	}
   1364  1.36  wrstuden }
   1365  1.36  wrstuden 
   1366  1.36  wrstuden /* Determine how many digits are needed to print a given integer */
   1367  1.36  wrstuden static int
   1368  1.39    simonb count_digits(int num)
   1369  1.36  wrstuden {
   1370  1.36  wrstuden 	int ndig;
   1371  1.36  wrstuden 
   1372  1.36  wrstuden 	for(ndig = 1; num > 9; num /=10, ndig++);
   1373  1.36  wrstuden 
   1374  1.36  wrstuden 	return (ndig);
   1375   1.1       cgd }
   1376