mkfs.c revision 1.59 1 1.59 lukem /* $NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $ */
2 1.19 cgd
3 1.1 cgd /*
4 1.9 mycroft * Copyright (c) 1980, 1989, 1993
5 1.9 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd */
35 1.1 cgd
36 1.26 christos #include <sys/cdefs.h>
37 1.1 cgd #ifndef lint
38 1.19 cgd #if 0
39 1.27 lukem static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
40 1.19 cgd #else
41 1.59 lukem __RCSID("$NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $");
42 1.19 cgd #endif
43 1.1 cgd #endif /* not lint */
44 1.1 cgd
45 1.1 cgd #include <sys/param.h>
46 1.1 cgd #include <sys/time.h>
47 1.1 cgd #include <sys/resource.h>
48 1.9 mycroft #include <ufs/ufs/dinode.h>
49 1.9 mycroft #include <ufs/ufs/dir.h>
50 1.30 bouyer #include <ufs/ufs/ufs_bswap.h>
51 1.9 mycroft #include <ufs/ffs/fs.h>
52 1.30 bouyer #include <ufs/ffs/ffs_extern.h>
53 1.1 cgd #include <sys/disklabel.h>
54 1.9 mycroft
55 1.57 lukem #include <errno.h>
56 1.14 cgd #include <string.h>
57 1.14 cgd #include <unistd.h>
58 1.26 christos #include <stdlib.h>
59 1.14 cgd
60 1.9 mycroft #ifndef STANDALONE
61 1.9 mycroft #include <stdio.h>
62 1.9 mycroft #endif
63 1.40 simonb
64 1.40 simonb #include "extern.h"
65 1.1 cgd
66 1.26 christos
67 1.39 simonb static void initcg(int, time_t);
68 1.39 simonb static void fsinit(time_t);
69 1.39 simonb static int makedir(struct direct *, int);
70 1.39 simonb static daddr_t alloc(int, int);
71 1.39 simonb static void iput(struct dinode *, ino_t);
72 1.39 simonb static void rdfs(daddr_t, int, void *);
73 1.39 simonb static void wtfs(daddr_t, int, void *);
74 1.39 simonb static int isblock(struct fs *, unsigned char *, int);
75 1.39 simonb static void clrblock(struct fs *, unsigned char *, int);
76 1.39 simonb static void setblock(struct fs *, unsigned char *, int);
77 1.39 simonb static int32_t calcipg(int32_t, int32_t, off_t *);
78 1.39 simonb static void swap_cg(struct cg *, struct cg *);
79 1.27 lukem
80 1.39 simonb static int count_digits(int);
81 1.36 wrstuden
82 1.1 cgd /*
83 1.1 cgd * make file system for cylinder-group style file systems
84 1.1 cgd */
85 1.1 cgd
86 1.1 cgd /*
87 1.1 cgd * We limit the size of the inode map to be no more than a
88 1.1 cgd * third of the cylinder group space, since we must leave at
89 1.1 cgd * least an equal amount of space for the block map.
90 1.1 cgd *
91 1.1 cgd * N.B.: MAXIPG must be a multiple of INOPB(fs).
92 1.1 cgd */
93 1.1 cgd #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
94 1.1 cgd
95 1.1 cgd #define UMASK 0755
96 1.32 thorpej #define MAXINOPB (MAXBSIZE / DINODE_SIZE)
97 1.1 cgd #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
98 1.1 cgd
99 1.1 cgd union {
100 1.1 cgd struct fs fs;
101 1.1 cgd char pad[SBSIZE];
102 1.1 cgd } fsun;
103 1.1 cgd #define sblock fsun.fs
104 1.1 cgd struct csum *fscs;
105 1.1 cgd
106 1.1 cgd union {
107 1.1 cgd struct cg cg;
108 1.1 cgd char pad[MAXBSIZE];
109 1.1 cgd } cgun;
110 1.1 cgd #define acg cgun.cg
111 1.1 cgd
112 1.32 thorpej struct dinode zino[MAXBSIZE / DINODE_SIZE];
113 1.1 cgd
114 1.30 bouyer char writebuf[MAXBSIZE];
115 1.30 bouyer
116 1.1 cgd int fsi, fso;
117 1.1 cgd
118 1.26 christos void
119 1.49 lukem mkfs(struct partition *pp, const char *fsys, int fi, int fo)
120 1.1 cgd {
121 1.27 lukem int32_t i, mincpc, mincpg, inospercg;
122 1.27 lukem int32_t cylno, rpos, blk, j, warn = 0;
123 1.27 lukem int32_t used, mincpgcnt, bpcg;
124 1.27 lukem off_t usedb;
125 1.27 lukem int32_t mapcramped, inodecramped;
126 1.27 lukem int32_t postblsize, rotblsize, totalsbsize;
127 1.1 cgd time_t utime;
128 1.52 lukem long long sizepb;
129 1.34 wrstuden char *writebuf2; /* dynamic buffer */
130 1.36 wrstuden int nprintcols, printcolwidth;
131 1.1 cgd
132 1.1 cgd #ifndef STANDALONE
133 1.1 cgd time(&utime);
134 1.1 cgd #endif
135 1.1 cgd if (mfs) {
136 1.50 lukem (void)malloc(0);
137 1.1 cgd if (fssize * sectorsize > memleft)
138 1.1 cgd fssize = (memleft - 16384) / sectorsize;
139 1.50 lukem if ((membase = malloc(fssize * sectorsize)) == 0)
140 1.1 cgd exit(12);
141 1.1 cgd }
142 1.1 cgd fsi = fi;
143 1.1 cgd fso = fo;
144 1.9 mycroft if (Oflag) {
145 1.9 mycroft sblock.fs_inodefmt = FS_42INODEFMT;
146 1.9 mycroft sblock.fs_maxsymlinklen = 0;
147 1.9 mycroft } else {
148 1.9 mycroft sblock.fs_inodefmt = FS_44INODEFMT;
149 1.9 mycroft sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
150 1.9 mycroft }
151 1.1 cgd /*
152 1.1 cgd * Validate the given file system size.
153 1.1 cgd * Verify that its last block can actually be accessed.
154 1.1 cgd */
155 1.1 cgd if (fssize <= 0)
156 1.1 cgd printf("preposterous size %d\n", fssize), exit(13);
157 1.1 cgd wtfs(fssize - 1, sectorsize, (char *)&sblock);
158 1.30 bouyer
159 1.1 cgd /*
160 1.1 cgd * collect and verify the sector and track info
161 1.1 cgd */
162 1.1 cgd sblock.fs_nsect = nsectors;
163 1.1 cgd sblock.fs_ntrak = ntracks;
164 1.1 cgd if (sblock.fs_ntrak <= 0)
165 1.1 cgd printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
166 1.1 cgd if (sblock.fs_nsect <= 0)
167 1.1 cgd printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
168 1.55 lukem /*
169 1.55 lukem * collect and verify the filesystem density info
170 1.55 lukem */
171 1.55 lukem sblock.fs_avgfilesize = avgfilesize;
172 1.55 lukem sblock.fs_avgfpdir = avgfpdir;
173 1.55 lukem if (sblock.fs_avgfilesize <= 0)
174 1.55 lukem printf("illegal expected average file size %d\n",
175 1.55 lukem sblock.fs_avgfilesize), exit(14);
176 1.55 lukem if (sblock.fs_avgfpdir <= 0)
177 1.55 lukem printf("illegal expected number of files per directory %d\n",
178 1.55 lukem sblock.fs_avgfpdir), exit(15);
179 1.1 cgd /*
180 1.1 cgd * collect and verify the block and fragment sizes
181 1.1 cgd */
182 1.1 cgd sblock.fs_bsize = bsize;
183 1.1 cgd sblock.fs_fsize = fsize;
184 1.1 cgd if (!POWEROF2(sblock.fs_bsize)) {
185 1.1 cgd printf("block size must be a power of 2, not %d\n",
186 1.1 cgd sblock.fs_bsize);
187 1.1 cgd exit(16);
188 1.1 cgd }
189 1.1 cgd if (!POWEROF2(sblock.fs_fsize)) {
190 1.1 cgd printf("fragment size must be a power of 2, not %d\n",
191 1.1 cgd sblock.fs_fsize);
192 1.1 cgd exit(17);
193 1.1 cgd }
194 1.1 cgd if (sblock.fs_fsize < sectorsize) {
195 1.1 cgd printf("fragment size %d is too small, minimum is %d\n",
196 1.1 cgd sblock.fs_fsize, sectorsize);
197 1.1 cgd exit(18);
198 1.1 cgd }
199 1.1 cgd if (sblock.fs_bsize < MINBSIZE) {
200 1.1 cgd printf("block size %d is too small, minimum is %d\n",
201 1.1 cgd sblock.fs_bsize, MINBSIZE);
202 1.58 lukem exit(19);
203 1.58 lukem }
204 1.58 lukem if (sblock.fs_bsize > MAXBSIZE) {
205 1.58 lukem printf("block size %d is too large, maximum is %d\n",
206 1.58 lukem sblock.fs_bsize, MAXBSIZE);
207 1.1 cgd exit(19);
208 1.1 cgd }
209 1.1 cgd if (sblock.fs_bsize < sblock.fs_fsize) {
210 1.1 cgd printf("block size (%d) cannot be smaller than fragment size (%d)\n",
211 1.1 cgd sblock.fs_bsize, sblock.fs_fsize);
212 1.1 cgd exit(20);
213 1.1 cgd }
214 1.1 cgd sblock.fs_bmask = ~(sblock.fs_bsize - 1);
215 1.1 cgd sblock.fs_fmask = ~(sblock.fs_fsize - 1);
216 1.9 mycroft sblock.fs_qbmask = ~sblock.fs_bmask;
217 1.9 mycroft sblock.fs_qfmask = ~sblock.fs_fmask;
218 1.1 cgd for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
219 1.1 cgd sblock.fs_bshift++;
220 1.1 cgd for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
221 1.1 cgd sblock.fs_fshift++;
222 1.1 cgd sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
223 1.1 cgd for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
224 1.1 cgd sblock.fs_fragshift++;
225 1.1 cgd if (sblock.fs_frag > MAXFRAG) {
226 1.30 bouyer printf("fragment size %d is too small, "
227 1.30 bouyer "minimum with block size %d is %d\n",
228 1.1 cgd sblock.fs_fsize, sblock.fs_bsize,
229 1.1 cgd sblock.fs_bsize / MAXFRAG);
230 1.1 cgd exit(21);
231 1.1 cgd }
232 1.1 cgd sblock.fs_nrpos = nrpos;
233 1.1 cgd sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
234 1.32 thorpej sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
235 1.1 cgd sblock.fs_nspf = sblock.fs_fsize / sectorsize;
236 1.1 cgd for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
237 1.1 cgd sblock.fs_fsbtodb++;
238 1.1 cgd sblock.fs_sblkno =
239 1.1 cgd roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
240 1.1 cgd sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
241 1.1 cgd roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
242 1.1 cgd sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
243 1.1 cgd sblock.fs_cgoffset = roundup(
244 1.1 cgd howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
245 1.1 cgd for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
246 1.1 cgd sblock.fs_cgmask <<= 1;
247 1.1 cgd if (!POWEROF2(sblock.fs_ntrak))
248 1.1 cgd sblock.fs_cgmask <<= 1;
249 1.9 mycroft sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
250 1.9 mycroft for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
251 1.9 mycroft sizepb *= NINDIR(&sblock);
252 1.9 mycroft sblock.fs_maxfilesize += sizepb;
253 1.9 mycroft }
254 1.1 cgd /*
255 1.1 cgd * Validate specified/determined secpercyl
256 1.1 cgd * and calculate minimum cylinders per group.
257 1.1 cgd */
258 1.1 cgd sblock.fs_spc = secpercyl;
259 1.1 cgd for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
260 1.1 cgd sblock.fs_cpc > 1 && (i & 1) == 0;
261 1.1 cgd sblock.fs_cpc >>= 1, i >>= 1)
262 1.1 cgd /* void */;
263 1.1 cgd mincpc = sblock.fs_cpc;
264 1.1 cgd bpcg = sblock.fs_spc * sectorsize;
265 1.32 thorpej inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
266 1.1 cgd if (inospercg > MAXIPG(&sblock))
267 1.1 cgd inospercg = MAXIPG(&sblock);
268 1.1 cgd used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
269 1.1 cgd mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
270 1.1 cgd sblock.fs_spc);
271 1.1 cgd mincpg = roundup(mincpgcnt, mincpc);
272 1.1 cgd /*
273 1.9 mycroft * Ensure that cylinder group with mincpg has enough space
274 1.9 mycroft * for block maps.
275 1.1 cgd */
276 1.1 cgd sblock.fs_cpg = mincpg;
277 1.1 cgd sblock.fs_ipg = inospercg;
278 1.9 mycroft if (maxcontig > 1)
279 1.9 mycroft sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
280 1.1 cgd mapcramped = 0;
281 1.1 cgd while (CGSIZE(&sblock) > sblock.fs_bsize) {
282 1.1 cgd mapcramped = 1;
283 1.1 cgd if (sblock.fs_bsize < MAXBSIZE) {
284 1.1 cgd sblock.fs_bsize <<= 1;
285 1.1 cgd if ((i & 1) == 0) {
286 1.1 cgd i >>= 1;
287 1.1 cgd } else {
288 1.1 cgd sblock.fs_cpc <<= 1;
289 1.1 cgd mincpc <<= 1;
290 1.1 cgd mincpg = roundup(mincpgcnt, mincpc);
291 1.1 cgd sblock.fs_cpg = mincpg;
292 1.1 cgd }
293 1.1 cgd sblock.fs_frag <<= 1;
294 1.1 cgd sblock.fs_fragshift += 1;
295 1.1 cgd if (sblock.fs_frag <= MAXFRAG)
296 1.1 cgd continue;
297 1.1 cgd }
298 1.1 cgd if (sblock.fs_fsize == sblock.fs_bsize) {
299 1.1 cgd printf("There is no block size that");
300 1.1 cgd printf(" can support this disk\n");
301 1.1 cgd exit(22);
302 1.1 cgd }
303 1.1 cgd sblock.fs_frag >>= 1;
304 1.1 cgd sblock.fs_fragshift -= 1;
305 1.1 cgd sblock.fs_fsize <<= 1;
306 1.1 cgd sblock.fs_nspf <<= 1;
307 1.1 cgd }
308 1.1 cgd /*
309 1.9 mycroft * Ensure that cylinder group with mincpg has enough space for inodes.
310 1.1 cgd */
311 1.1 cgd inodecramped = 0;
312 1.27 lukem inospercg = calcipg(mincpg, bpcg, &usedb);
313 1.1 cgd sblock.fs_ipg = inospercg;
314 1.1 cgd while (inospercg > MAXIPG(&sblock)) {
315 1.1 cgd inodecramped = 1;
316 1.1 cgd if (mincpc == 1 || sblock.fs_frag == 1 ||
317 1.1 cgd sblock.fs_bsize == MINBSIZE)
318 1.1 cgd break;
319 1.27 lukem printf("With a block size of %d %s %d\n", sblock.fs_bsize,
320 1.27 lukem "minimum bytes per inode is",
321 1.27 lukem (int)((mincpg * (off_t)bpcg - usedb)
322 1.27 lukem / MAXIPG(&sblock) + 1));
323 1.1 cgd sblock.fs_bsize >>= 1;
324 1.1 cgd sblock.fs_frag >>= 1;
325 1.1 cgd sblock.fs_fragshift -= 1;
326 1.1 cgd mincpc >>= 1;
327 1.1 cgd sblock.fs_cpg = roundup(mincpgcnt, mincpc);
328 1.1 cgd if (CGSIZE(&sblock) > sblock.fs_bsize) {
329 1.1 cgd sblock.fs_bsize <<= 1;
330 1.1 cgd break;
331 1.1 cgd }
332 1.1 cgd mincpg = sblock.fs_cpg;
333 1.27 lukem inospercg = calcipg(mincpg, bpcg, &usedb);
334 1.1 cgd sblock.fs_ipg = inospercg;
335 1.1 cgd }
336 1.1 cgd if (inodecramped) {
337 1.1 cgd if (inospercg > MAXIPG(&sblock)) {
338 1.27 lukem printf("Minimum bytes per inode is %d\n",
339 1.27 lukem (int)((mincpg * (off_t)bpcg - usedb)
340 1.27 lukem / MAXIPG(&sblock) + 1));
341 1.1 cgd } else if (!mapcramped) {
342 1.1 cgd printf("With %d bytes per inode, ", density);
343 1.27 lukem printf("minimum cylinders per group is %d\n", mincpg);
344 1.1 cgd }
345 1.1 cgd }
346 1.1 cgd if (mapcramped) {
347 1.1 cgd printf("With %d sectors per cylinder, ", sblock.fs_spc);
348 1.27 lukem printf("minimum cylinders per group is %d\n", mincpg);
349 1.1 cgd }
350 1.1 cgd if (inodecramped || mapcramped) {
351 1.1 cgd if (sblock.fs_bsize != bsize)
352 1.1 cgd printf("%s to be changed from %d to %d\n",
353 1.1 cgd "This requires the block size",
354 1.1 cgd bsize, sblock.fs_bsize);
355 1.1 cgd if (sblock.fs_fsize != fsize)
356 1.1 cgd printf("\t%s to be changed from %d to %d\n",
357 1.1 cgd "and the fragment size",
358 1.1 cgd fsize, sblock.fs_fsize);
359 1.1 cgd exit(23);
360 1.1 cgd }
361 1.1 cgd /*
362 1.1 cgd * Calculate the number of cylinders per group
363 1.1 cgd */
364 1.1 cgd sblock.fs_cpg = cpg;
365 1.1 cgd if (sblock.fs_cpg % mincpc != 0) {
366 1.27 lukem printf("%s groups must have a multiple of %d cylinders\n",
367 1.1 cgd cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
368 1.1 cgd sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
369 1.1 cgd if (!cpgflg)
370 1.1 cgd cpg = sblock.fs_cpg;
371 1.1 cgd }
372 1.1 cgd /*
373 1.9 mycroft * Must ensure there is enough space for inodes.
374 1.1 cgd */
375 1.27 lukem sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
376 1.1 cgd while (sblock.fs_ipg > MAXIPG(&sblock)) {
377 1.1 cgd inodecramped = 1;
378 1.1 cgd sblock.fs_cpg -= mincpc;
379 1.27 lukem sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
380 1.1 cgd }
381 1.1 cgd /*
382 1.9 mycroft * Must ensure there is enough space to hold block map.
383 1.1 cgd */
384 1.1 cgd while (CGSIZE(&sblock) > sblock.fs_bsize) {
385 1.1 cgd mapcramped = 1;
386 1.1 cgd sblock.fs_cpg -= mincpc;
387 1.27 lukem sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
388 1.1 cgd }
389 1.1 cgd sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
390 1.1 cgd if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
391 1.26 christos printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
392 1.1 cgd exit(24);
393 1.1 cgd }
394 1.1 cgd if (sblock.fs_cpg < mincpg) {
395 1.27 lukem printf("cylinder groups must have at least %d cylinders\n",
396 1.1 cgd mincpg);
397 1.1 cgd exit(25);
398 1.59 lukem } else if (sblock.fs_cpg != cpg && cpgflg) {
399 1.59 lukem if (!mapcramped && !inodecramped)
400 1.1 cgd exit(26);
401 1.1 cgd if (mapcramped && inodecramped)
402 1.1 cgd printf("Block size and bytes per inode restrict");
403 1.1 cgd else if (mapcramped)
404 1.1 cgd printf("Block size restricts");
405 1.1 cgd else
406 1.1 cgd printf("Bytes per inode restrict");
407 1.1 cgd printf(" cylinders per group to %d.\n", sblock.fs_cpg);
408 1.59 lukem exit(27);
409 1.1 cgd }
410 1.1 cgd sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
411 1.1 cgd /*
412 1.1 cgd * Now have size for file system and nsect and ntrak.
413 1.1 cgd * Determine number of cylinders and blocks in the file system.
414 1.1 cgd */
415 1.1 cgd sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
416 1.1 cgd sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
417 1.1 cgd if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
418 1.1 cgd sblock.fs_ncyl++;
419 1.1 cgd warn = 1;
420 1.1 cgd }
421 1.1 cgd if (sblock.fs_ncyl < 1) {
422 1.1 cgd printf("file systems must have at least one cylinder\n");
423 1.1 cgd exit(28);
424 1.1 cgd }
425 1.1 cgd /*
426 1.1 cgd * Determine feasability/values of rotational layout tables.
427 1.1 cgd *
428 1.1 cgd * The size of the rotational layout tables is limited by the
429 1.1 cgd * size of the superblock, SBSIZE. The amount of space available
430 1.1 cgd * for tables is calculated as (SBSIZE - sizeof (struct fs)).
431 1.1 cgd * The size of these tables is inversely proportional to the block
432 1.1 cgd * size of the file system. The size increases if sectors per track
433 1.1 cgd * are not powers of two, because more cylinders must be described
434 1.1 cgd * by the tables before the rotational pattern repeats (fs_cpc).
435 1.1 cgd */
436 1.1 cgd sblock.fs_interleave = interleave;
437 1.1 cgd sblock.fs_trackskew = trackskew;
438 1.1 cgd sblock.fs_npsect = nphyssectors;
439 1.1 cgd sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
440 1.1 cgd sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
441 1.1 cgd if (sblock.fs_ntrak == 1) {
442 1.1 cgd sblock.fs_cpc = 0;
443 1.1 cgd goto next;
444 1.1 cgd }
445 1.20 cgd postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
446 1.1 cgd rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
447 1.1 cgd totalsbsize = sizeof(struct fs) + rotblsize;
448 1.1 cgd if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
449 1.1 cgd /* use old static table space */
450 1.1 cgd sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
451 1.15 cgd (char *)(&sblock.fs_firstfield);
452 1.1 cgd sblock.fs_rotbloff = &sblock.fs_space[0] -
453 1.15 cgd (u_char *)(&sblock.fs_firstfield);
454 1.1 cgd } else {
455 1.1 cgd /* use dynamic table space */
456 1.1 cgd sblock.fs_postbloff = &sblock.fs_space[0] -
457 1.15 cgd (u_char *)(&sblock.fs_firstfield);
458 1.1 cgd sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
459 1.1 cgd totalsbsize += postblsize;
460 1.1 cgd }
461 1.1 cgd if (totalsbsize > SBSIZE ||
462 1.1 cgd sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
463 1.1 cgd printf("%s %s %d %s %d.%s",
464 1.1 cgd "Warning: insufficient space in super block for\n",
465 1.1 cgd "rotational layout tables with nsect", sblock.fs_nsect,
466 1.1 cgd "and ntrak", sblock.fs_ntrak,
467 1.1 cgd "\nFile system performance may be impaired.\n");
468 1.1 cgd sblock.fs_cpc = 0;
469 1.1 cgd goto next;
470 1.1 cgd }
471 1.1 cgd sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
472 1.1 cgd /*
473 1.1 cgd * calculate the available blocks for each rotational position
474 1.1 cgd */
475 1.1 cgd for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
476 1.1 cgd for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
477 1.1 cgd fs_postbl(&sblock, cylno)[rpos] = -1;
478 1.1 cgd for (i = (rotblsize - 1) * sblock.fs_frag;
479 1.1 cgd i >= 0; i -= sblock.fs_frag) {
480 1.1 cgd cylno = cbtocylno(&sblock, i);
481 1.1 cgd rpos = cbtorpos(&sblock, i);
482 1.1 cgd blk = fragstoblks(&sblock, i);
483 1.1 cgd if (fs_postbl(&sblock, cylno)[rpos] == -1)
484 1.1 cgd fs_rotbl(&sblock)[blk] = 0;
485 1.1 cgd else
486 1.30 bouyer fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
487 1.1 cgd fs_postbl(&sblock, cylno)[rpos] = blk;
488 1.1 cgd }
489 1.1 cgd next:
490 1.1 cgd /*
491 1.1 cgd * Compute/validate number of cylinder groups.
492 1.1 cgd */
493 1.1 cgd sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
494 1.1 cgd if (sblock.fs_ncyl % sblock.fs_cpg)
495 1.1 cgd sblock.fs_ncg++;
496 1.1 cgd sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
497 1.1 cgd i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
498 1.1 cgd if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
499 1.27 lukem printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
500 1.1 cgd cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
501 1.1 cgd sblock.fs_fpg / sblock.fs_frag);
502 1.1 cgd printf("number of cylinders per cylinder group (%d) %s.\n",
503 1.1 cgd sblock.fs_cpg, "must be increased");
504 1.1 cgd exit(29);
505 1.1 cgd }
506 1.1 cgd j = sblock.fs_ncg - 1;
507 1.1 cgd if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
508 1.1 cgd cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
509 1.1 cgd if (j == 0) {
510 1.46 lukem printf("File system must have at least %d sectors\n",
511 1.1 cgd NSPF(&sblock) *
512 1.1 cgd (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
513 1.1 cgd exit(30);
514 1.1 cgd }
515 1.30 bouyer printf("Warning: inode blocks/cyl group (%d) >= "
516 1.30 bouyer "data blocks (%d) in last\n",
517 1.1 cgd (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
518 1.1 cgd i / sblock.fs_frag);
519 1.30 bouyer printf(" cylinder group. This implies %d sector(s) "
520 1.30 bouyer "cannot be allocated.\n",
521 1.1 cgd i * NSPF(&sblock));
522 1.1 cgd sblock.fs_ncg--;
523 1.1 cgd sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
524 1.1 cgd sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
525 1.1 cgd NSPF(&sblock);
526 1.1 cgd warn = 0;
527 1.1 cgd }
528 1.1 cgd if (warn && !mfs) {
529 1.1 cgd printf("Warning: %d sector(s) in last cylinder unallocated\n",
530 1.1 cgd sblock.fs_spc -
531 1.1 cgd (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
532 1.1 cgd * sblock.fs_spc));
533 1.1 cgd }
534 1.1 cgd /*
535 1.1 cgd * fill in remaining fields of the super block
536 1.1 cgd */
537 1.1 cgd sblock.fs_csaddr = cgdmin(&sblock, 0);
538 1.1 cgd sblock.fs_cssize =
539 1.1 cgd fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
540 1.54 lukem /*
541 1.54 lukem * The superblock fields 'fs_csmask' and 'fs_csshift' are no
542 1.54 lukem * longer used. However, we still initialise them so that the
543 1.54 lukem * filesystem remains compatible with old kernels.
544 1.54 lukem */
545 1.1 cgd i = sblock.fs_bsize / sizeof(struct csum);
546 1.1 cgd sblock.fs_csmask = ~(i - 1);
547 1.1 cgd for (sblock.fs_csshift = 0; i > 1; i >>= 1)
548 1.1 cgd sblock.fs_csshift++;
549 1.50 lukem fscs = (struct csum *)calloc(1, sblock.fs_cssize);
550 1.44 lukem if (fscs == NULL)
551 1.44 lukem exit(39);
552 1.1 cgd sblock.fs_magic = FS_MAGIC;
553 1.1 cgd sblock.fs_rotdelay = rotdelay;
554 1.1 cgd sblock.fs_minfree = minfree;
555 1.1 cgd sblock.fs_maxcontig = maxcontig;
556 1.1 cgd sblock.fs_maxbpg = maxbpg;
557 1.1 cgd sblock.fs_rps = rpm / 60;
558 1.1 cgd sblock.fs_optim = opt;
559 1.1 cgd sblock.fs_cgrotor = 0;
560 1.1 cgd sblock.fs_cstotal.cs_ndir = 0;
561 1.1 cgd sblock.fs_cstotal.cs_nbfree = 0;
562 1.1 cgd sblock.fs_cstotal.cs_nifree = 0;
563 1.1 cgd sblock.fs_cstotal.cs_nffree = 0;
564 1.1 cgd sblock.fs_fmod = 0;
565 1.21 mycroft sblock.fs_clean = FS_ISCLEAN;
566 1.1 cgd sblock.fs_ronly = 0;
567 1.1 cgd /*
568 1.1 cgd * Dump out summary information about file system.
569 1.1 cgd */
570 1.1 cgd if (!mfs) {
571 1.1 cgd printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
572 1.1 cgd fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
573 1.1 cgd "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
574 1.9 mycroft #define B2MBFACTOR (1 / (1024.0 * 1024.0))
575 1.1 cgd printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
576 1.9 mycroft (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
577 1.1 cgd sblock.fs_ncg, sblock.fs_cpg,
578 1.9 mycroft (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
579 1.1 cgd sblock.fs_ipg);
580 1.9 mycroft #undef B2MBFACTOR
581 1.1 cgd }
582 1.1 cgd /*
583 1.36 wrstuden * Now determine how wide each column will be, and calculate how
584 1.37 wrstuden * many columns will fit in a 76 char line. 76 is the width of the
585 1.37 wrstuden * subwindows in sysinst.
586 1.36 wrstuden */
587 1.36 wrstuden printcolwidth = count_digits(
588 1.36 wrstuden fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
589 1.37 wrstuden nprintcols = 76 / (printcolwidth + 2);
590 1.36 wrstuden /*
591 1.1 cgd * Now build the cylinders group blocks and
592 1.1 cgd * then print out indices of cylinder groups.
593 1.1 cgd */
594 1.1 cgd if (!mfs)
595 1.1 cgd printf("super-block backups (for fsck -b #) at:");
596 1.1 cgd for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
597 1.1 cgd initcg(cylno, utime);
598 1.1 cgd if (mfs)
599 1.1 cgd continue;
600 1.36 wrstuden if (cylno % nprintcols == 0)
601 1.1 cgd printf("\n");
602 1.36 wrstuden printf(" %*d,", printcolwidth,
603 1.36 wrstuden fsbtodb(&sblock, cgsblock(&sblock, cylno)));
604 1.22 jtc fflush(stdout);
605 1.1 cgd }
606 1.1 cgd if (!mfs)
607 1.1 cgd printf("\n");
608 1.1 cgd if (Nflag && !mfs)
609 1.1 cgd exit(0);
610 1.1 cgd /*
611 1.1 cgd * Now construct the initial file system,
612 1.1 cgd * then write out the super-block.
613 1.1 cgd */
614 1.1 cgd fsinit(utime);
615 1.1 cgd sblock.fs_time = utime;
616 1.30 bouyer memcpy(writebuf, &sblock, sbsize);
617 1.30 bouyer if (needswap)
618 1.51 lukem ffs_sb_swap(&sblock, (struct fs*)writebuf);
619 1.30 bouyer wtfs((int)SBOFF / sectorsize, sbsize, writebuf);
620 1.1 cgd /*
621 1.1 cgd * Write out the duplicate super blocks
622 1.1 cgd */
623 1.1 cgd for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
624 1.1 cgd wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
625 1.30 bouyer sbsize, writebuf);
626 1.34 wrstuden
627 1.34 wrstuden /*
628 1.34 wrstuden * if we need to swap, create a buffer for the cylinder summaries
629 1.34 wrstuden * to get swapped to.
630 1.34 wrstuden */
631 1.34 wrstuden if (needswap) {
632 1.50 lukem if ((writebuf2=malloc(sblock.fs_cssize)) == NULL)
633 1.34 wrstuden exit(12);
634 1.34 wrstuden ffs_csum_swap(fscs, (struct csum*)writebuf2, sblock.fs_cssize);
635 1.34 wrstuden } else
636 1.34 wrstuden writebuf2 = (char *)fscs;
637 1.34 wrstuden
638 1.30 bouyer for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
639 1.30 bouyer wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
640 1.30 bouyer sblock.fs_cssize - i < sblock.fs_bsize ?
641 1.30 bouyer sblock.fs_cssize - i : sblock.fs_bsize,
642 1.34 wrstuden ((char *)writebuf2) + i);
643 1.34 wrstuden if (writebuf2 != (char *)fscs)
644 1.50 lukem free(writebuf2);
645 1.34 wrstuden
646 1.1 cgd /*
647 1.1 cgd * Update information about this partion in pack
648 1.1 cgd * label, to that it may be updated on disk.
649 1.1 cgd */
650 1.1 cgd pp->p_fstype = FS_BSDFFS;
651 1.1 cgd pp->p_fsize = sblock.fs_fsize;
652 1.1 cgd pp->p_frag = sblock.fs_frag;
653 1.1 cgd pp->p_cpg = sblock.fs_cpg;
654 1.1 cgd }
655 1.1 cgd
656 1.1 cgd /*
657 1.1 cgd * Initialize a cylinder group.
658 1.1 cgd */
659 1.26 christos void
660 1.39 simonb initcg(int cylno, time_t utime)
661 1.1 cgd {
662 1.9 mycroft daddr_t cbase, d, dlower, dupper, dmax, blkno;
663 1.27 lukem int32_t i;
664 1.26 christos struct csum *cs;
665 1.1 cgd
666 1.1 cgd /*
667 1.1 cgd * Determine block bounds for cylinder group.
668 1.1 cgd * Allow space for super block summary information in first
669 1.1 cgd * cylinder group.
670 1.1 cgd */
671 1.1 cgd cbase = cgbase(&sblock, cylno);
672 1.1 cgd dmax = cbase + sblock.fs_fpg;
673 1.1 cgd if (dmax > sblock.fs_size)
674 1.1 cgd dmax = sblock.fs_size;
675 1.1 cgd dlower = cgsblock(&sblock, cylno) - cbase;
676 1.1 cgd dupper = cgdmin(&sblock, cylno) - cbase;
677 1.1 cgd if (cylno == 0)
678 1.1 cgd dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
679 1.1 cgd cs = fscs + cylno;
680 1.12 mycroft memset(&acg, 0, sblock.fs_cgsize);
681 1.1 cgd acg.cg_time = utime;
682 1.1 cgd acg.cg_magic = CG_MAGIC;
683 1.1 cgd acg.cg_cgx = cylno;
684 1.1 cgd if (cylno == sblock.fs_ncg - 1)
685 1.1 cgd acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
686 1.1 cgd else
687 1.1 cgd acg.cg_ncyl = sblock.fs_cpg;
688 1.1 cgd acg.cg_niblk = sblock.fs_ipg;
689 1.1 cgd acg.cg_ndblk = dmax - cbase;
690 1.9 mycroft if (sblock.fs_contigsumsize > 0)
691 1.9 mycroft acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
692 1.15 cgd acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
693 1.14 cgd acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
694 1.1 cgd acg.cg_iusedoff = acg.cg_boff +
695 1.20 cgd sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
696 1.1 cgd acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
697 1.9 mycroft if (sblock.fs_contigsumsize <= 0) {
698 1.9 mycroft acg.cg_nextfreeoff = acg.cg_freeoff +
699 1.9 mycroft howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
700 1.9 mycroft } else {
701 1.9 mycroft acg.cg_clustersumoff = acg.cg_freeoff + howmany
702 1.9 mycroft (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
703 1.14 cgd sizeof(int32_t);
704 1.9 mycroft acg.cg_clustersumoff =
705 1.14 cgd roundup(acg.cg_clustersumoff, sizeof(int32_t));
706 1.9 mycroft acg.cg_clusteroff = acg.cg_clustersumoff +
707 1.14 cgd (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
708 1.9 mycroft acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
709 1.9 mycroft (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
710 1.9 mycroft }
711 1.41 scw if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
712 1.9 mycroft printf("Panic: cylinder group too big\n");
713 1.9 mycroft exit(37);
714 1.1 cgd }
715 1.1 cgd acg.cg_cs.cs_nifree += sblock.fs_ipg;
716 1.1 cgd if (cylno == 0)
717 1.1 cgd for (i = 0; i < ROOTINO; i++) {
718 1.30 bouyer setbit(cg_inosused(&acg, 0), i);
719 1.1 cgd acg.cg_cs.cs_nifree--;
720 1.1 cgd }
721 1.1 cgd for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
722 1.1 cgd wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
723 1.1 cgd sblock.fs_bsize, (char *)zino);
724 1.1 cgd if (cylno > 0) {
725 1.1 cgd /*
726 1.1 cgd * In cylno 0, beginning space is reserved
727 1.1 cgd * for boot and super blocks.
728 1.1 cgd */
729 1.1 cgd for (d = 0; d < dlower; d += sblock.fs_frag) {
730 1.9 mycroft blkno = d / sblock.fs_frag;
731 1.30 bouyer setblock(&sblock, cg_blksfree(&acg, 0), blkno);
732 1.9 mycroft if (sblock.fs_contigsumsize > 0)
733 1.30 bouyer setbit(cg_clustersfree(&acg, 0), blkno);
734 1.1 cgd acg.cg_cs.cs_nbfree++;
735 1.30 bouyer cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
736 1.30 bouyer cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
737 1.1 cgd [cbtorpos(&sblock, d)]++;
738 1.1 cgd }
739 1.1 cgd sblock.fs_dsize += dlower;
740 1.1 cgd }
741 1.1 cgd sblock.fs_dsize += acg.cg_ndblk - dupper;
742 1.26 christos if ((i = (dupper % sblock.fs_frag)) != 0) {
743 1.1 cgd acg.cg_frsum[sblock.fs_frag - i]++;
744 1.1 cgd for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
745 1.30 bouyer setbit(cg_blksfree(&acg, 0), dupper);
746 1.1 cgd acg.cg_cs.cs_nffree++;
747 1.1 cgd }
748 1.1 cgd }
749 1.1 cgd for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
750 1.9 mycroft blkno = d / sblock.fs_frag;
751 1.30 bouyer setblock(&sblock, cg_blksfree(&acg, 0), blkno);
752 1.9 mycroft if (sblock.fs_contigsumsize > 0)
753 1.30 bouyer setbit(cg_clustersfree(&acg, 0), blkno);
754 1.1 cgd acg.cg_cs.cs_nbfree++;
755 1.30 bouyer cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
756 1.30 bouyer cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
757 1.1 cgd [cbtorpos(&sblock, d)]++;
758 1.1 cgd d += sblock.fs_frag;
759 1.1 cgd }
760 1.1 cgd if (d < dmax - cbase) {
761 1.1 cgd acg.cg_frsum[dmax - cbase - d]++;
762 1.1 cgd for (; d < dmax - cbase; d++) {
763 1.30 bouyer setbit(cg_blksfree(&acg, 0), d);
764 1.1 cgd acg.cg_cs.cs_nffree++;
765 1.1 cgd }
766 1.1 cgd }
767 1.9 mycroft if (sblock.fs_contigsumsize > 0) {
768 1.30 bouyer int32_t *sump = cg_clustersum(&acg, 0);
769 1.30 bouyer u_char *mapp = cg_clustersfree(&acg, 0);
770 1.9 mycroft int map = *mapp++;
771 1.9 mycroft int bit = 1;
772 1.9 mycroft int run = 0;
773 1.9 mycroft
774 1.9 mycroft for (i = 0; i < acg.cg_nclusterblks; i++) {
775 1.9 mycroft if ((map & bit) != 0) {
776 1.9 mycroft run++;
777 1.9 mycroft } else if (run != 0) {
778 1.9 mycroft if (run > sblock.fs_contigsumsize)
779 1.9 mycroft run = sblock.fs_contigsumsize;
780 1.9 mycroft sump[run]++;
781 1.9 mycroft run = 0;
782 1.9 mycroft }
783 1.9 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
784 1.9 mycroft bit <<= 1;
785 1.9 mycroft } else {
786 1.9 mycroft map = *mapp++;
787 1.9 mycroft bit = 1;
788 1.9 mycroft }
789 1.9 mycroft }
790 1.9 mycroft if (run != 0) {
791 1.9 mycroft if (run > sblock.fs_contigsumsize)
792 1.9 mycroft run = sblock.fs_contigsumsize;
793 1.9 mycroft sump[run]++;
794 1.9 mycroft }
795 1.9 mycroft }
796 1.1 cgd sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
797 1.1 cgd sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
798 1.1 cgd sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
799 1.1 cgd sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
800 1.1 cgd *cs = acg.cg_cs;
801 1.30 bouyer memcpy(writebuf, &acg, sblock.fs_bsize);
802 1.30 bouyer if (needswap)
803 1.30 bouyer swap_cg(&acg, (struct cg*)writebuf);
804 1.1 cgd wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
805 1.30 bouyer sblock.fs_bsize, writebuf);
806 1.1 cgd }
807 1.1 cgd
808 1.1 cgd /*
809 1.1 cgd * initialize the file system
810 1.1 cgd */
811 1.1 cgd struct dinode node;
812 1.1 cgd
813 1.1 cgd #ifdef LOSTDIR
814 1.1 cgd #define PREDEFDIR 3
815 1.1 cgd #else
816 1.1 cgd #define PREDEFDIR 2
817 1.1 cgd #endif
818 1.1 cgd
819 1.1 cgd struct direct root_dir[] = {
820 1.9 mycroft { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
821 1.9 mycroft { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
822 1.9 mycroft #ifdef LOSTDIR
823 1.9 mycroft { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
824 1.9 mycroft #endif
825 1.9 mycroft };
826 1.9 mycroft struct odirect {
827 1.14 cgd u_int32_t d_ino;
828 1.14 cgd u_int16_t d_reclen;
829 1.14 cgd u_int16_t d_namlen;
830 1.9 mycroft u_char d_name[MAXNAMLEN + 1];
831 1.9 mycroft } oroot_dir[] = {
832 1.1 cgd { ROOTINO, sizeof(struct direct), 1, "." },
833 1.1 cgd { ROOTINO, sizeof(struct direct), 2, ".." },
834 1.1 cgd #ifdef LOSTDIR
835 1.1 cgd { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
836 1.1 cgd #endif
837 1.1 cgd };
838 1.1 cgd #ifdef LOSTDIR
839 1.1 cgd struct direct lost_found_dir[] = {
840 1.9 mycroft { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
841 1.9 mycroft { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
842 1.9 mycroft { 0, DIRBLKSIZ, 0, 0, 0 },
843 1.9 mycroft };
844 1.9 mycroft struct odirect olost_found_dir[] = {
845 1.1 cgd { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
846 1.1 cgd { ROOTINO, sizeof(struct direct), 2, ".." },
847 1.1 cgd { 0, DIRBLKSIZ, 0, 0 },
848 1.1 cgd };
849 1.1 cgd #endif
850 1.1 cgd char buf[MAXBSIZE];
851 1.39 simonb static void copy_dir(struct direct *, struct direct *);
852 1.1 cgd
853 1.26 christos void
854 1.39 simonb fsinit(time_t utime)
855 1.1 cgd {
856 1.26 christos #ifdef LOSTDIR
857 1.1 cgd int i;
858 1.26 christos #endif
859 1.1 cgd
860 1.1 cgd /*
861 1.1 cgd * initialize the node
862 1.1 cgd */
863 1.33 simonb memset(&node, 0, sizeof(node));
864 1.25 cgd node.di_atime = utime;
865 1.25 cgd node.di_mtime = utime;
866 1.25 cgd node.di_ctime = utime;
867 1.30 bouyer
868 1.1 cgd #ifdef LOSTDIR
869 1.1 cgd /*
870 1.1 cgd * create the lost+found directory
871 1.1 cgd */
872 1.9 mycroft if (Oflag) {
873 1.9 mycroft (void)makedir((struct direct *)olost_found_dir, 2);
874 1.9 mycroft for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
875 1.30 bouyer copy_dir((struct direct*)&olost_found_dir[2],
876 1.30 bouyer (struct direct*)&buf[i]);
877 1.9 mycroft } else {
878 1.9 mycroft (void)makedir(lost_found_dir, 2);
879 1.9 mycroft for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
880 1.30 bouyer copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
881 1.9 mycroft }
882 1.1 cgd node.di_mode = IFDIR | UMASK;
883 1.1 cgd node.di_nlink = 2;
884 1.1 cgd node.di_size = sblock.fs_bsize;
885 1.1 cgd node.di_db[0] = alloc(node.di_size, node.di_mode);
886 1.1 cgd node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
887 1.35 wrstuden node.di_uid = geteuid();
888 1.35 wrstuden node.di_gid = getegid();
889 1.1 cgd wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
890 1.1 cgd iput(&node, LOSTFOUNDINO);
891 1.1 cgd #endif
892 1.1 cgd /*
893 1.1 cgd * create the root directory
894 1.1 cgd */
895 1.1 cgd if (mfs)
896 1.1 cgd node.di_mode = IFDIR | 01777;
897 1.1 cgd else
898 1.1 cgd node.di_mode = IFDIR | UMASK;
899 1.1 cgd node.di_nlink = PREDEFDIR;
900 1.9 mycroft if (Oflag)
901 1.9 mycroft node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
902 1.9 mycroft else
903 1.9 mycroft node.di_size = makedir(root_dir, PREDEFDIR);
904 1.1 cgd node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
905 1.1 cgd node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
906 1.35 wrstuden node.di_uid = geteuid();
907 1.35 wrstuden node.di_gid = getegid();
908 1.1 cgd wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
909 1.1 cgd iput(&node, ROOTINO);
910 1.1 cgd }
911 1.1 cgd
912 1.1 cgd /*
913 1.1 cgd * construct a set of directory entries in "buf".
914 1.1 cgd * return size of directory.
915 1.1 cgd */
916 1.26 christos int
917 1.39 simonb makedir(struct direct *protodir, int entries)
918 1.1 cgd {
919 1.1 cgd char *cp;
920 1.1 cgd int i, spcleft;
921 1.1 cgd
922 1.1 cgd spcleft = DIRBLKSIZ;
923 1.1 cgd for (cp = buf, i = 0; i < entries - 1; i++) {
924 1.30 bouyer protodir[i].d_reclen = DIRSIZ(Oflag, &protodir[i], 0);
925 1.30 bouyer copy_dir(&protodir[i], (struct direct*)cp);
926 1.1 cgd cp += protodir[i].d_reclen;
927 1.1 cgd spcleft -= protodir[i].d_reclen;
928 1.1 cgd }
929 1.1 cgd protodir[i].d_reclen = spcleft;
930 1.30 bouyer copy_dir(&protodir[i], (struct direct*)cp);
931 1.1 cgd return (DIRBLKSIZ);
932 1.1 cgd }
933 1.1 cgd
934 1.1 cgd /*
935 1.1 cgd * allocate a block or frag
936 1.1 cgd */
937 1.1 cgd daddr_t
938 1.39 simonb alloc(int size, int mode)
939 1.1 cgd {
940 1.1 cgd int i, frag;
941 1.9 mycroft daddr_t d, blkno;
942 1.1 cgd
943 1.26 christos rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
944 1.30 bouyer /* fs -> host byte order */
945 1.30 bouyer if (needswap)
946 1.30 bouyer swap_cg(&acg, &acg);
947 1.1 cgd if (acg.cg_magic != CG_MAGIC) {
948 1.1 cgd printf("cg 0: bad magic number\n");
949 1.1 cgd return (0);
950 1.1 cgd }
951 1.1 cgd if (acg.cg_cs.cs_nbfree == 0) {
952 1.1 cgd printf("first cylinder group ran out of space\n");
953 1.1 cgd return (0);
954 1.1 cgd }
955 1.1 cgd for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
956 1.30 bouyer if (isblock(&sblock, cg_blksfree(&acg, 0), d / sblock.fs_frag))
957 1.1 cgd goto goth;
958 1.1 cgd printf("internal error: can't find block in cyl 0\n");
959 1.1 cgd return (0);
960 1.1 cgd goth:
961 1.9 mycroft blkno = fragstoblks(&sblock, d);
962 1.30 bouyer clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
963 1.10 cgd if (sblock.fs_contigsumsize > 0)
964 1.30 bouyer clrbit(cg_clustersfree(&acg, 0), blkno);
965 1.1 cgd acg.cg_cs.cs_nbfree--;
966 1.1 cgd sblock.fs_cstotal.cs_nbfree--;
967 1.1 cgd fscs[0].cs_nbfree--;
968 1.1 cgd if (mode & IFDIR) {
969 1.1 cgd acg.cg_cs.cs_ndir++;
970 1.1 cgd sblock.fs_cstotal.cs_ndir++;
971 1.1 cgd fscs[0].cs_ndir++;
972 1.1 cgd }
973 1.30 bouyer cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]--;
974 1.30 bouyer cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)[cbtorpos(&sblock, d)]--;
975 1.1 cgd if (size != sblock.fs_bsize) {
976 1.1 cgd frag = howmany(size, sblock.fs_fsize);
977 1.1 cgd fscs[0].cs_nffree += sblock.fs_frag - frag;
978 1.1 cgd sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
979 1.1 cgd acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
980 1.1 cgd acg.cg_frsum[sblock.fs_frag - frag]++;
981 1.1 cgd for (i = frag; i < sblock.fs_frag; i++)
982 1.30 bouyer setbit(cg_blksfree(&acg, 0), d + i);
983 1.1 cgd }
984 1.30 bouyer /* host -> fs byte order */
985 1.30 bouyer if (needswap)
986 1.30 bouyer swap_cg(&acg, &acg);
987 1.1 cgd wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
988 1.1 cgd (char *)&acg);
989 1.1 cgd return (d);
990 1.1 cgd }
991 1.1 cgd
992 1.1 cgd /*
993 1.27 lukem * Calculate number of inodes per group.
994 1.27 lukem */
995 1.27 lukem int32_t
996 1.45 lukem calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
997 1.27 lukem {
998 1.27 lukem int i;
999 1.27 lukem int32_t ipg, new_ipg, ncg, ncyl;
1000 1.27 lukem off_t usedb;
1001 1.27 lukem
1002 1.27 lukem /*
1003 1.27 lukem * Prepare to scale by fssize / (number of sectors in cylinder groups).
1004 1.46 lukem * Note that fssize is still in sectors, not file system blocks.
1005 1.27 lukem */
1006 1.27 lukem ncyl = howmany(fssize, secpercyl);
1007 1.45 lukem ncg = howmany(ncyl, cylpg);
1008 1.27 lukem /*
1009 1.27 lukem * Iterate a few times to allow for ipg depending on itself.
1010 1.27 lukem */
1011 1.27 lukem ipg = 0;
1012 1.27 lukem for (i = 0; i < 10; i++) {
1013 1.27 lukem usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1014 1.27 lukem * NSPF(&sblock) * (off_t)sectorsize;
1015 1.52 lukem new_ipg = (cylpg * (long long)bpcg - usedb) /
1016 1.56 lukem (long long)density * fssize / (ncg * secpercyl * cylpg);
1017 1.52 lukem if (new_ipg <= 0)
1018 1.52 lukem new_ipg = 1; /* ensure ipg > 0 */
1019 1.27 lukem new_ipg = roundup(new_ipg, INOPB(&sblock));
1020 1.27 lukem if (new_ipg == ipg)
1021 1.27 lukem break;
1022 1.27 lukem ipg = new_ipg;
1023 1.27 lukem }
1024 1.27 lukem *usedbp = usedb;
1025 1.27 lukem return (ipg);
1026 1.27 lukem }
1027 1.27 lukem
1028 1.27 lukem /*
1029 1.1 cgd * Allocate an inode on the disk
1030 1.1 cgd */
1031 1.26 christos static void
1032 1.39 simonb iput(struct dinode *ip, ino_t ino)
1033 1.1 cgd {
1034 1.45 lukem struct dinode ibuf[MAXINOPB];
1035 1.1 cgd daddr_t d;
1036 1.30 bouyer int c, i;
1037 1.1 cgd
1038 1.9 mycroft c = ino_to_cg(&sblock, ino);
1039 1.26 christos rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1040 1.30 bouyer /* fs -> host byte order */
1041 1.30 bouyer if (needswap)
1042 1.30 bouyer swap_cg(&acg, &acg);
1043 1.1 cgd if (acg.cg_magic != CG_MAGIC) {
1044 1.1 cgd printf("cg 0: bad magic number\n");
1045 1.1 cgd exit(31);
1046 1.1 cgd }
1047 1.1 cgd acg.cg_cs.cs_nifree--;
1048 1.30 bouyer setbit(cg_inosused(&acg, 0), ino);
1049 1.30 bouyer /* host -> fs byte order */
1050 1.30 bouyer if (needswap)
1051 1.30 bouyer swap_cg(&acg, &acg);
1052 1.1 cgd wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1053 1.1 cgd (char *)&acg);
1054 1.1 cgd sblock.fs_cstotal.cs_nifree--;
1055 1.1 cgd fscs[0].cs_nifree--;
1056 1.1 cgd if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1057 1.1 cgd printf("fsinit: inode value out of range (%d).\n", ino);
1058 1.1 cgd exit(32);
1059 1.1 cgd }
1060 1.9 mycroft d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1061 1.45 lukem rdfs(d, sblock.fs_bsize, ibuf);
1062 1.30 bouyer if (needswap) {
1063 1.45 lukem ffs_dinode_swap(ip, &ibuf[ino_to_fsbo(&sblock, ino)]);
1064 1.30 bouyer /* ffs_dinode_swap() doesn't swap blocks addrs */
1065 1.30 bouyer for (i=0; i<NDADDR + NIADDR; i++)
1066 1.45 lukem (&ibuf[ino_to_fsbo(&sblock, ino)])->di_db[i] =
1067 1.30 bouyer bswap32(ip->di_db[i]);
1068 1.30 bouyer } else
1069 1.45 lukem ibuf[ino_to_fsbo(&sblock, ino)] = *ip;
1070 1.45 lukem wtfs(d, sblock.fs_bsize, ibuf);
1071 1.1 cgd }
1072 1.1 cgd
1073 1.1 cgd /*
1074 1.1 cgd * Replace libc function with one suited to our needs.
1075 1.1 cgd */
1076 1.50 lukem void *
1077 1.50 lukem malloc(size_t size)
1078 1.1 cgd {
1079 1.44 lukem void *p;
1080 1.9 mycroft char *base, *i;
1081 1.1 cgd static u_long pgsz;
1082 1.1 cgd struct rlimit rlp;
1083 1.1 cgd
1084 1.1 cgd if (pgsz == 0) {
1085 1.1 cgd base = sbrk(0);
1086 1.1 cgd pgsz = getpagesize() - 1;
1087 1.9 mycroft i = (char *)((u_long)(base + pgsz) &~ pgsz);
1088 1.1 cgd base = sbrk(i - base);
1089 1.1 cgd if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1090 1.1 cgd perror("getrlimit");
1091 1.1 cgd rlp.rlim_cur = rlp.rlim_max;
1092 1.1 cgd if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1093 1.1 cgd perror("setrlimit");
1094 1.9 mycroft memleft = rlp.rlim_max - (u_long)base;
1095 1.1 cgd }
1096 1.1 cgd size = (size + pgsz) &~ pgsz;
1097 1.1 cgd if (size > memleft)
1098 1.1 cgd size = memleft;
1099 1.1 cgd memleft -= size;
1100 1.1 cgd if (size == 0)
1101 1.44 lukem return (NULL);
1102 1.44 lukem p = sbrk(size);
1103 1.44 lukem if (p == (void *)-1)
1104 1.44 lukem p = NULL;
1105 1.44 lukem return (p);
1106 1.1 cgd }
1107 1.1 cgd
1108 1.1 cgd /*
1109 1.1 cgd * Replace libc function with one suited to our needs.
1110 1.1 cgd */
1111 1.50 lukem void *
1112 1.50 lukem realloc(void *ptr, size_t size)
1113 1.1 cgd {
1114 1.9 mycroft void *p;
1115 1.1 cgd
1116 1.50 lukem if ((p = malloc(size)) == NULL)
1117 1.9 mycroft return (NULL);
1118 1.27 lukem memmove(p, ptr, size);
1119 1.50 lukem free(ptr);
1120 1.9 mycroft return (p);
1121 1.1 cgd }
1122 1.1 cgd
1123 1.1 cgd /*
1124 1.1 cgd * Replace libc function with one suited to our needs.
1125 1.1 cgd */
1126 1.50 lukem void *
1127 1.50 lukem calloc(size_t size, size_t numelm)
1128 1.1 cgd {
1129 1.26 christos void *base;
1130 1.1 cgd
1131 1.1 cgd size *= numelm;
1132 1.50 lukem base = malloc(size);
1133 1.44 lukem if (base == NULL)
1134 1.44 lukem return (NULL);
1135 1.12 mycroft memset(base, 0, size);
1136 1.27 lukem return (base);
1137 1.1 cgd }
1138 1.1 cgd
1139 1.1 cgd /*
1140 1.1 cgd * Replace libc function with one suited to our needs.
1141 1.1 cgd */
1142 1.50 lukem void
1143 1.50 lukem free(void *ptr)
1144 1.1 cgd {
1145 1.1 cgd
1146 1.1 cgd /* do not worry about it for now */
1147 1.1 cgd }
1148 1.1 cgd
1149 1.1 cgd /*
1150 1.1 cgd * read a block from the file system
1151 1.1 cgd */
1152 1.26 christos void
1153 1.39 simonb rdfs(daddr_t bno, int size, void *bf)
1154 1.1 cgd {
1155 1.1 cgd int n;
1156 1.18 cgd off_t offset;
1157 1.1 cgd
1158 1.1 cgd if (mfs) {
1159 1.27 lukem memmove(bf, membase + bno * sectorsize, size);
1160 1.1 cgd return;
1161 1.1 cgd }
1162 1.18 cgd offset = bno;
1163 1.18 cgd offset *= sectorsize;
1164 1.18 cgd if (lseek(fsi, offset, SEEK_SET) < 0) {
1165 1.57 lukem printf("rdfs: seek error for sector %d: %s\n",
1166 1.57 lukem bno, strerror(errno));
1167 1.1 cgd exit(33);
1168 1.1 cgd }
1169 1.1 cgd n = read(fsi, bf, size);
1170 1.9 mycroft if (n != size) {
1171 1.57 lukem printf("rdfs: read error for sector %d: %s\n",
1172 1.57 lukem bno, strerror(errno));
1173 1.1 cgd exit(34);
1174 1.1 cgd }
1175 1.1 cgd }
1176 1.1 cgd
1177 1.1 cgd /*
1178 1.1 cgd * write a block to the file system
1179 1.1 cgd */
1180 1.26 christos void
1181 1.39 simonb wtfs(daddr_t bno, int size, void *bf)
1182 1.1 cgd {
1183 1.1 cgd int n;
1184 1.18 cgd off_t offset;
1185 1.1 cgd
1186 1.1 cgd if (mfs) {
1187 1.27 lukem memmove(membase + bno * sectorsize, bf, size);
1188 1.1 cgd return;
1189 1.1 cgd }
1190 1.1 cgd if (Nflag)
1191 1.1 cgd return;
1192 1.18 cgd offset = bno;
1193 1.18 cgd offset *= sectorsize;
1194 1.18 cgd if (lseek(fso, offset, SEEK_SET) < 0) {
1195 1.57 lukem printf("wtfs: seek error for sector %d: %s\n",
1196 1.57 lukem bno, strerror(errno));
1197 1.1 cgd exit(35);
1198 1.1 cgd }
1199 1.1 cgd n = write(fso, bf, size);
1200 1.9 mycroft if (n != size) {
1201 1.57 lukem printf("wtfs: write error for sector %d: %s\n",
1202 1.57 lukem bno, strerror(errno));
1203 1.1 cgd exit(36);
1204 1.1 cgd }
1205 1.1 cgd }
1206 1.1 cgd
1207 1.1 cgd /*
1208 1.1 cgd * check if a block is available
1209 1.1 cgd */
1210 1.26 christos int
1211 1.39 simonb isblock(struct fs *fs, unsigned char *cp, int h)
1212 1.1 cgd {
1213 1.1 cgd unsigned char mask;
1214 1.1 cgd
1215 1.1 cgd switch (fs->fs_frag) {
1216 1.1 cgd case 8:
1217 1.1 cgd return (cp[h] == 0xff);
1218 1.1 cgd case 4:
1219 1.1 cgd mask = 0x0f << ((h & 0x1) << 2);
1220 1.1 cgd return ((cp[h >> 1] & mask) == mask);
1221 1.1 cgd case 2:
1222 1.1 cgd mask = 0x03 << ((h & 0x3) << 1);
1223 1.1 cgd return ((cp[h >> 2] & mask) == mask);
1224 1.1 cgd case 1:
1225 1.1 cgd mask = 0x01 << (h & 0x7);
1226 1.1 cgd return ((cp[h >> 3] & mask) == mask);
1227 1.1 cgd default:
1228 1.1 cgd #ifdef STANDALONE
1229 1.1 cgd printf("isblock bad fs_frag %d\n", fs->fs_frag);
1230 1.1 cgd #else
1231 1.1 cgd fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1232 1.1 cgd #endif
1233 1.1 cgd return (0);
1234 1.1 cgd }
1235 1.1 cgd }
1236 1.1 cgd
1237 1.1 cgd /*
1238 1.1 cgd * take a block out of the map
1239 1.1 cgd */
1240 1.26 christos void
1241 1.39 simonb clrblock(struct fs *fs, unsigned char *cp, int h)
1242 1.1 cgd {
1243 1.1 cgd switch ((fs)->fs_frag) {
1244 1.1 cgd case 8:
1245 1.1 cgd cp[h] = 0;
1246 1.1 cgd return;
1247 1.1 cgd case 4:
1248 1.1 cgd cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1249 1.1 cgd return;
1250 1.1 cgd case 2:
1251 1.1 cgd cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1252 1.1 cgd return;
1253 1.1 cgd case 1:
1254 1.1 cgd cp[h >> 3] &= ~(0x01 << (h & 0x7));
1255 1.1 cgd return;
1256 1.1 cgd default:
1257 1.1 cgd #ifdef STANDALONE
1258 1.1 cgd printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1259 1.1 cgd #else
1260 1.1 cgd fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1261 1.1 cgd #endif
1262 1.1 cgd return;
1263 1.1 cgd }
1264 1.1 cgd }
1265 1.1 cgd
1266 1.1 cgd /*
1267 1.1 cgd * put a block into the map
1268 1.1 cgd */
1269 1.26 christos void
1270 1.39 simonb setblock(struct fs *fs, unsigned char *cp, int h)
1271 1.1 cgd {
1272 1.1 cgd switch (fs->fs_frag) {
1273 1.1 cgd case 8:
1274 1.1 cgd cp[h] = 0xff;
1275 1.1 cgd return;
1276 1.1 cgd case 4:
1277 1.1 cgd cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1278 1.1 cgd return;
1279 1.1 cgd case 2:
1280 1.1 cgd cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1281 1.1 cgd return;
1282 1.1 cgd case 1:
1283 1.1 cgd cp[h >> 3] |= (0x01 << (h & 0x7));
1284 1.1 cgd return;
1285 1.1 cgd default:
1286 1.1 cgd #ifdef STANDALONE
1287 1.1 cgd printf("setblock bad fs_frag %d\n", fs->fs_frag);
1288 1.1 cgd #else
1289 1.1 cgd fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1290 1.1 cgd #endif
1291 1.1 cgd return;
1292 1.30 bouyer }
1293 1.30 bouyer }
1294 1.30 bouyer
1295 1.30 bouyer /* swap byte order of cylinder group */
1296 1.30 bouyer static void
1297 1.39 simonb swap_cg(struct cg *o, struct cg *n)
1298 1.30 bouyer {
1299 1.30 bouyer int i, btotsize, fbsize;
1300 1.30 bouyer u_int32_t *n32, *o32;
1301 1.30 bouyer u_int16_t *n16, *o16;
1302 1.30 bouyer
1303 1.30 bouyer n->cg_firstfield = bswap32(o->cg_firstfield);
1304 1.30 bouyer n->cg_magic = bswap32(o->cg_magic);
1305 1.30 bouyer n->cg_time = bswap32(o->cg_time);
1306 1.30 bouyer n->cg_cgx = bswap32(o->cg_cgx);
1307 1.30 bouyer n->cg_ncyl = bswap16(o->cg_ncyl);
1308 1.30 bouyer n->cg_niblk = bswap16(o->cg_niblk);
1309 1.30 bouyer n->cg_ndblk = bswap32(o->cg_ndblk);
1310 1.30 bouyer n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
1311 1.30 bouyer n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
1312 1.30 bouyer n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
1313 1.30 bouyer n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
1314 1.30 bouyer n->cg_rotor = bswap32(o->cg_rotor);
1315 1.30 bouyer n->cg_frotor = bswap32(o->cg_frotor);
1316 1.30 bouyer n->cg_irotor = bswap32(o->cg_irotor);
1317 1.30 bouyer n->cg_btotoff = bswap32(o->cg_btotoff);
1318 1.30 bouyer n->cg_boff = bswap32(o->cg_boff);
1319 1.30 bouyer n->cg_iusedoff = bswap32(o->cg_iusedoff);
1320 1.30 bouyer n->cg_freeoff = bswap32(o->cg_freeoff);
1321 1.30 bouyer n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
1322 1.30 bouyer n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
1323 1.30 bouyer n->cg_clusteroff = bswap32(o->cg_clusteroff);
1324 1.30 bouyer n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
1325 1.30 bouyer for (i=0; i < MAXFRAG; i++)
1326 1.30 bouyer n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
1327 1.30 bouyer
1328 1.30 bouyer /* alays new format */
1329 1.30 bouyer if (n->cg_magic == CG_MAGIC) {
1330 1.30 bouyer btotsize = n->cg_boff - n->cg_btotoff;
1331 1.30 bouyer fbsize = n->cg_iusedoff - n->cg_boff;
1332 1.30 bouyer n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
1333 1.30 bouyer o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
1334 1.30 bouyer n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
1335 1.30 bouyer o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
1336 1.30 bouyer } else {
1337 1.30 bouyer btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
1338 1.30 bouyer fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
1339 1.30 bouyer n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
1340 1.30 bouyer o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
1341 1.30 bouyer n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
1342 1.30 bouyer o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
1343 1.30 bouyer }
1344 1.30 bouyer for (i=0; i < btotsize / sizeof(u_int32_t); i++)
1345 1.30 bouyer n32[i] = bswap32(o32[i]);
1346 1.30 bouyer
1347 1.30 bouyer for (i=0; i < fbsize/sizeof(u_int16_t); i++)
1348 1.30 bouyer n16[i] = bswap16(o16[i]);
1349 1.30 bouyer
1350 1.30 bouyer if (n->cg_magic == CG_MAGIC) {
1351 1.30 bouyer n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
1352 1.30 bouyer o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1353 1.30 bouyer } else {
1354 1.30 bouyer n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1355 1.30 bouyer o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1356 1.30 bouyer }
1357 1.42 enami for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1358 1.30 bouyer n32[i] = bswap32(o32[i]);
1359 1.30 bouyer }
1360 1.30 bouyer
1361 1.30 bouyer /* copy a direntry to a buffer, in fs byte order */
1362 1.30 bouyer static void
1363 1.39 simonb copy_dir(struct direct *dir, struct direct *dbuf)
1364 1.30 bouyer {
1365 1.30 bouyer memcpy(dbuf, dir, DIRSIZ(Oflag, dir, 0));
1366 1.30 bouyer if (needswap) {
1367 1.30 bouyer dbuf->d_ino = bswap32(dir->d_ino);
1368 1.30 bouyer dbuf->d_reclen = bswap16(dir->d_reclen);
1369 1.30 bouyer if (Oflag)
1370 1.30 bouyer ((struct odirect*)dbuf)->d_namlen =
1371 1.30 bouyer bswap16(((struct odirect*)dir)->d_namlen);
1372 1.1 cgd }
1373 1.36 wrstuden }
1374 1.36 wrstuden
1375 1.36 wrstuden /* Determine how many digits are needed to print a given integer */
1376 1.36 wrstuden static int
1377 1.39 simonb count_digits(int num)
1378 1.36 wrstuden {
1379 1.36 wrstuden int ndig;
1380 1.36 wrstuden
1381 1.36 wrstuden for(ndig = 1; num > 9; num /=10, ndig++);
1382 1.36 wrstuden
1383 1.36 wrstuden return (ndig);
1384 1.1 cgd }
1385