mkfs.c revision 1.1.1.3 1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifndef lint
35 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
36 #endif /* not lint */
37
38 #include <unistd.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/wait.h>
42 #include <sys/resource.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ufs/dir.h>
45 #include <ufs/ffs/fs.h>
46 #include <sys/disklabel.h>
47
48 #ifndef STANDALONE
49 #include <a.out.h>
50 #include <stdio.h>
51 #endif
52
53 /*
54 * make file system for cylinder-group style file systems
55 */
56
57 /*
58 * We limit the size of the inode map to be no more than a
59 * third of the cylinder group space, since we must leave at
60 * least an equal amount of space for the block map.
61 *
62 * N.B.: MAXIPG must be a multiple of INOPB(fs).
63 */
64 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
65
66 #define UMASK 0755
67 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
68 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
69
70 /*
71 * variables set up by front end.
72 */
73 extern int mfs; /* run as the memory based filesystem */
74 extern int Nflag; /* run mkfs without writing file system */
75 extern int Oflag; /* format as an 4.3BSD file system */
76 extern int fssize; /* file system size */
77 extern int ntracks; /* # tracks/cylinder */
78 extern int nsectors; /* # sectors/track */
79 extern int nphyssectors; /* # sectors/track including spares */
80 extern int secpercyl; /* sectors per cylinder */
81 extern int sectorsize; /* bytes/sector */
82 extern int rpm; /* revolutions/minute of drive */
83 extern int interleave; /* hardware sector interleave */
84 extern int trackskew; /* sector 0 skew, per track */
85 extern int headswitch; /* head switch time, usec */
86 extern int trackseek; /* track-to-track seek, usec */
87 extern int fsize; /* fragment size */
88 extern int bsize; /* block size */
89 extern int cpg; /* cylinders/cylinder group */
90 extern int cpgflg; /* cylinders/cylinder group flag was given */
91 extern int minfree; /* free space threshold */
92 extern int opt; /* optimization preference (space or time) */
93 extern int density; /* number of bytes per inode */
94 extern int maxcontig; /* max contiguous blocks to allocate */
95 extern int rotdelay; /* rotational delay between blocks */
96 extern int maxbpg; /* maximum blocks per file in a cyl group */
97 extern int nrpos; /* # of distinguished rotational positions */
98 extern int bbsize; /* boot block size */
99 extern int sbsize; /* superblock size */
100 extern u_long memleft; /* virtual memory available */
101 extern caddr_t membase; /* start address of memory based filesystem */
102 extern caddr_t malloc(), calloc();
103
104 union {
105 struct fs fs;
106 char pad[SBSIZE];
107 } fsun;
108 #define sblock fsun.fs
109 struct csum *fscs;
110
111 union {
112 struct cg cg;
113 char pad[MAXBSIZE];
114 } cgun;
115 #define acg cgun.cg
116
117 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
118
119 int fsi, fso;
120 daddr_t alloc();
121 long calcipg();
122
123 mkfs(pp, fsys, fi, fo)
124 struct partition *pp;
125 char *fsys;
126 int fi, fo;
127 {
128 register long i, mincpc, mincpg, inospercg;
129 long cylno, rpos, blk, j, warn = 0;
130 long used, mincpgcnt, bpcg;
131 off_t usedb;
132 long mapcramped, inodecramped;
133 long postblsize, rotblsize, totalsbsize;
134 int ppid, status;
135 time_t utime;
136 quad_t sizepb;
137 void started();
138
139 #ifndef STANDALONE
140 time(&utime);
141 #endif
142 if (mfs) {
143 ppid = getpid();
144 (void) signal(SIGUSR1, started);
145 if (i = fork()) {
146 if (i == -1) {
147 perror("mfs");
148 exit(10);
149 }
150 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
151 exit(WEXITSTATUS(status));
152 exit(11);
153 /* NOTREACHED */
154 }
155 (void)malloc(0);
156 if (fssize * sectorsize > memleft)
157 fssize = (memleft - 16384) / sectorsize;
158 if ((membase = malloc(fssize * sectorsize)) == 0)
159 exit(12);
160 }
161 fsi = fi;
162 fso = fo;
163 if (Oflag) {
164 sblock.fs_inodefmt = FS_42INODEFMT;
165 sblock.fs_maxsymlinklen = 0;
166 } else {
167 sblock.fs_inodefmt = FS_44INODEFMT;
168 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
169 }
170 /*
171 * Validate the given file system size.
172 * Verify that its last block can actually be accessed.
173 */
174 if (fssize <= 0)
175 printf("preposterous size %d\n", fssize), exit(13);
176 wtfs(fssize - 1, sectorsize, (char *)&sblock);
177 /*
178 * collect and verify the sector and track info
179 */
180 sblock.fs_nsect = nsectors;
181 sblock.fs_ntrak = ntracks;
182 if (sblock.fs_ntrak <= 0)
183 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
184 if (sblock.fs_nsect <= 0)
185 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
186 /*
187 * collect and verify the block and fragment sizes
188 */
189 sblock.fs_bsize = bsize;
190 sblock.fs_fsize = fsize;
191 if (!POWEROF2(sblock.fs_bsize)) {
192 printf("block size must be a power of 2, not %d\n",
193 sblock.fs_bsize);
194 exit(16);
195 }
196 if (!POWEROF2(sblock.fs_fsize)) {
197 printf("fragment size must be a power of 2, not %d\n",
198 sblock.fs_fsize);
199 exit(17);
200 }
201 if (sblock.fs_fsize < sectorsize) {
202 printf("fragment size %d is too small, minimum is %d\n",
203 sblock.fs_fsize, sectorsize);
204 exit(18);
205 }
206 if (sblock.fs_bsize < MINBSIZE) {
207 printf("block size %d is too small, minimum is %d\n",
208 sblock.fs_bsize, MINBSIZE);
209 exit(19);
210 }
211 if (sblock.fs_bsize < sblock.fs_fsize) {
212 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
213 sblock.fs_bsize, sblock.fs_fsize);
214 exit(20);
215 }
216 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
217 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
218 sblock.fs_qbmask = ~sblock.fs_bmask;
219 sblock.fs_qfmask = ~sblock.fs_fmask;
220 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
221 sblock.fs_bshift++;
222 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
223 sblock.fs_fshift++;
224 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
225 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
226 sblock.fs_fragshift++;
227 if (sblock.fs_frag > MAXFRAG) {
228 printf("fragment size %d is too small, minimum with block size %d is %d\n",
229 sblock.fs_fsize, sblock.fs_bsize,
230 sblock.fs_bsize / MAXFRAG);
231 exit(21);
232 }
233 sblock.fs_nrpos = nrpos;
234 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
235 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
236 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
237 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
238 sblock.fs_fsbtodb++;
239 sblock.fs_sblkno =
240 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
241 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
242 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
243 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
244 sblock.fs_cgoffset = roundup(
245 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
246 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
247 sblock.fs_cgmask <<= 1;
248 if (!POWEROF2(sblock.fs_ntrak))
249 sblock.fs_cgmask <<= 1;
250 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
251 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
252 sizepb *= NINDIR(&sblock);
253 sblock.fs_maxfilesize += sizepb;
254 }
255 /*
256 * Validate specified/determined secpercyl
257 * and calculate minimum cylinders per group.
258 */
259 sblock.fs_spc = secpercyl;
260 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
261 sblock.fs_cpc > 1 && (i & 1) == 0;
262 sblock.fs_cpc >>= 1, i >>= 1)
263 /* void */;
264 mincpc = sblock.fs_cpc;
265 bpcg = sblock.fs_spc * sectorsize;
266 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
267 if (inospercg > MAXIPG(&sblock))
268 inospercg = MAXIPG(&sblock);
269 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
270 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
271 sblock.fs_spc);
272 mincpg = roundup(mincpgcnt, mincpc);
273 /*
274 * Ensure that cylinder group with mincpg has enough space
275 * for block maps.
276 */
277 sblock.fs_cpg = mincpg;
278 sblock.fs_ipg = inospercg;
279 if (maxcontig > 1)
280 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
281 mapcramped = 0;
282 while (CGSIZE(&sblock) > sblock.fs_bsize) {
283 mapcramped = 1;
284 if (sblock.fs_bsize < MAXBSIZE) {
285 sblock.fs_bsize <<= 1;
286 if ((i & 1) == 0) {
287 i >>= 1;
288 } else {
289 sblock.fs_cpc <<= 1;
290 mincpc <<= 1;
291 mincpg = roundup(mincpgcnt, mincpc);
292 sblock.fs_cpg = mincpg;
293 }
294 sblock.fs_frag <<= 1;
295 sblock.fs_fragshift += 1;
296 if (sblock.fs_frag <= MAXFRAG)
297 continue;
298 }
299 if (sblock.fs_fsize == sblock.fs_bsize) {
300 printf("There is no block size that");
301 printf(" can support this disk\n");
302 exit(22);
303 }
304 sblock.fs_frag >>= 1;
305 sblock.fs_fragshift -= 1;
306 sblock.fs_fsize <<= 1;
307 sblock.fs_nspf <<= 1;
308 }
309 /*
310 * Ensure that cylinder group with mincpg has enough space for inodes.
311 */
312 inodecramped = 0;
313 inospercg = calcipg(mincpg, bpcg, &usedb);
314 sblock.fs_ipg = inospercg;
315 while (inospercg > MAXIPG(&sblock)) {
316 inodecramped = 1;
317 if (mincpc == 1 || sblock.fs_frag == 1 ||
318 sblock.fs_bsize == MINBSIZE)
319 break;
320 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
321 "minimum bytes per inode is",
322 (int)((mincpg * (off_t)bpcg - usedb)
323 / MAXIPG(&sblock) + 1));
324 sblock.fs_bsize >>= 1;
325 sblock.fs_frag >>= 1;
326 sblock.fs_fragshift -= 1;
327 mincpc >>= 1;
328 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
329 if (CGSIZE(&sblock) > sblock.fs_bsize) {
330 sblock.fs_bsize <<= 1;
331 break;
332 }
333 mincpg = sblock.fs_cpg;
334 inospercg = calcipg(mincpg, bpcg, &usedb);
335 sblock.fs_ipg = inospercg;
336 }
337 if (inodecramped) {
338 if (inospercg > MAXIPG(&sblock)) {
339 printf("Minimum bytes per inode is %d\n",
340 (int)((mincpg * (off_t)bpcg - usedb)
341 / MAXIPG(&sblock) + 1));
342 } else if (!mapcramped) {
343 printf("With %d bytes per inode, ", density);
344 printf("minimum cylinders per group is %d\n", mincpg);
345 }
346 }
347 if (mapcramped) {
348 printf("With %d sectors per cylinder, ", sblock.fs_spc);
349 printf("minimum cylinders per group is %d\n", mincpg);
350 }
351 if (inodecramped || mapcramped) {
352 if (sblock.fs_bsize != bsize)
353 printf("%s to be changed from %d to %d\n",
354 "This requires the block size",
355 bsize, sblock.fs_bsize);
356 if (sblock.fs_fsize != fsize)
357 printf("\t%s to be changed from %d to %d\n",
358 "and the fragment size",
359 fsize, sblock.fs_fsize);
360 exit(23);
361 }
362 /*
363 * Calculate the number of cylinders per group
364 */
365 sblock.fs_cpg = cpg;
366 if (sblock.fs_cpg % mincpc != 0) {
367 printf("%s groups must have a multiple of %d cylinders\n",
368 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
369 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
370 if (!cpgflg)
371 cpg = sblock.fs_cpg;
372 }
373 /*
374 * Must ensure there is enough space for inodes.
375 */
376 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
377 while (sblock.fs_ipg > MAXIPG(&sblock)) {
378 inodecramped = 1;
379 sblock.fs_cpg -= mincpc;
380 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
381 }
382 /*
383 * Must ensure there is enough space to hold block map.
384 */
385 while (CGSIZE(&sblock) > sblock.fs_bsize) {
386 mapcramped = 1;
387 sblock.fs_cpg -= mincpc;
388 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
389 }
390 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
391 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
392 printf("panic (fs_cpg * fs_spc) % NSPF != 0");
393 exit(24);
394 }
395 if (sblock.fs_cpg < mincpg) {
396 printf("cylinder groups must have at least %d cylinders\n",
397 mincpg);
398 exit(25);
399 } else if (sblock.fs_cpg != cpg) {
400 if (!cpgflg)
401 printf("Warning: ");
402 else if (!mapcramped && !inodecramped)
403 exit(26);
404 if (mapcramped && inodecramped)
405 printf("Block size and bytes per inode restrict");
406 else if (mapcramped)
407 printf("Block size restricts");
408 else
409 printf("Bytes per inode restrict");
410 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
411 if (cpgflg)
412 exit(27);
413 }
414 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
415 /*
416 * Now have size for file system and nsect and ntrak.
417 * Determine number of cylinders and blocks in the file system.
418 */
419 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
420 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
421 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
422 sblock.fs_ncyl++;
423 warn = 1;
424 }
425 if (sblock.fs_ncyl < 1) {
426 printf("file systems must have at least one cylinder\n");
427 exit(28);
428 }
429 /*
430 * Determine feasability/values of rotational layout tables.
431 *
432 * The size of the rotational layout tables is limited by the
433 * size of the superblock, SBSIZE. The amount of space available
434 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
435 * The size of these tables is inversely proportional to the block
436 * size of the file system. The size increases if sectors per track
437 * are not powers of two, because more cylinders must be described
438 * by the tables before the rotational pattern repeats (fs_cpc).
439 */
440 sblock.fs_interleave = interleave;
441 sblock.fs_trackskew = trackskew;
442 sblock.fs_npsect = nphyssectors;
443 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
444 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
445 if (sblock.fs_ntrak == 1) {
446 sblock.fs_cpc = 0;
447 goto next;
448 }
449 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
450 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
451 totalsbsize = sizeof(struct fs) + rotblsize;
452 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
453 /* use old static table space */
454 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
455 (char *)(&sblock.fs_firstfield);
456 sblock.fs_rotbloff = &sblock.fs_space[0] -
457 (u_char *)(&sblock.fs_firstfield);
458 } else {
459 /* use dynamic table space */
460 sblock.fs_postbloff = &sblock.fs_space[0] -
461 (u_char *)(&sblock.fs_firstfield);
462 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
463 totalsbsize += postblsize;
464 }
465 if (totalsbsize > SBSIZE ||
466 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
467 printf("%s %s %d %s %d.%s",
468 "Warning: insufficient space in super block for\n",
469 "rotational layout tables with nsect", sblock.fs_nsect,
470 "and ntrak", sblock.fs_ntrak,
471 "\nFile system performance may be impaired.\n");
472 sblock.fs_cpc = 0;
473 goto next;
474 }
475 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
476 /*
477 * calculate the available blocks for each rotational position
478 */
479 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
480 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
481 fs_postbl(&sblock, cylno)[rpos] = -1;
482 for (i = (rotblsize - 1) * sblock.fs_frag;
483 i >= 0; i -= sblock.fs_frag) {
484 cylno = cbtocylno(&sblock, i);
485 rpos = cbtorpos(&sblock, i);
486 blk = fragstoblks(&sblock, i);
487 if (fs_postbl(&sblock, cylno)[rpos] == -1)
488 fs_rotbl(&sblock)[blk] = 0;
489 else
490 fs_rotbl(&sblock)[blk] =
491 fs_postbl(&sblock, cylno)[rpos] - blk;
492 fs_postbl(&sblock, cylno)[rpos] = blk;
493 }
494 next:
495 /*
496 * Compute/validate number of cylinder groups.
497 */
498 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
499 if (sblock.fs_ncyl % sblock.fs_cpg)
500 sblock.fs_ncg++;
501 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
502 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
503 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
504 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
505 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
506 sblock.fs_fpg / sblock.fs_frag);
507 printf("number of cylinders per cylinder group (%d) %s.\n",
508 sblock.fs_cpg, "must be increased");
509 exit(29);
510 }
511 j = sblock.fs_ncg - 1;
512 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
513 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
514 if (j == 0) {
515 printf("Filesystem must have at least %d sectors\n",
516 NSPF(&sblock) *
517 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
518 exit(30);
519 }
520 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
521 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
522 i / sblock.fs_frag);
523 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
524 i * NSPF(&sblock));
525 sblock.fs_ncg--;
526 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
527 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
528 NSPF(&sblock);
529 warn = 0;
530 }
531 if (warn && !mfs) {
532 printf("Warning: %d sector(s) in last cylinder unallocated\n",
533 sblock.fs_spc -
534 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
535 * sblock.fs_spc));
536 }
537 /*
538 * fill in remaining fields of the super block
539 */
540 sblock.fs_csaddr = cgdmin(&sblock, 0);
541 sblock.fs_cssize =
542 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
543 i = sblock.fs_bsize / sizeof(struct csum);
544 sblock.fs_csmask = ~(i - 1);
545 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
546 sblock.fs_csshift++;
547 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
548 sblock.fs_magic = FS_MAGIC;
549 sblock.fs_rotdelay = rotdelay;
550 sblock.fs_minfree = minfree;
551 sblock.fs_maxcontig = maxcontig;
552 sblock.fs_headswitch = headswitch;
553 sblock.fs_trkseek = trackseek;
554 sblock.fs_maxbpg = maxbpg;
555 sblock.fs_rps = rpm / 60;
556 sblock.fs_optim = opt;
557 sblock.fs_cgrotor = 0;
558 sblock.fs_cstotal.cs_ndir = 0;
559 sblock.fs_cstotal.cs_nbfree = 0;
560 sblock.fs_cstotal.cs_nifree = 0;
561 sblock.fs_cstotal.cs_nffree = 0;
562 sblock.fs_fmod = 0;
563 sblock.fs_ronly = 0;
564 sblock.fs_clean = 1;
565 /*
566 * Dump out summary information about file system.
567 */
568 if (!mfs) {
569 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
570 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
571 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
572 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
573 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
574 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
575 sblock.fs_ncg, sblock.fs_cpg,
576 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
577 sblock.fs_ipg);
578 #undef B2MBFACTOR
579 }
580 /*
581 * Now build the cylinders group blocks and
582 * then print out indices of cylinder groups.
583 */
584 if (!mfs)
585 printf("super-block backups (for fsck -b #) at:");
586 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
587 initcg(cylno, utime);
588 if (mfs)
589 continue;
590 if (cylno % 8 == 0)
591 printf("\n");
592 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
593 }
594 if (!mfs)
595 printf("\n");
596 if (Nflag && !mfs)
597 exit(0);
598 /*
599 * Now construct the initial file system,
600 * then write out the super-block.
601 */
602 fsinit(utime);
603 sblock.fs_time = utime;
604 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
605 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
606 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
607 sblock.fs_cssize - i < sblock.fs_bsize ?
608 sblock.fs_cssize - i : sblock.fs_bsize,
609 ((char *)fscs) + i);
610 /*
611 * Write out the duplicate super blocks
612 */
613 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
614 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
615 sbsize, (char *)&sblock);
616 /*
617 * Update information about this partion in pack
618 * label, to that it may be updated on disk.
619 */
620 pp->p_fstype = FS_BSDFFS;
621 pp->p_fsize = sblock.fs_fsize;
622 pp->p_frag = sblock.fs_frag;
623 pp->p_cpg = sblock.fs_cpg;
624 /*
625 * Notify parent process of success.
626 * Dissociate from session and tty.
627 */
628 if (mfs) {
629 kill(ppid, SIGUSR1);
630 (void) setsid();
631 (void) close(0);
632 (void) close(1);
633 (void) close(2);
634 (void) chdir("/");
635 }
636 }
637
638 /*
639 * Initialize a cylinder group.
640 */
641 initcg(cylno, utime)
642 int cylno;
643 time_t utime;
644 {
645 daddr_t cbase, d, dlower, dupper, dmax, blkno;
646 long i, j, s;
647 register struct csum *cs;
648
649 /*
650 * Determine block bounds for cylinder group.
651 * Allow space for super block summary information in first
652 * cylinder group.
653 */
654 cbase = cgbase(&sblock, cylno);
655 dmax = cbase + sblock.fs_fpg;
656 if (dmax > sblock.fs_size)
657 dmax = sblock.fs_size;
658 dlower = cgsblock(&sblock, cylno) - cbase;
659 dupper = cgdmin(&sblock, cylno) - cbase;
660 if (cylno == 0)
661 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
662 cs = fscs + cylno;
663 memset(&acg, 0, sblock.fs_cgsize);
664 acg.cg_time = utime;
665 acg.cg_magic = CG_MAGIC;
666 acg.cg_cgx = cylno;
667 if (cylno == sblock.fs_ncg - 1)
668 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
669 else
670 acg.cg_ncyl = sblock.fs_cpg;
671 acg.cg_niblk = sblock.fs_ipg;
672 acg.cg_ndblk = dmax - cbase;
673 if (sblock.fs_contigsumsize > 0)
674 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
675 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
676 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(long);
677 acg.cg_iusedoff = acg.cg_boff +
678 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
679 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
680 if (sblock.fs_contigsumsize <= 0) {
681 acg.cg_nextfreeoff = acg.cg_freeoff +
682 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
683 } else {
684 acg.cg_clustersumoff = acg.cg_freeoff + howmany
685 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
686 sizeof(long);
687 acg.cg_clustersumoff =
688 roundup(acg.cg_clustersumoff, sizeof(long));
689 acg.cg_clusteroff = acg.cg_clustersumoff +
690 (sblock.fs_contigsumsize + 1) * sizeof(long);
691 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
692 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
693 }
694 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
695 printf("Panic: cylinder group too big\n");
696 exit(37);
697 }
698 acg.cg_cs.cs_nifree += sblock.fs_ipg;
699 if (cylno == 0)
700 for (i = 0; i < ROOTINO; i++) {
701 setbit(cg_inosused(&acg), i);
702 acg.cg_cs.cs_nifree--;
703 }
704 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
705 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
706 sblock.fs_bsize, (char *)zino);
707 if (cylno > 0) {
708 /*
709 * In cylno 0, beginning space is reserved
710 * for boot and super blocks.
711 */
712 for (d = 0; d < dlower; d += sblock.fs_frag) {
713 blkno = d / sblock.fs_frag;
714 setblock(&sblock, cg_blksfree(&acg), blkno);
715 if (sblock.fs_contigsumsize > 0)
716 setbit(cg_clustersfree(&acg), blkno);
717 acg.cg_cs.cs_nbfree++;
718 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
719 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
720 [cbtorpos(&sblock, d)]++;
721 }
722 sblock.fs_dsize += dlower;
723 }
724 sblock.fs_dsize += acg.cg_ndblk - dupper;
725 if (i = dupper % sblock.fs_frag) {
726 acg.cg_frsum[sblock.fs_frag - i]++;
727 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
728 setbit(cg_blksfree(&acg), dupper);
729 acg.cg_cs.cs_nffree++;
730 }
731 }
732 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
733 blkno = d / sblock.fs_frag;
734 setblock(&sblock, cg_blksfree(&acg), blkno);
735 if (sblock.fs_contigsumsize > 0)
736 setbit(cg_clustersfree(&acg), blkno);
737 acg.cg_cs.cs_nbfree++;
738 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
739 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
740 [cbtorpos(&sblock, d)]++;
741 d += sblock.fs_frag;
742 }
743 if (d < dmax - cbase) {
744 acg.cg_frsum[dmax - cbase - d]++;
745 for (; d < dmax - cbase; d++) {
746 setbit(cg_blksfree(&acg), d);
747 acg.cg_cs.cs_nffree++;
748 }
749 }
750 if (sblock.fs_contigsumsize > 0) {
751 int32_t *sump = cg_clustersum(&acg);
752 u_char *mapp = cg_clustersfree(&acg);
753 int map = *mapp++;
754 int bit = 1;
755 int run = 0;
756
757 for (i = 0; i < acg.cg_nclusterblks; i++) {
758 if ((map & bit) != 0) {
759 run++;
760 } else if (run != 0) {
761 if (run > sblock.fs_contigsumsize)
762 run = sblock.fs_contigsumsize;
763 sump[run]++;
764 run = 0;
765 }
766 if ((i & (NBBY - 1)) != (NBBY - 1)) {
767 bit <<= 1;
768 } else {
769 map = *mapp++;
770 bit = 1;
771 }
772 }
773 if (run != 0) {
774 if (run > sblock.fs_contigsumsize)
775 run = sblock.fs_contigsumsize;
776 sump[run]++;
777 }
778 }
779 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
780 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
781 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
782 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
783 *cs = acg.cg_cs;
784 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
785 sblock.fs_bsize, (char *)&acg);
786 }
787
788 /*
789 * initialize the file system
790 */
791 struct dinode node;
792
793 #ifdef LOSTDIR
794 #define PREDEFDIR 3
795 #else
796 #define PREDEFDIR 2
797 #endif
798
799 struct direct root_dir[] = {
800 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
801 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
802 #ifdef LOSTDIR
803 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
804 #endif
805 };
806 struct odirect {
807 u_long d_ino;
808 u_short d_reclen;
809 u_short d_namlen;
810 u_char d_name[MAXNAMLEN + 1];
811 } oroot_dir[] = {
812 { ROOTINO, sizeof(struct direct), 1, "." },
813 { ROOTINO, sizeof(struct direct), 2, ".." },
814 #ifdef LOSTDIR
815 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
816 #endif
817 };
818 #ifdef LOSTDIR
819 struct direct lost_found_dir[] = {
820 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
821 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
822 { 0, DIRBLKSIZ, 0, 0, 0 },
823 };
824 struct odirect olost_found_dir[] = {
825 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
826 { ROOTINO, sizeof(struct direct), 2, ".." },
827 { 0, DIRBLKSIZ, 0, 0 },
828 };
829 #endif
830 char buf[MAXBSIZE];
831
832 fsinit(utime)
833 time_t utime;
834 {
835 int i;
836
837 /*
838 * initialize the node
839 */
840 node.di_atime = utime;
841 node.di_mtime = utime;
842 node.di_ctime = utime;
843 #ifdef LOSTDIR
844 /*
845 * create the lost+found directory
846 */
847 if (Oflag) {
848 (void)makedir((struct direct *)olost_found_dir, 2);
849 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
850 memmove(&buf[i], &olost_found_dir[2],
851 DIRSIZ(0, &olost_found_dir[2]));
852 } else {
853 (void)makedir(lost_found_dir, 2);
854 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
855 memmove(&buf[i], &lost_found_dir[2],
856 DIRSIZ(0, &lost_found_dir[2]));
857 }
858 node.di_mode = IFDIR | UMASK;
859 node.di_nlink = 2;
860 node.di_size = sblock.fs_bsize;
861 node.di_db[0] = alloc(node.di_size, node.di_mode);
862 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
863 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
864 iput(&node, LOSTFOUNDINO);
865 #endif
866 /*
867 * create the root directory
868 */
869 if (mfs)
870 node.di_mode = IFDIR | 01777;
871 else
872 node.di_mode = IFDIR | UMASK;
873 node.di_nlink = PREDEFDIR;
874 if (Oflag)
875 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
876 else
877 node.di_size = makedir(root_dir, PREDEFDIR);
878 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
879 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
880 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
881 iput(&node, ROOTINO);
882 }
883
884 /*
885 * construct a set of directory entries in "buf".
886 * return size of directory.
887 */
888 makedir(protodir, entries)
889 register struct direct *protodir;
890 int entries;
891 {
892 char *cp;
893 int i, spcleft;
894
895 spcleft = DIRBLKSIZ;
896 for (cp = buf, i = 0; i < entries - 1; i++) {
897 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
898 memmove(cp, &protodir[i], protodir[i].d_reclen);
899 cp += protodir[i].d_reclen;
900 spcleft -= protodir[i].d_reclen;
901 }
902 protodir[i].d_reclen = spcleft;
903 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
904 return (DIRBLKSIZ);
905 }
906
907 /*
908 * allocate a block or frag
909 */
910 daddr_t
911 alloc(size, mode)
912 int size;
913 int mode;
914 {
915 int i, frag;
916 daddr_t d, blkno;
917
918 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
919 (char *)&acg);
920 if (acg.cg_magic != CG_MAGIC) {
921 printf("cg 0: bad magic number\n");
922 return (0);
923 }
924 if (acg.cg_cs.cs_nbfree == 0) {
925 printf("first cylinder group ran out of space\n");
926 return (0);
927 }
928 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
929 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
930 goto goth;
931 printf("internal error: can't find block in cyl 0\n");
932 return (0);
933 goth:
934 blkno = fragstoblks(&sblock, d);
935 clrblock(&sblock, cg_blksfree(&acg), blkno);
936 if (sblock.fs_contigsumsize > 0)
937 clrbit(cg_clustersfree(&acg), blkno);
938 acg.cg_cs.cs_nbfree--;
939 sblock.fs_cstotal.cs_nbfree--;
940 fscs[0].cs_nbfree--;
941 if (mode & IFDIR) {
942 acg.cg_cs.cs_ndir++;
943 sblock.fs_cstotal.cs_ndir++;
944 fscs[0].cs_ndir++;
945 }
946 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
947 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
948 if (size != sblock.fs_bsize) {
949 frag = howmany(size, sblock.fs_fsize);
950 fscs[0].cs_nffree += sblock.fs_frag - frag;
951 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
952 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
953 acg.cg_frsum[sblock.fs_frag - frag]++;
954 for (i = frag; i < sblock.fs_frag; i++)
955 setbit(cg_blksfree(&acg), d + i);
956 }
957 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
958 (char *)&acg);
959 return (d);
960 }
961
962 /*
963 * Calculate number of inodes per group.
964 */
965 long
966 calcipg(cpg, bpcg, usedbp)
967 long cpg;
968 long bpcg;
969 off_t *usedbp;
970 {
971 int i;
972 long ipg, new_ipg, ncg, ncyl;
973 off_t usedb;
974
975 /*
976 * Prepare to scale by fssize / (number of sectors in cylinder groups).
977 * Note that fssize is still in sectors, not filesystem blocks.
978 */
979 ncyl = howmany(fssize, secpercyl);
980 ncg = howmany(ncyl, cpg);
981 /*
982 * Iterate a few times to allow for ipg depending on itself.
983 */
984 ipg = 0;
985 for (i = 0; i < 10; i++) {
986 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
987 * NSPF(&sblock) * (off_t)sectorsize;
988 new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
989 / ncg / secpercyl / cpg;
990 new_ipg = roundup(new_ipg, INOPB(&sblock));
991 if (new_ipg == ipg)
992 break;
993 ipg = new_ipg;
994 }
995 *usedbp = usedb;
996 return (ipg);
997 }
998
999 /*
1000 * Allocate an inode on the disk
1001 */
1002 iput(ip, ino)
1003 register struct dinode *ip;
1004 register ino_t ino;
1005 {
1006 struct dinode buf[MAXINOPB];
1007 daddr_t d;
1008 int c;
1009
1010 c = ino_to_cg(&sblock, ino);
1011 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1012 (char *)&acg);
1013 if (acg.cg_magic != CG_MAGIC) {
1014 printf("cg 0: bad magic number\n");
1015 exit(31);
1016 }
1017 acg.cg_cs.cs_nifree--;
1018 setbit(cg_inosused(&acg), ino);
1019 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1020 (char *)&acg);
1021 sblock.fs_cstotal.cs_nifree--;
1022 fscs[0].cs_nifree--;
1023 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1024 printf("fsinit: inode value out of range (%d).\n", ino);
1025 exit(32);
1026 }
1027 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1028 rdfs(d, sblock.fs_bsize, buf);
1029 buf[ino_to_fsbo(&sblock, ino)] = *ip;
1030 wtfs(d, sblock.fs_bsize, buf);
1031 }
1032
1033 /*
1034 * Notify parent process that the filesystem has created itself successfully.
1035 */
1036 void
1037 started()
1038 {
1039
1040 exit(0);
1041 }
1042
1043 /*
1044 * Replace libc function with one suited to our needs.
1045 */
1046 caddr_t
1047 malloc(size)
1048 register u_long size;
1049 {
1050 char *base, *i;
1051 static u_long pgsz;
1052 struct rlimit rlp;
1053
1054 if (pgsz == 0) {
1055 base = sbrk(0);
1056 pgsz = getpagesize() - 1;
1057 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1058 base = sbrk(i - base);
1059 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1060 perror("getrlimit");
1061 rlp.rlim_cur = rlp.rlim_max;
1062 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1063 perror("setrlimit");
1064 memleft = rlp.rlim_max - (u_long)base;
1065 }
1066 size = (size + pgsz) &~ pgsz;
1067 if (size > memleft)
1068 size = memleft;
1069 memleft -= size;
1070 if (size == 0)
1071 return (0);
1072 return ((caddr_t)sbrk(size));
1073 }
1074
1075 /*
1076 * Replace libc function with one suited to our needs.
1077 */
1078 caddr_t
1079 realloc(ptr, size)
1080 char *ptr;
1081 u_long size;
1082 {
1083 void *p;
1084
1085 if ((p = malloc(size)) == NULL)
1086 return (NULL);
1087 memmove(p, ptr, size);
1088 free(ptr);
1089 return (p);
1090 }
1091
1092 /*
1093 * Replace libc function with one suited to our needs.
1094 */
1095 char *
1096 calloc(size, numelm)
1097 u_long size, numelm;
1098 {
1099 caddr_t base;
1100
1101 size *= numelm;
1102 base = malloc(size);
1103 memset(base, 0, size);
1104 return (base);
1105 }
1106
1107 /*
1108 * Replace libc function with one suited to our needs.
1109 */
1110 free(ptr)
1111 char *ptr;
1112 {
1113
1114 /* do not worry about it for now */
1115 }
1116
1117 /*
1118 * read a block from the file system
1119 */
1120 rdfs(bno, size, bf)
1121 daddr_t bno;
1122 int size;
1123 char *bf;
1124 {
1125 int n;
1126
1127 if (mfs) {
1128 memmove(bf, membase + bno * sectorsize, size);
1129 return;
1130 }
1131 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1132 printf("seek error: %ld\n", bno);
1133 perror("rdfs");
1134 exit(33);
1135 }
1136 n = read(fsi, bf, size);
1137 if (n != size) {
1138 printf("read error: %ld\n", bno);
1139 perror("rdfs");
1140 exit(34);
1141 }
1142 }
1143
1144 /*
1145 * write a block to the file system
1146 */
1147 wtfs(bno, size, bf)
1148 daddr_t bno;
1149 int size;
1150 char *bf;
1151 {
1152 int n;
1153
1154 if (mfs) {
1155 memmove(membase + bno * sectorsize, bf, size);
1156 return;
1157 }
1158 if (Nflag)
1159 return;
1160 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1161 printf("seek error: %ld\n", bno);
1162 perror("wtfs");
1163 exit(35);
1164 }
1165 n = write(fso, bf, size);
1166 if (n != size) {
1167 printf("write error: %ld\n", bno);
1168 perror("wtfs");
1169 exit(36);
1170 }
1171 }
1172
1173 /*
1174 * check if a block is available
1175 */
1176 isblock(fs, cp, h)
1177 struct fs *fs;
1178 unsigned char *cp;
1179 int h;
1180 {
1181 unsigned char mask;
1182
1183 switch (fs->fs_frag) {
1184 case 8:
1185 return (cp[h] == 0xff);
1186 case 4:
1187 mask = 0x0f << ((h & 0x1) << 2);
1188 return ((cp[h >> 1] & mask) == mask);
1189 case 2:
1190 mask = 0x03 << ((h & 0x3) << 1);
1191 return ((cp[h >> 2] & mask) == mask);
1192 case 1:
1193 mask = 0x01 << (h & 0x7);
1194 return ((cp[h >> 3] & mask) == mask);
1195 default:
1196 #ifdef STANDALONE
1197 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1198 #else
1199 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1200 #endif
1201 return (0);
1202 }
1203 }
1204
1205 /*
1206 * take a block out of the map
1207 */
1208 clrblock(fs, cp, h)
1209 struct fs *fs;
1210 unsigned char *cp;
1211 int h;
1212 {
1213 switch ((fs)->fs_frag) {
1214 case 8:
1215 cp[h] = 0;
1216 return;
1217 case 4:
1218 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1219 return;
1220 case 2:
1221 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1222 return;
1223 case 1:
1224 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1225 return;
1226 default:
1227 #ifdef STANDALONE
1228 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1229 #else
1230 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1231 #endif
1232 return;
1233 }
1234 }
1235
1236 /*
1237 * put a block into the map
1238 */
1239 setblock(fs, cp, h)
1240 struct fs *fs;
1241 unsigned char *cp;
1242 int h;
1243 {
1244 switch (fs->fs_frag) {
1245 case 8:
1246 cp[h] = 0xff;
1247 return;
1248 case 4:
1249 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1250 return;
1251 case 2:
1252 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1253 return;
1254 case 1:
1255 cp[h >> 3] |= (0x01 << (h & 0x7));
1256 return;
1257 default:
1258 #ifdef STANDALONE
1259 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1260 #else
1261 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1262 #endif
1263 return;
1264 }
1265 }
1266