mkfs.c revision 1.103 1 /* $NetBSD: mkfs.c,v 1.103 2007/11/27 13:31:10 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1980, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
35 *
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 #ifndef lint
73 #if 0
74 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
75 #else
76 __RCSID("$NetBSD: mkfs.c,v 1.103 2007/11/27 13:31:10 tsutsui Exp $");
77 #endif
78 #endif /* not lint */
79
80 #include <sys/param.h>
81 #include <sys/mman.h>
82 #include <sys/time.h>
83 #include <sys/resource.h>
84 #include <ufs/ufs/dinode.h>
85 #include <ufs/ufs/dir.h>
86 #include <ufs/ufs/ufs_bswap.h>
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/ffs_extern.h>
89 #include <sys/ioctl.h>
90 #include <sys/disklabel.h>
91
92 #include <err.h>
93 #include <errno.h>
94 #include <string.h>
95 #include <unistd.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98
99 #ifndef STANDALONE
100 #include <stdio.h>
101 #endif
102
103 #include "extern.h"
104
105 union dinode {
106 struct ufs1_dinode dp1;
107 struct ufs2_dinode dp2;
108 };
109
110 static void initcg(int, const struct timeval *);
111 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
112 static int makedir(struct direct *, int);
113 static daddr_t alloc(int, int);
114 static void iput(union dinode *, ino_t);
115 static void rdfs(daddr_t, int, void *);
116 static void wtfs(daddr_t, int, void *);
117 static int isblock(struct fs *, unsigned char *, int);
118 static void clrblock(struct fs *, unsigned char *, int);
119 static void setblock(struct fs *, unsigned char *, int);
120 static int ilog2(int);
121 static void zap_old_sblock(int);
122 #ifdef MFS
123 static void calc_memfree(void);
124 static void *mkfs_malloc(size_t size);
125 #endif
126
127 /*
128 * make file system for cylinder-group style file systems
129 */
130 #define UMASK 0755
131
132 union {
133 struct fs fs;
134 char pad[SBLOCKSIZE];
135 } fsun;
136 #define sblock fsun.fs
137
138 struct csum *fscs_0; /* first block of cylinder summaries */
139 struct csum *fscs_next; /* place for next summary */
140 struct csum *fscs_end; /* end of summary buffer */
141 struct csum *fscs_reset; /* place for next summary after write */
142 uint fs_csaddr; /* fragment number to write to */
143
144 union {
145 struct cg cg;
146 char pad[MAXBSIZE];
147 } cgun;
148 #define acg cgun.cg
149
150 #define DIP(dp, field) \
151 ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
152 (dp)->dp1.di_##field : (dp)->dp2.di_##field)
153
154 char *iobuf;
155 int iobufsize; /* size to end of 2nd inode block */
156 int iobuf_memsize; /* Actual buffer size */
157
158 int fsi, fso;
159
160 void
161 mkfs(const char *fsys, int fi, int fo,
162 mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
163 {
164 uint fragsperinodeblk, ncg;
165 uint cgzero;
166 uint64_t inodeblks, cgall;
167 int32_t cylno, i, csfrags;
168 int inodes_per_cg;
169 struct timeval tv;
170 long long sizepb;
171 int len, col, delta, fld_width, max_cols;
172 struct winsize winsize;
173
174 #ifndef STANDALONE
175 gettimeofday(&tv, NULL);
176 #endif
177 #ifdef MFS
178 if (mfs && !Nflag) {
179 calc_memfree();
180 if (fssize * sectorsize > memleft)
181 fssize = memleft / sectorsize;
182 if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
183 exit(12);
184 }
185 #endif
186 fsi = fi;
187 fso = fo;
188 if (Oflag == 0) {
189 sblock.fs_old_inodefmt = FS_42INODEFMT;
190 sblock.fs_maxsymlinklen = 0;
191 sblock.fs_old_flags = 0;
192 } else {
193 sblock.fs_old_inodefmt = FS_44INODEFMT;
194 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
195 MAXSYMLINKLEN_UFS2);
196 sblock.fs_old_flags = FS_FLAGS_UPDATED;
197 if (isappleufs)
198 sblock.fs_old_flags = 0;
199 sblock.fs_flags = 0;
200 }
201
202 /*
203 * collect and verify the filesystem density info
204 */
205 sblock.fs_avgfilesize = avgfilesize;
206 sblock.fs_avgfpdir = avgfpdir;
207 if (sblock.fs_avgfilesize <= 0) {
208 printf("illegal expected average file size %d\n",
209 sblock.fs_avgfilesize);
210 exit(14);
211 }
212 if (sblock.fs_avgfpdir <= 0) {
213 printf("illegal expected number of files per directory %d\n",
214 sblock.fs_avgfpdir);
215 exit(15);
216 }
217 /*
218 * collect and verify the block and fragment sizes
219 */
220 sblock.fs_bsize = bsize;
221 sblock.fs_fsize = fsize;
222 if (!powerof2(sblock.fs_bsize)) {
223 printf("block size must be a power of 2, not %d\n",
224 sblock.fs_bsize);
225 exit(16);
226 }
227 if (!powerof2(sblock.fs_fsize)) {
228 printf("fragment size must be a power of 2, not %d\n",
229 sblock.fs_fsize);
230 exit(17);
231 }
232 if (sblock.fs_fsize < sectorsize) {
233 printf("fragment size %d is too small, minimum is %d\n",
234 sblock.fs_fsize, sectorsize);
235 exit(18);
236 }
237 if (sblock.fs_bsize < MINBSIZE) {
238 printf("block size %d is too small, minimum is %d\n",
239 sblock.fs_bsize, MINBSIZE);
240 exit(19);
241 }
242 if (sblock.fs_bsize > MAXBSIZE) {
243 printf("block size %d is too large, maximum is %d\n",
244 sblock.fs_bsize, MAXBSIZE);
245 exit(19);
246 }
247 if (sblock.fs_bsize < sblock.fs_fsize) {
248 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
249 sblock.fs_bsize, sblock.fs_fsize);
250 exit(20);
251 }
252
253 if (maxbsize < bsize || !powerof2(maxbsize)) {
254 sblock.fs_maxbsize = sblock.fs_bsize;
255 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
256 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
257 } else {
258 sblock.fs_maxbsize = maxbsize;
259 }
260 sblock.fs_maxcontig = maxcontig;
261 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
262 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
263 if (verbosity > 0)
264 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
265 }
266 if (sblock.fs_maxcontig > 1)
267 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
268
269 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
270 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
271 sblock.fs_qbmask = ~sblock.fs_bmask;
272 sblock.fs_qfmask = ~sblock.fs_fmask;
273 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
274 sblock.fs_bshift++;
275 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
276 sblock.fs_fshift++;
277 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
278 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
279 sblock.fs_fragshift++;
280 if (sblock.fs_frag > MAXFRAG) {
281 printf("fragment size %d is too small, "
282 "minimum with block size %d is %d\n",
283 sblock.fs_fsize, sblock.fs_bsize,
284 sblock.fs_bsize / MAXFRAG);
285 exit(21);
286 }
287 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
288 sblock.fs_size = dbtofsb(&sblock, fssize);
289 if (Oflag <= 1) {
290 if (sblock.fs_size >= 1ull << 31) {
291 printf("Too many fragments (0x%" PRIx64
292 ") for a UFS1 filesystem\n", sblock.fs_size);
293 exit(22);
294 }
295 sblock.fs_magic = FS_UFS1_MAGIC;
296 sblock.fs_sblockloc = SBLOCK_UFS1;
297 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
298 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
299 sblock.fs_old_cgoffset = 0;
300 sblock.fs_old_cgmask = 0xffffffff;
301 sblock.fs_old_size = sblock.fs_size;
302 sblock.fs_old_rotdelay = 0;
303 sblock.fs_old_rps = 60;
304 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
305 sblock.fs_old_cpg = 1;
306 sblock.fs_old_interleave = 1;
307 sblock.fs_old_trackskew = 0;
308 sblock.fs_old_cpc = 0;
309 sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
310 sblock.fs_old_nrpos = 1;
311 } else {
312 sblock.fs_magic = FS_UFS2_MAGIC;
313 sblock.fs_sblockloc = SBLOCK_UFS2;
314 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
315 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
316 }
317
318 sblock.fs_sblkno =
319 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
320 sblock.fs_frag);
321 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
322 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
323 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
324 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
325 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
326 sizepb *= NINDIR(&sblock);
327 sblock.fs_maxfilesize += sizepb;
328 }
329
330 /*
331 * Calculate the number of blocks to put into each cylinder group.
332 *
333 * The cylinder group size is limited because the data structure
334 * must fit into a single block.
335 * We try to have as few cylinder groups as possible, with a proviso
336 * that we create at least MINCYLGRPS (==4) except for small
337 * filesystems.
338 *
339 * This algorithm works out how many blocks of inodes would be
340 * needed to fill the entire volume at the specified density.
341 * It then looks at how big the 'cylinder block' would have to
342 * be and, assuming that it is linearly related to the number
343 * of inodes and blocks how many cylinder groups are needed to
344 * keep the cylinder block below the filesystem block size.
345 *
346 * The cylinder groups are then all created with the average size.
347 *
348 * Space taken by the red tape on cylinder groups other than the
349 * first is ignored.
350 */
351
352 /* There must be space for 1 inode block and 2 data blocks */
353 if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
354 printf("Filesystem size %lld < minimum size of %d\n",
355 (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
356 exit(23);
357 }
358 if (num_inodes != 0)
359 inodeblks = howmany(num_inodes, INOPB(&sblock));
360 else {
361 /*
362 * Calculate 'per inode block' so we can allocate less than
363 * 1 fragment per inode - useful for /dev.
364 */
365 fragsperinodeblk = MAX(numfrags(&sblock,
366 (uint64_t)density * INOPB(&sblock)), 1);
367 inodeblks = (sblock.fs_size - sblock.fs_iblkno) /
368 (sblock.fs_frag + fragsperinodeblk);
369 }
370 if (inodeblks == 0)
371 inodeblks = 1;
372 /* Ensure that there are at least 2 data blocks (or we fail below) */
373 if (inodeblks > (sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2)
374 inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2;
375 /* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
376 if (inodeblks * INOPB(&sblock) >= 1ull << 31)
377 inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
378 /*
379 * See what would happen if we tried to use 1 cylinder group.
380 * Assume space linear, so work out number of cylinder groups needed.
381 */
382 cgzero = CGSIZE_IF(&sblock, 0, 0);
383 cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
384 ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero);
385 if (ncg < MINCYLGRPS) {
386 /*
387 * We would like to allocate MINCLYGRPS cylinder groups,
388 * but for small file sytems (especially ones with a lot
389 * of inodes) this is not desirable (or possible).
390 */
391 i = sblock.fs_size / 2 / (sblock.fs_iblkno +
392 inodeblks * sblock.fs_frag);
393 if (i > ncg)
394 ncg = i;
395 if (ncg > MINCYLGRPS)
396 ncg = MINCYLGRPS;
397 if (ncg > inodeblks)
398 ncg = inodeblks;
399 }
400 /*
401 * Put an equal number of blocks in each cylinder group.
402 * Round up so we don't have more fragments in the last CG than
403 * the earlier ones (does that matter?), but kill a block if the
404 * CGSIZE becomes too big (only happens if there are a lot of CGs).
405 */
406 sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
407 /* Round up the fragments/group so the bitmap bytes are full */
408 sblock.fs_fpg = roundup(sblock.fs_fpg, NBBY);
409 inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock);
410
411 i = CGSIZE_IF(&sblock, inodes_per_cg, sblock.fs_fpg);
412 if (i > sblock.fs_bsize) {
413 sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
414 /* ... and recalculate how many cylinder groups we now need */
415 ncg = howmany(sblock.fs_size, sblock.fs_fpg);
416 inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock);
417 }
418 sblock.fs_ipg = inodes_per_cg;
419 /* Sanity check on our sums... */
420 if (CGSIZE(&sblock) > sblock.fs_bsize) {
421 printf("CGSIZE miscalculated %d > %d\n",
422 (int)CGSIZE(&sblock), sblock.fs_bsize);
423 exit(24);
424 }
425
426 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
427 /* Check that the last cylinder group has enough space for the inodes */
428 i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
429 if (i < sblock.fs_dblkno) {
430 /*
431 * Since we make all the cylinder groups the same size, the
432 * last will only be small if there are a large number of
433 * cylinder groups. If we pull even a fragment from each
434 * of the other groups then the last CG will be overfull.
435 * So we just kill the last CG.
436 */
437 ncg--;
438 sblock.fs_size -= i;
439 }
440 sblock.fs_ncg = ncg;
441
442 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
443 if (Oflag <= 1) {
444 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
445 sblock.fs_old_nsect = sblock.fs_old_spc;
446 sblock.fs_old_npsect = sblock.fs_old_spc;
447 sblock.fs_old_ncyl = sblock.fs_ncg;
448 }
449
450 /*
451 * Cylinder group summary information for each cylinder is written
452 * into the first cylinder group.
453 * Write this fragment by fragment, but doing the first CG last
454 * (after we've taken stuff off for the structure itself and the
455 * root directory.
456 */
457 sblock.fs_csaddr = cgdmin(&sblock, 0);
458 sblock.fs_cssize =
459 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
460 if (512 % sizeof *fscs_0)
461 errx(1, "cylinder group summary doesn't fit in sectors");
462 fscs_0 = mmap(0, 2 * sblock.fs_fsize, PROT_READ|PROT_WRITE,
463 MAP_ANON|MAP_PRIVATE, -1, 0);
464 if (fscs_0 == NULL)
465 exit(39);
466 memset(fscs_0, 0, 2 * sblock.fs_fsize);
467 fs_csaddr = sblock.fs_csaddr;
468 fscs_next = fscs_0;
469 fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
470 fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
471 /*
472 * fill in remaining fields of the super block
473 */
474 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
475 if (sblock.fs_sbsize > SBLOCKSIZE)
476 sblock.fs_sbsize = SBLOCKSIZE;
477 sblock.fs_minfree = minfree;
478 sblock.fs_maxcontig = maxcontig;
479 sblock.fs_maxbpg = maxbpg;
480 sblock.fs_optim = opt;
481 sblock.fs_cgrotor = 0;
482 sblock.fs_pendingblocks = 0;
483 sblock.fs_pendinginodes = 0;
484 sblock.fs_cstotal.cs_ndir = 0;
485 sblock.fs_cstotal.cs_nbfree = 0;
486 sblock.fs_cstotal.cs_nifree = 0;
487 sblock.fs_cstotal.cs_nffree = 0;
488 sblock.fs_fmod = 0;
489 sblock.fs_ronly = 0;
490 sblock.fs_state = 0;
491 sblock.fs_clean = FS_ISCLEAN;
492 sblock.fs_ronly = 0;
493 sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */
494 sblock.fs_id[1] = arc4random() & INT32_MAX;
495 sblock.fs_fsmnt[0] = '\0';
496 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
497 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
498 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
499 sblock.fs_cstotal.cs_nbfree =
500 fragstoblks(&sblock, sblock.fs_dsize) -
501 howmany(csfrags, sblock.fs_frag);
502 sblock.fs_cstotal.cs_nffree =
503 fragnum(&sblock, sblock.fs_size) +
504 (fragnum(&sblock, csfrags) > 0 ?
505 sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
506 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
507 sblock.fs_cstotal.cs_ndir = 0;
508 sblock.fs_dsize -= csfrags;
509 sblock.fs_time = tv.tv_sec;
510 if (Oflag <= 1) {
511 sblock.fs_old_time = tv.tv_sec;
512 sblock.fs_old_dsize = sblock.fs_dsize;
513 sblock.fs_old_csaddr = sblock.fs_csaddr;
514 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
515 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
516 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
517 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
518 }
519 /*
520 * Dump out summary information about file system.
521 */
522 if (verbosity > 0) {
523 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
524 printf("%s: %.1fMB (%lld sectors) block size %d, "
525 "fragment size %d\n",
526 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
527 (long long)fsbtodb(&sblock, sblock.fs_size),
528 sblock.fs_bsize, sblock.fs_fsize);
529 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
530 "%d inodes.\n",
531 sblock.fs_ncg,
532 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
533 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
534 #undef B2MBFACTOR
535 }
536
537 /*
538 * allocate space for superblock, cylinder group map, and
539 * two sets of inode blocks.
540 */
541 if (sblock.fs_bsize < SBLOCKSIZE)
542 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
543 else
544 iobufsize = 4 * sblock.fs_bsize;
545 iobuf_memsize = iobufsize;
546 if (!mfs && sblock.fs_magic == FS_UFS1_MAGIC) {
547 /* A larger buffer so we can write multiple inode blks */
548 iobuf_memsize += 14 * sblock.fs_bsize;
549 }
550 for (;;) {
551 iobuf = mmap(0, iobuf_memsize, PROT_READ|PROT_WRITE,
552 MAP_ANON|MAP_PRIVATE, -1, 0);
553 if (iobuf != NULL)
554 break;
555 if (iobuf_memsize != iobufsize) {
556 /* Try again with the smaller size */
557 iobuf_memsize = iobufsize;
558 continue;
559 }
560 printf("Cannot allocate I/O buffer\n");
561 exit(38);
562 }
563 memset(iobuf, 0, iobuf_memsize);
564
565 /*
566 * We now start writing to the filesystem
567 */
568
569 if (!Nflag) {
570 /*
571 * Validate the given file system size.
572 * Verify that its last block can actually be accessed.
573 * Convert to file system fragment sized units.
574 */
575 if (fssize <= 0) {
576 printf("preposterous size %lld\n", (long long)fssize);
577 exit(13);
578 }
579 wtfs(fssize - 1, sectorsize, iobuf);
580
581 /*
582 * Ensure there is nothing that looks like a filesystem
583 * superbock anywhere other than where ours will be.
584 * If fsck finds the wrong one all hell breaks loose!
585 */
586 for (i = 0; ; i++) {
587 static const int sblocklist[] = SBLOCKSEARCH;
588 int sblkoff = sblocklist[i];
589 int sz;
590 if (sblkoff == -1)
591 break;
592 /* Remove main superblock */
593 zap_old_sblock(sblkoff);
594 /* and all possible locations for the first alternate */
595 sblkoff += SBLOCKSIZE;
596 for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
597 zap_old_sblock(roundup(sblkoff, sz));
598 }
599
600 if (isappleufs) {
601 struct appleufslabel appleufs;
602 ffs_appleufs_set(&appleufs, appleufs_volname,
603 tv.tv_sec, 0);
604 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,
605 APPLEUFS_LABEL_SIZE, &appleufs);
606 } else {
607 struct appleufslabel appleufs;
608 /* Look for & zap any existing valid apple ufs labels */
609 rdfs(APPLEUFS_LABEL_OFFSET/sectorsize,
610 APPLEUFS_LABEL_SIZE, &appleufs);
611 if (ffs_appleufs_validate(fsys, &appleufs, NULL) == 0) {
612 memset(&appleufs, 0, sizeof(appleufs));
613 wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,
614 APPLEUFS_LABEL_SIZE, &appleufs);
615 }
616 }
617 }
618
619 /*
620 * Make a copy of the superblock into the buffer that we will be
621 * writing out in each cylinder group.
622 */
623 memcpy(iobuf, &sblock, sizeof sblock);
624 if (needswap)
625 ffs_sb_swap(&sblock, (struct fs *)iobuf);
626 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
627 memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
628 0xff, 256);
629
630 if (verbosity >= 3)
631 printf("super-block backups (for fsck_ffs -b #) at:\n");
632 /* If we are printing more than one line of numbers, line up columns */
633 fld_width = verbosity < 4 ? 1 : snprintf(NULL, 0, "%" PRIu64,
634 (uint64_t)fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg-1)));
635 /* Get terminal width */
636 if (ioctl(fileno(stdout), TIOCGWINSZ, &winsize) == 0)
637 max_cols = winsize.ws_col;
638 else
639 max_cols = 80;
640 if (Nflag && verbosity == 3)
641 /* Leave space to add " ..." after one row of numbers */
642 max_cols -= 4;
643 #define BASE 0x10000 /* For some fixed-point maths */
644 col = 0;
645 delta = verbosity > 2 ? 0 : max_cols * BASE / sblock.fs_ncg;
646 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
647 fflush(stdout);
648 initcg(cylno, &tv);
649 if (verbosity < 2)
650 continue;
651 if (delta > 0) {
652 if (Nflag)
653 /* No point doing dots for -N */
654 break;
655 /* Print dots scaled to end near RH margin */
656 for (col += delta; col > BASE; col -= BASE)
657 printf(".");
658 continue;
659 }
660 /* Print superblock numbers */
661 len = printf(" %*" PRIu64 "," + !col, fld_width,
662 (uint64_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
663 col += len;
664 if (col + len < max_cols)
665 /* Next number fits */
666 continue;
667 /* Next number won't fit, need a newline */
668 if (verbosity <= 3) {
669 /* Print dots for subsequent cylinder groups */
670 delta = sblock.fs_ncg - cylno - 1;
671 if (delta != 0) {
672 if (Nflag) {
673 printf(" ...");
674 break;
675 }
676 delta = max_cols * BASE / delta;
677 }
678 }
679 col = 0;
680 printf("\n");
681 }
682 #undef BASE
683 if (col > 0)
684 printf("\n");
685 if (Nflag)
686 exit(0);
687
688 /*
689 * Now construct the initial file system,
690 */
691 if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
692 errx(1, "Error making filesystem");
693 sblock.fs_time = tv.tv_sec;
694 if (Oflag <= 1) {
695 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
696 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
697 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
698 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
699 }
700 /*
701 * Write out the super-block and zeros until the first cg info
702 */
703 i = cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
704 memset(iobuf, 0, i);
705 memcpy(iobuf, &sblock, sizeof sblock);
706 if (needswap)
707 ffs_sb_swap(&sblock, (struct fs *)iobuf);
708 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
709 memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
710 0xff, 256);
711 wtfs(sblock.fs_sblockloc / sectorsize, i, iobuf);
712
713 /* Write out first and last cylinder summary sectors */
714 if (needswap)
715 ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
716 wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
717
718 if (fscs_next > fscs_reset) {
719 if (needswap)
720 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
721 fs_csaddr++;
722 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
723 }
724
725 /* mfs doesn't need these permanently allocated */
726 munmap(iobuf, iobuf_memsize);
727 munmap(fscs_0, 2 * sblock.fs_fsize);
728 }
729
730 /*
731 * Initialize a cylinder group.
732 */
733 void
734 initcg(int cylno, const struct timeval *tv)
735 {
736 daddr_t cbase, dmax;
737 int32_t i, d, dlower, dupper, blkno;
738 struct ufs1_dinode *dp1;
739 struct ufs2_dinode *dp2;
740 int start;
741
742 /*
743 * Determine block bounds for cylinder group.
744 * Allow space for super block summary information in first
745 * cylinder group.
746 */
747 cbase = cgbase(&sblock, cylno);
748 dmax = cbase + sblock.fs_fpg;
749 if (dmax > sblock.fs_size)
750 dmax = sblock.fs_size;
751 dlower = cgsblock(&sblock, cylno) - cbase;
752 dupper = cgdmin(&sblock, cylno) - cbase;
753 if (cylno == 0) {
754 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
755 if (dupper >= cgstart(&sblock, cylno + 1)) {
756 printf("\rToo many cylinder groups to fit summary "
757 "information into first cylinder group\n");
758 exit(40);
759 }
760 }
761 memset(&acg, 0, sblock.fs_cgsize);
762 acg.cg_magic = CG_MAGIC;
763 acg.cg_cgx = cylno;
764 acg.cg_ndblk = dmax - cbase;
765 if (sblock.fs_contigsumsize > 0)
766 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
767 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
768 if (Oflag == 2) {
769 acg.cg_time = tv->tv_sec;
770 acg.cg_niblk = sblock.fs_ipg;
771 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
772 sblock.fs_ipg : 2 * INOPB(&sblock);
773 acg.cg_iusedoff = start;
774 } else {
775 acg.cg_old_ncyl = sblock.fs_old_cpg;
776 if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0 &&
777 (cylno == sblock.fs_ncg - 1))
778 acg.cg_old_ncyl =
779 sblock.fs_old_ncyl % sblock.fs_old_cpg;
780 acg.cg_old_time = tv->tv_sec;
781 acg.cg_old_niblk = sblock.fs_ipg;
782 acg.cg_old_btotoff = start;
783 acg.cg_old_boff = acg.cg_old_btotoff +
784 sblock.fs_old_cpg * sizeof(int32_t);
785 acg.cg_iusedoff = acg.cg_old_boff +
786 sblock.fs_old_cpg * sizeof(u_int16_t);
787 }
788 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
789 if (sblock.fs_contigsumsize <= 0) {
790 acg.cg_nextfreeoff = acg.cg_freeoff +
791 howmany(sblock.fs_fpg, CHAR_BIT);
792 } else {
793 acg.cg_clustersumoff = acg.cg_freeoff +
794 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
795 if (isappleufs) {
796 /* Apple PR2216969 gives rationale for this change.
797 * I believe they were mistaken, but we need to
798 * duplicate it for compatibility. -- dbj (at) NetBSD.org
799 */
800 acg.cg_clustersumoff += sizeof(int32_t);
801 }
802 acg.cg_clustersumoff =
803 roundup(acg.cg_clustersumoff, sizeof(int32_t));
804 acg.cg_clusteroff = acg.cg_clustersumoff +
805 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
806 acg.cg_nextfreeoff = acg.cg_clusteroff +
807 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
808 }
809 if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
810 printf("Panic: cylinder group too big\n");
811 exit(37);
812 }
813 acg.cg_cs.cs_nifree += sblock.fs_ipg;
814 if (cylno == 0)
815 for (i = 0; i < ROOTINO; i++) {
816 setbit(cg_inosused(&acg, 0), i);
817 acg.cg_cs.cs_nifree--;
818 }
819 if (cylno > 0) {
820 /*
821 * In cylno 0, beginning space is reserved
822 * for boot and super blocks.
823 */
824 for (d = 0, blkno = 0; d < dlower;) {
825 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
826 if (sblock.fs_contigsumsize > 0)
827 setbit(cg_clustersfree(&acg, 0), blkno);
828 acg.cg_cs.cs_nbfree++;
829 if (Oflag <= 1) {
830 int cn = old_cbtocylno(&sblock, d);
831 old_cg_blktot(&acg, 0)[cn]++;
832 old_cg_blks(&sblock, &acg,
833 cn, 0)[old_cbtorpos(&sblock, d)]++;
834 }
835 d += sblock.fs_frag;
836 blkno++;
837 }
838 }
839 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
840 acg.cg_frsum[sblock.fs_frag - i]++;
841 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
842 setbit(cg_blksfree(&acg, 0), dupper);
843 acg.cg_cs.cs_nffree++;
844 }
845 }
846 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
847 d + sblock.fs_frag <= acg.cg_ndblk; ) {
848 setblock(&sblock, cg_blksfree(&acg, 0), blkno);
849 if (sblock.fs_contigsumsize > 0)
850 setbit(cg_clustersfree(&acg, 0), blkno);
851 acg.cg_cs.cs_nbfree++;
852 if (Oflag <= 1) {
853 int cn = old_cbtocylno(&sblock, d);
854 old_cg_blktot(&acg, 0)[cn]++;
855 old_cg_blks(&sblock, &acg,
856 cn, 0)[old_cbtorpos(&sblock, d)]++;
857 }
858 d += sblock.fs_frag;
859 blkno++;
860 }
861 if (d < acg.cg_ndblk) {
862 acg.cg_frsum[acg.cg_ndblk - d]++;
863 for (; d < acg.cg_ndblk; d++) {
864 setbit(cg_blksfree(&acg, 0), d);
865 acg.cg_cs.cs_nffree++;
866 }
867 }
868 if (sblock.fs_contigsumsize > 0) {
869 int32_t *sump = cg_clustersum(&acg, 0);
870 u_char *mapp = cg_clustersfree(&acg, 0);
871 int map = *mapp++;
872 int bit = 1;
873 int run = 0;
874
875 for (i = 0; i < acg.cg_nclusterblks; i++) {
876 if ((map & bit) != 0) {
877 run++;
878 } else if (run != 0) {
879 if (run > sblock.fs_contigsumsize)
880 run = sblock.fs_contigsumsize;
881 sump[run]++;
882 run = 0;
883 }
884 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
885 bit <<= 1;
886 } else {
887 map = *mapp++;
888 bit = 1;
889 }
890 }
891 if (run != 0) {
892 if (run > sblock.fs_contigsumsize)
893 run = sblock.fs_contigsumsize;
894 sump[run]++;
895 }
896 }
897 *fscs_next++ = acg.cg_cs;
898 if (fscs_next == fscs_end) {
899 /* write block of cylinder group summary info into cyl 0 */
900 if (needswap)
901 ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
902 fs_csaddr++;
903 wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
904 fscs_next = fscs_reset;
905 memset(fscs_next, 0, sblock.fs_fsize);
906 }
907 /*
908 * Write out the duplicate super block, the cylinder group map
909 * and two blocks worth of inodes in a single write.
910 */
911 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
912 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
913 if (needswap)
914 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
915 start += sblock.fs_bsize;
916 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
917 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
918 for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
919 if (sblock.fs_magic == FS_UFS1_MAGIC) {
920 /* No need to swap, it'll stay random */
921 dp1->di_gen = arc4random() & INT32_MAX;
922 dp1++;
923 } else {
924 dp2->di_gen = arc4random() & INT32_MAX;
925 dp2++;
926 }
927 }
928 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
929 /*
930 * For the old file system, we have to initialize all the inodes.
931 */
932 if (sblock.fs_magic != FS_UFS1_MAGIC)
933 return;
934
935 /* Write 'd' (usually 16 * fs_frag) file-system fragments at once */
936 d = (iobuf_memsize - start) / sblock.fs_bsize * sblock.fs_frag;
937 dupper = sblock.fs_ipg / INOPF(&sblock);
938 for (i = 2 * sblock.fs_frag; i < dupper; i += d) {
939 if (d > dupper - i)
940 d = dupper - i;
941 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
942 do
943 dp1->di_gen = arc4random() & INT32_MAX;
944 while ((char *)++dp1 < &iobuf[iobuf_memsize]);
945 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
946 d * sblock.fs_bsize / sblock.fs_frag, &iobuf[start]);
947 }
948 }
949
950 /*
951 * initialize the file system
952 */
953
954 #ifdef LOSTDIR
955 #define PREDEFDIR 3
956 #else
957 #define PREDEFDIR 2
958 #endif
959
960 struct direct root_dir[] = {
961 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
962 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
963 #ifdef LOSTDIR
964 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
965 #endif
966 };
967 struct odirect {
968 u_int32_t d_ino;
969 u_int16_t d_reclen;
970 u_int16_t d_namlen;
971 u_char d_name[FFS_MAXNAMLEN + 1];
972 } oroot_dir[] = {
973 { ROOTINO, sizeof(struct direct), 1, "." },
974 { ROOTINO, sizeof(struct direct), 2, ".." },
975 #ifdef LOSTDIR
976 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
977 #endif
978 };
979 #ifdef LOSTDIR
980 struct direct lost_found_dir[] = {
981 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
982 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
983 { 0, DIRBLKSIZ, 0, 0, 0 },
984 };
985 struct odirect olost_found_dir[] = {
986 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
987 { ROOTINO, sizeof(struct direct), 2, ".." },
988 { 0, DIRBLKSIZ, 0, 0 },
989 };
990 #endif
991 char buf[MAXBSIZE];
992 static void copy_dir(struct direct *, struct direct *);
993
994 int
995 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
996 {
997 union dinode node;
998 #ifdef LOSTDIR
999 int i;
1000 int dirblksiz = DIRBLKSIZ;
1001 if (isappleufs)
1002 dirblksiz = APPLEUFS_DIRBLKSIZ;
1003 #endif
1004
1005 /*
1006 * initialize the node
1007 */
1008
1009 #ifdef LOSTDIR
1010 /*
1011 * create the lost+found directory
1012 */
1013 memset(&node, 0, sizeof(node));
1014 if (Oflag == 0) {
1015 (void)makedir((struct direct *)olost_found_dir, 2);
1016 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
1017 copy_dir((struct direct*)&olost_found_dir[2],
1018 (struct direct*)&buf[i]);
1019 } else {
1020 (void)makedir(lost_found_dir, 2);
1021 for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
1022 copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
1023 }
1024 if (sblock.fs_magic == FS_UFS1_MAGIC) {
1025 node.dp1.di_atime = tv->tv_sec;
1026 node.dp1.di_atimensec = tv->tv_usec * 1000;
1027 node.dp1.di_mtime = tv->tv_sec;
1028 node.dp1.di_mtimensec = tv->tv_usec * 1000;
1029 node.dp1.di_ctime = tv->tv_sec;
1030 node.dp1.di_ctimensec = tv->tv_usec * 1000;
1031 node.dp1.di_mode = IFDIR | UMASK;
1032 node.dp1.di_nlink = 2;
1033 node.dp1.di_size = sblock.fs_bsize;
1034 node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
1035 if (node.dp1.di_db[0] == 0)
1036 return (0);
1037 node.dp1.di_blocks = btodb(fragroundup(&sblock,
1038 node.dp1.di_size));
1039 node.dp1.di_uid = geteuid();
1040 node.dp1.di_gid = getegid();
1041 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
1042 buf);
1043 } else {
1044 node.dp2.di_atime = tv->tv_sec;
1045 node.dp2.di_atimensec = tv->tv_usec * 1000;
1046 node.dp2.di_mtime = tv->tv_sec;
1047 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1048 node.dp2.di_ctime = tv->tv_sec;
1049 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1050 node.dp2.di_birthtime = tv->tv_sec;
1051 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1052 node.dp2.di_mode = IFDIR | UMASK;
1053 node.dp2.di_nlink = 2;
1054 node.dp2.di_size = sblock.fs_bsize;
1055 node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
1056 if (node.dp2.di_db[0] == 0)
1057 return (0);
1058 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1059 node.dp2.di_size));
1060 node.dp2.di_uid = geteuid();
1061 node.dp2.di_gid = getegid();
1062 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
1063 buf);
1064 }
1065 iput(&node, LOSTFOUNDINO);
1066 #endif
1067 /*
1068 * create the root directory
1069 */
1070 memset(&node, 0, sizeof(node));
1071 if (Oflag <= 1) {
1072 if (mfs) {
1073 node.dp1.di_mode = IFDIR | mfsmode;
1074 node.dp1.di_uid = mfsuid;
1075 node.dp1.di_gid = mfsgid;
1076 } else {
1077 node.dp1.di_mode = IFDIR | UMASK;
1078 node.dp1.di_uid = geteuid();
1079 node.dp1.di_gid = getegid();
1080 }
1081 node.dp1.di_nlink = PREDEFDIR;
1082 if (Oflag == 0)
1083 node.dp1.di_size = makedir((struct direct *)oroot_dir,
1084 PREDEFDIR);
1085 else
1086 node.dp1.di_size = makedir(root_dir, PREDEFDIR);
1087 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
1088 if (node.dp1.di_db[0] == 0)
1089 return (0);
1090 node.dp1.di_blocks = btodb(fragroundup(&sblock,
1091 node.dp1.di_size));
1092 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
1093 } else {
1094 if (mfs) {
1095 node.dp2.di_mode = IFDIR | mfsmode;
1096 node.dp2.di_uid = mfsuid;
1097 node.dp2.di_gid = mfsgid;
1098 } else {
1099 node.dp2.di_mode = IFDIR | UMASK;
1100 node.dp2.di_uid = geteuid();
1101 node.dp2.di_gid = getegid();
1102 }
1103 node.dp2.di_atime = tv->tv_sec;
1104 node.dp2.di_atimensec = tv->tv_usec * 1000;
1105 node.dp2.di_mtime = tv->tv_sec;
1106 node.dp2.di_mtimensec = tv->tv_usec * 1000;
1107 node.dp2.di_ctime = tv->tv_sec;
1108 node.dp2.di_ctimensec = tv->tv_usec * 1000;
1109 node.dp2.di_birthtime = tv->tv_sec;
1110 node.dp2.di_birthnsec = tv->tv_usec * 1000;
1111 node.dp2.di_nlink = PREDEFDIR;
1112 node.dp2.di_size = makedir(root_dir, PREDEFDIR);
1113 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
1114 if (node.dp2.di_db[0] == 0)
1115 return (0);
1116 node.dp2.di_blocks = btodb(fragroundup(&sblock,
1117 node.dp2.di_size));
1118 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
1119 }
1120 iput(&node, ROOTINO);
1121 return (1);
1122 }
1123
1124 /*
1125 * construct a set of directory entries in "buf".
1126 * return size of directory.
1127 */
1128 int
1129 makedir(struct direct *protodir, int entries)
1130 {
1131 char *cp;
1132 int i, spcleft;
1133 int dirblksiz = DIRBLKSIZ;
1134 if (isappleufs)
1135 dirblksiz = APPLEUFS_DIRBLKSIZ;
1136
1137 memset(buf, 0, DIRBLKSIZ);
1138 spcleft = dirblksiz;
1139 for (cp = buf, i = 0; i < entries - 1; i++) {
1140 protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
1141 copy_dir(&protodir[i], (struct direct*)cp);
1142 cp += protodir[i].d_reclen;
1143 spcleft -= protodir[i].d_reclen;
1144 }
1145 protodir[i].d_reclen = spcleft;
1146 copy_dir(&protodir[i], (struct direct*)cp);
1147 return (dirblksiz);
1148 }
1149
1150 /*
1151 * allocate a block or frag
1152 */
1153 daddr_t
1154 alloc(int size, int mode)
1155 {
1156 int i, frag;
1157 daddr_t d, blkno;
1158
1159 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1160 /* fs -> host byte order */
1161 if (needswap)
1162 ffs_cg_swap(&acg, &acg, &sblock);
1163 if (acg.cg_magic != CG_MAGIC) {
1164 printf("cg 0: bad magic number\n");
1165 return (0);
1166 }
1167 if (acg.cg_cs.cs_nbfree == 0) {
1168 printf("first cylinder group ran out of space\n");
1169 return (0);
1170 }
1171 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1172 if (isblock(&sblock, cg_blksfree(&acg, 0),
1173 d >> sblock.fs_fragshift))
1174 goto goth;
1175 printf("internal error: can't find block in cyl 0\n");
1176 return (0);
1177 goth:
1178 blkno = fragstoblks(&sblock, d);
1179 clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
1180 if (sblock.fs_contigsumsize > 0)
1181 clrbit(cg_clustersfree(&acg, 0), blkno);
1182 acg.cg_cs.cs_nbfree--;
1183 sblock.fs_cstotal.cs_nbfree--;
1184 fscs_0->cs_nbfree--;
1185 if (mode & IFDIR) {
1186 acg.cg_cs.cs_ndir++;
1187 sblock.fs_cstotal.cs_ndir++;
1188 fscs_0->cs_ndir++;
1189 }
1190 if (Oflag <= 1) {
1191 int cn = old_cbtocylno(&sblock, d);
1192 old_cg_blktot(&acg, 0)[cn]--;
1193 old_cg_blks(&sblock, &acg,
1194 cn, 0)[old_cbtorpos(&sblock, d)]--;
1195 }
1196 if (size != sblock.fs_bsize) {
1197 frag = howmany(size, sblock.fs_fsize);
1198 fscs_0->cs_nffree += sblock.fs_frag - frag;
1199 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1200 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1201 acg.cg_frsum[sblock.fs_frag - frag]++;
1202 for (i = frag; i < sblock.fs_frag; i++)
1203 setbit(cg_blksfree(&acg, 0), d + i);
1204 }
1205 /* host -> fs byte order */
1206 if (needswap)
1207 ffs_cg_swap(&acg, &acg, &sblock);
1208 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1209 return (d);
1210 }
1211
1212 /*
1213 * Allocate an inode on the disk
1214 */
1215 static void
1216 iput(union dinode *ip, ino_t ino)
1217 {
1218 daddr_t d;
1219 int c, i;
1220 struct ufs1_dinode *dp1;
1221 struct ufs2_dinode *dp2;
1222
1223 c = ino_to_cg(&sblock, ino);
1224 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1225 /* fs -> host byte order */
1226 if (needswap)
1227 ffs_cg_swap(&acg, &acg, &sblock);
1228 if (acg.cg_magic != CG_MAGIC) {
1229 printf("cg 0: bad magic number\n");
1230 exit(31);
1231 }
1232 acg.cg_cs.cs_nifree--;
1233 setbit(cg_inosused(&acg, 0), ino);
1234 /* host -> fs byte order */
1235 if (needswap)
1236 ffs_cg_swap(&acg, &acg, &sblock);
1237 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
1238 sblock.fs_cstotal.cs_nifree--;
1239 fscs_0->cs_nifree--;
1240 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1241 printf("fsinit: inode value out of range (%llu).\n",
1242 (unsigned long long)ino);
1243 exit(32);
1244 }
1245 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1246 rdfs(d, sblock.fs_bsize, (char *)iobuf);
1247 if (sblock.fs_magic == FS_UFS1_MAGIC) {
1248 dp1 = (struct ufs1_dinode *)iobuf;
1249 dp1 += ino_to_fsbo(&sblock, ino);
1250 if (needswap) {
1251 ffs_dinode1_swap(&ip->dp1, dp1);
1252 /* ffs_dinode1_swap() doesn't swap blocks addrs */
1253 for (i=0; i<NDADDR + NIADDR; i++)
1254 dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
1255 } else
1256 *dp1 = ip->dp1;
1257 dp1->di_gen = arc4random() & INT32_MAX;
1258 } else {
1259 dp2 = (struct ufs2_dinode *)iobuf;
1260 dp2 += ino_to_fsbo(&sblock, ino);
1261 if (needswap) {
1262 ffs_dinode2_swap(&ip->dp2, dp2);
1263 for (i=0; i<NDADDR + NIADDR; i++)
1264 dp2->di_db[i] = bswap64(ip->dp2.di_db[i]);
1265 } else
1266 *dp2 = ip->dp2;
1267 dp2->di_gen = arc4random() & INT32_MAX;
1268 }
1269 wtfs(d, sblock.fs_bsize, iobuf);
1270 }
1271
1272 /*
1273 * read a block from the file system
1274 */
1275 void
1276 rdfs(daddr_t bno, int size, void *bf)
1277 {
1278 int n;
1279 off_t offset;
1280
1281 #ifdef MFS
1282 if (mfs) {
1283 if (Nflag)
1284 memset(bf, 0, size);
1285 else
1286 memmove(bf, membase + bno * sectorsize, size);
1287 return;
1288 }
1289 #endif
1290 offset = bno;
1291 n = pread(fsi, bf, size, offset * sectorsize);
1292 if (n != size) {
1293 printf("rdfs: read error for sector %lld: %s\n",
1294 (long long)bno, strerror(errno));
1295 exit(34);
1296 }
1297 }
1298
1299 /*
1300 * write a block to the file system
1301 */
1302 void
1303 wtfs(daddr_t bno, int size, void *bf)
1304 {
1305 int n;
1306 off_t offset;
1307
1308 if (Nflag)
1309 return;
1310 #ifdef MFS
1311 if (mfs) {
1312 memmove(membase + bno * sectorsize, bf, size);
1313 return;
1314 }
1315 #endif
1316 offset = bno;
1317 n = pwrite(fso, bf, size, offset * sectorsize);
1318 if (n != size) {
1319 printf("wtfs: write error for sector %lld: %s\n",
1320 (long long)bno, strerror(errno));
1321 exit(36);
1322 }
1323 }
1324
1325 /*
1326 * check if a block is available
1327 */
1328 int
1329 isblock(struct fs *fs, unsigned char *cp, int h)
1330 {
1331 unsigned char mask;
1332
1333 switch (fs->fs_fragshift) {
1334 case 3:
1335 return (cp[h] == 0xff);
1336 case 2:
1337 mask = 0x0f << ((h & 0x1) << 2);
1338 return ((cp[h >> 1] & mask) == mask);
1339 case 1:
1340 mask = 0x03 << ((h & 0x3) << 1);
1341 return ((cp[h >> 2] & mask) == mask);
1342 case 0:
1343 mask = 0x01 << (h & 0x7);
1344 return ((cp[h >> 3] & mask) == mask);
1345 default:
1346 #ifdef STANDALONE
1347 printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
1348 #else
1349 fprintf(stderr, "isblock bad fs_fragshift %d\n",
1350 fs->fs_fragshift);
1351 #endif
1352 return (0);
1353 }
1354 }
1355
1356 /*
1357 * take a block out of the map
1358 */
1359 void
1360 clrblock(struct fs *fs, unsigned char *cp, int h)
1361 {
1362 switch ((fs)->fs_fragshift) {
1363 case 3:
1364 cp[h] = 0;
1365 return;
1366 case 2:
1367 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1368 return;
1369 case 1:
1370 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1371 return;
1372 case 0:
1373 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1374 return;
1375 default:
1376 #ifdef STANDALONE
1377 printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
1378 #else
1379 fprintf(stderr, "clrblock bad fs_fragshift %d\n",
1380 fs->fs_fragshift);
1381 #endif
1382 return;
1383 }
1384 }
1385
1386 /*
1387 * put a block into the map
1388 */
1389 void
1390 setblock(struct fs *fs, unsigned char *cp, int h)
1391 {
1392 switch (fs->fs_fragshift) {
1393 case 3:
1394 cp[h] = 0xff;
1395 return;
1396 case 2:
1397 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1398 return;
1399 case 1:
1400 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1401 return;
1402 case 0:
1403 cp[h >> 3] |= (0x01 << (h & 0x7));
1404 return;
1405 default:
1406 #ifdef STANDALONE
1407 printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
1408 #else
1409 fprintf(stderr, "setblock bad fs_fragshift %d\n",
1410 fs->fs_fragshift);
1411 #endif
1412 return;
1413 }
1414 }
1415
1416 /* copy a direntry to a buffer, in fs byte order */
1417 static void
1418 copy_dir(struct direct *dir, struct direct *dbuf)
1419 {
1420 memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
1421 if (needswap) {
1422 dbuf->d_ino = bswap32(dir->d_ino);
1423 dbuf->d_reclen = bswap16(dir->d_reclen);
1424 if (Oflag == 0)
1425 ((struct odirect*)dbuf)->d_namlen =
1426 bswap16(((struct odirect*)dir)->d_namlen);
1427 }
1428 }
1429
1430 static int
1431 ilog2(int val)
1432 {
1433 u_int n;
1434
1435 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1436 if (1 << n == val)
1437 return (n);
1438 errx(1, "ilog2: %d is not a power of 2\n", val);
1439 }
1440
1441 static void
1442 zap_old_sblock(int sblkoff)
1443 {
1444 static int cg0_data;
1445 uint32_t oldfs[SBLOCKSIZE / 4];
1446 static const struct fsm {
1447 uint32_t offset;
1448 uint32_t magic;
1449 uint32_t mask;
1450 } fs_magics[] = {
1451 {offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
1452 {offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
1453 {0, 0x70162, ~0u}, /* LFS_MAGIC */
1454 {14, 0xef53, 0xffff}, /* EXT2FS (little) */
1455 {14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */
1456 {.offset = ~0u},
1457 };
1458 const struct fsm *fsm;
1459
1460 if (Nflag)
1461 return;
1462
1463 if (sblkoff == 0) /* Why did UFS2 add support for this? sigh. */
1464 return;
1465
1466 if (cg0_data == 0)
1467 /* For FFSv1 this could include all the inodes. */
1468 cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
1469
1470 /* Ignore anything that is beyond our filesystem */
1471 if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
1472 return;
1473 /* Zero anything inside our filesystem... */
1474 if (sblkoff >= sblock.fs_sblockloc) {
1475 /* ...unless we will write that area anyway */
1476 if (sblkoff >= cg0_data)
1477 wtfs(sblkoff / sectorsize,
1478 roundup(sizeof sblock, sectorsize), iobuf);
1479 return;
1480 }
1481
1482 /* The sector might contain boot code, so we must validate it */
1483 rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1484 for (fsm = fs_magics; ; fsm++) {
1485 uint32_t v;
1486 if (fsm->mask == 0)
1487 return;
1488 v = oldfs[fsm->offset];
1489 if ((v & fsm->mask) == fsm->magic ||
1490 (bswap32(v) & fsm->mask) == fsm->magic)
1491 break;
1492 }
1493
1494 /* Just zap the magic number */
1495 oldfs[fsm->offset] = 0;
1496 wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
1497 }
1498
1499
1500 #ifdef MFS
1501 /*
1502 * XXX!
1503 * Attempt to guess how much more space is available for process data. The
1504 * heuristic we use is
1505 *
1506 * max_data_limit - (sbrk(0) - etext) - 128kB
1507 *
1508 * etext approximates that start address of the data segment, and the 128kB
1509 * allows some slop for both segment gap between text and data, and for other
1510 * (libc) malloc usage.
1511 */
1512 static void
1513 calc_memfree(void)
1514 {
1515 extern char etext;
1516 struct rlimit rlp;
1517 u_long base;
1518
1519 base = (u_long)sbrk(0) - (u_long)&etext;
1520 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1521 perror("getrlimit");
1522 rlp.rlim_cur = rlp.rlim_max;
1523 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1524 perror("setrlimit");
1525 memleft = rlp.rlim_max - base - (128 * 1024);
1526 }
1527
1528 /*
1529 * Internal version of malloc that trims the requested size if not enough
1530 * memory is available.
1531 */
1532 static void *
1533 mkfs_malloc(size_t size)
1534 {
1535 u_long pgsz;
1536
1537 if (size == 0)
1538 return (NULL);
1539 if (memleft == 0)
1540 calc_memfree();
1541
1542 pgsz = getpagesize() - 1;
1543 size = (size + pgsz) &~ pgsz;
1544 if (size > memleft)
1545 size = memleft;
1546 memleft -= size;
1547 return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
1548 -1, 0));
1549 }
1550 #endif /* MFS */
1551