mkfs.c revision 1.112.6.1       1 /*	$NetBSD: mkfs.c,v 1.112.6.1 2013/02/25 00:28:09 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. All advertising materials mentioning features or use of this software
     51  *    must display the following acknowledgement:
     52  *	This product includes software developed by the University of
     53  *	California, Berkeley and its contributors.
     54  * 4. Neither the name of the University nor the names of its contributors
     55  *    may be used to endorse or promote products derived from this software
     56  *    without specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     68  * SUCH DAMAGE.
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 #ifndef lint
     73 #if 0
     74 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
     75 #else
     76 __RCSID("$NetBSD: mkfs.c,v 1.112.6.1 2013/02/25 00:28:09 tls Exp $");
     77 #endif
     78 #endif /* not lint */
     79 
     80 #include <sys/param.h>
     81 #include <sys/mman.h>
     82 #include <sys/time.h>
     83 #include <sys/resource.h>
     84 #include <ufs/ufs/dinode.h>
     85 #include <ufs/ufs/dir.h>
     86 #include <ufs/ufs/ufs_bswap.h>
     87 #include <ufs/ufs/quota2.h>
     88 #include <ufs/ffs/fs.h>
     89 #include <ufs/ffs/ffs_extern.h>
     90 #include <sys/ioctl.h>
     91 #include <sys/disklabel.h>
     92 
     93 #include <err.h>
     94 #include <errno.h>
     95 #include <string.h>
     96 #include <unistd.h>
     97 #include <stdlib.h>
     98 #include <stddef.h>
     99 
    100 #ifndef STANDALONE
    101 #include <stdio.h>
    102 #endif
    103 
    104 #include "extern.h"
    105 
    106 union dinode {
    107 	struct ufs1_dinode dp1;
    108 	struct ufs2_dinode dp2;
    109 };
    110 
    111 static void initcg(int, const struct timeval *);
    112 static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
    113 static int makedir(struct direct *, int);
    114 static daddr_t alloc(int, int);
    115 static void iput(union dinode *, ino_t);
    116 static void rdfs(daddr_t, int, void *);
    117 static void wtfs(daddr_t, int, void *);
    118 static int isblock(struct fs *, unsigned char *, int);
    119 static void clrblock(struct fs *, unsigned char *, int);
    120 static void setblock(struct fs *, unsigned char *, int);
    121 static int ilog2(int);
    122 static void zap_old_sblock(int);
    123 #ifdef MFS
    124 static void calc_memfree(void);
    125 static void *mkfs_malloc(size_t size);
    126 #endif
    127 
    128 /*
    129  * make file system for cylinder-group style file systems
    130  */
    131 #define	UMASK		0755
    132 
    133 union {
    134 	struct fs fs;
    135 	char pad[SBLOCKSIZE];
    136 } fsun;
    137 #define	sblock	fsun.fs
    138 
    139 struct	csum *fscs_0;		/* first block of cylinder summaries */
    140 struct	csum *fscs_next;	/* place for next summary */
    141 struct	csum *fscs_end;		/* end of summary buffer */
    142 struct	csum *fscs_reset;	/* place for next summary after write */
    143 uint	fs_csaddr;		/* fragment number to write to */
    144 
    145 union {
    146 	struct cg cg;
    147 	char pad[MAXBSIZE];
    148 } cgun;
    149 #define	acg	cgun.cg
    150 
    151 #define DIP(dp, field) \
    152 	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
    153 	(dp)->dp1.di_##field : (dp)->dp2.di_##field)
    154 
    155 #define EXT2FS_SBOFF	1024	/* XXX: SBOFF in <ufs/ext2fs/ext2fs.h> */
    156 
    157 char *iobuf;
    158 int iobufsize;			/* size to end of 2nd inode block */
    159 int iobuf_memsize;		/* Actual buffer size */
    160 
    161 int	fsi, fso;
    162 
    163 static void
    164 fserr(int num)
    165 {
    166 #ifdef GARBAGE
    167 	extern int Gflag;
    168 
    169 	if (Gflag)
    170 		return;
    171 #endif
    172 	exit(num);
    173 }
    174 
    175 void
    176 mkfs(const char *fsys, int fi, int fo,
    177     mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
    178 {
    179 	uint fragsperinodeblk, ncg, u;
    180 	uint cgzero;
    181 	uint64_t inodeblks, cgall;
    182 	int32_t cylno, i, csfrags;
    183 	int inodes_per_cg;
    184 	struct timeval tv;
    185 	long long sizepb;
    186 	int len, col, delta, fld_width, max_cols;
    187 	struct winsize winsize;
    188 
    189 #ifndef STANDALONE
    190 	gettimeofday(&tv, NULL);
    191 #endif
    192 #ifdef MFS
    193 	if (mfs && !Nflag) {
    194 		calc_memfree();
    195 		if ((uint64_t)fssize * sectorsize > memleft)
    196 			fssize = memleft / sectorsize;
    197 		if ((membase = mkfs_malloc(fssize * sectorsize)) == NULL)
    198 			exit(12);
    199 	}
    200 #endif
    201 	fsi = fi;
    202 	fso = fo;
    203 	if (Oflag == 0) {
    204 		sblock.fs_old_inodefmt = FS_42INODEFMT;
    205 		sblock.fs_maxsymlinklen = 0;
    206 		sblock.fs_old_flags = 0;
    207 	} else {
    208 		sblock.fs_old_inodefmt = FS_44INODEFMT;
    209 		sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN :
    210 		    UFS2_MAXSYMLINKLEN);
    211 		sblock.fs_old_flags = FS_FLAGS_UPDATED;
    212 		if (isappleufs)
    213 			sblock.fs_old_flags = 0;
    214 		sblock.fs_flags = 0;
    215 	}
    216 
    217 	/*
    218 	 * collect and verify the filesystem density info
    219 	 */
    220 	sblock.fs_avgfilesize = avgfilesize;
    221 	sblock.fs_avgfpdir = avgfpdir;
    222 	if (sblock.fs_avgfilesize <= 0) {
    223 		printf("illegal expected average file size %d\n",
    224 		    sblock.fs_avgfilesize);
    225 		fserr(14);
    226 	}
    227 	if (sblock.fs_avgfpdir <= 0) {
    228 		printf("illegal expected number of files per directory %d\n",
    229 		    sblock.fs_avgfpdir);
    230 		fserr(15);
    231 	}
    232 	/*
    233 	 * collect and verify the block and fragment sizes
    234 	 */
    235 	sblock.fs_bsize = bsize;
    236 	sblock.fs_fsize = fsize;
    237 	if (!powerof2(sblock.fs_bsize)) {
    238 		printf("block size must be a power of 2, not %d\n",
    239 		    sblock.fs_bsize);
    240 		fserr(16);
    241 	}
    242 	if (!powerof2(sblock.fs_fsize)) {
    243 		printf("fragment size must be a power of 2, not %d\n",
    244 		    sblock.fs_fsize);
    245 		fserr(17);
    246 	}
    247 	if (sblock.fs_fsize < sectorsize) {
    248 		printf("fragment size %d is too small, minimum is %d\n",
    249 		    sblock.fs_fsize, sectorsize);
    250 		fserr(18);
    251 	}
    252 	if (sblock.fs_bsize < MINBSIZE) {
    253 		printf("block size %d is too small, minimum is %d\n",
    254 		    sblock.fs_bsize, MINBSIZE);
    255 		fserr(19);
    256 	}
    257 	if (sblock.fs_bsize > MAXBSIZE) {
    258 		printf("block size %d is too large, maximum is %d\n",
    259 		    sblock.fs_bsize, MAXBSIZE);
    260 		fserr(19);
    261 	}
    262 	if (sblock.fs_bsize < sblock.fs_fsize) {
    263 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    264 		    sblock.fs_bsize, sblock.fs_fsize);
    265 		fserr(20);
    266 	}
    267 
    268 	if (maxbsize < bsize || !powerof2(maxbsize)) {
    269 		sblock.fs_maxbsize = sblock.fs_bsize;
    270 	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
    271 		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
    272 	} else {
    273 		sblock.fs_maxbsize = maxbsize;
    274 	}
    275 	sblock.fs_maxcontig = maxcontig;
    276 	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
    277 		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
    278 		if (verbosity > 0)
    279 			printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
    280 	}
    281 	if (sblock.fs_maxcontig > 1)
    282 		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
    283 
    284 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    285 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    286 	sblock.fs_qbmask = ~sblock.fs_bmask;
    287 	sblock.fs_qfmask = ~sblock.fs_fmask;
    288 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    289 		sblock.fs_bshift++;
    290 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    291 		sblock.fs_fshift++;
    292 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    293 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    294 		sblock.fs_fragshift++;
    295 	if (sblock.fs_frag > MAXFRAG) {
    296 		printf("fragment size %d is too small, "
    297 			"minimum with block size %d is %d\n",
    298 		    sblock.fs_fsize, sblock.fs_bsize,
    299 		    sblock.fs_bsize / MAXFRAG);
    300 		fserr(21);
    301 	}
    302 	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
    303 	sblock.fs_size = dbtofsb(&sblock, fssize);
    304 	if (Oflag <= 1) {
    305 		if ((uint64_t)sblock.fs_size >= 1ull << 31) {
    306 			printf("Too many fragments (0x%" PRIx64
    307 			    ") for a FFSv1 filesystem\n", sblock.fs_size);
    308 			fserr(22);
    309 		}
    310 		sblock.fs_magic = FS_UFS1_MAGIC;
    311 		sblock.fs_sblockloc = SBLOCK_UFS1;
    312 		sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
    313 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
    314 		sblock.fs_old_cgoffset = 0;
    315 		sblock.fs_old_cgmask = 0xffffffff;
    316 		sblock.fs_old_size = sblock.fs_size;
    317 		sblock.fs_old_rotdelay = 0;
    318 		sblock.fs_old_rps = 60;
    319 		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
    320 		sblock.fs_old_cpg = 1;
    321 		sblock.fs_old_interleave = 1;
    322 		sblock.fs_old_trackskew = 0;
    323 		sblock.fs_old_cpc = 0;
    324 		sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
    325 		sblock.fs_old_nrpos = 1;
    326 	} else {
    327 		sblock.fs_magic = FS_UFS2_MAGIC;
    328 		sblock.fs_sblockloc = SBLOCK_UFS2;
    329 		sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
    330 		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
    331 	}
    332 
    333 	sblock.fs_sblkno =
    334 	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
    335 		sblock.fs_frag);
    336 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    337 	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
    338 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    339 	sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
    340 	for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
    341 		sizepb *= NINDIR(&sblock);
    342 		sblock.fs_maxfilesize += sizepb;
    343 	}
    344 
    345 	/*
    346 	 * Calculate the number of blocks to put into each cylinder group.
    347 	 *
    348 	 * The cylinder group size is limited because the data structure
    349 	 * must fit into a single block.
    350 	 * We try to have as few cylinder groups as possible, with a proviso
    351 	 * that we create at least MINCYLGRPS (==4) except for small
    352 	 * filesystems.
    353 	 *
    354 	 * This algorithm works out how many blocks of inodes would be
    355 	 * needed to fill the entire volume at the specified density.
    356 	 * It then looks at how big the 'cylinder block' would have to
    357 	 * be and, assuming that it is linearly related to the number
    358 	 * of inodes and blocks how many cylinder groups are needed to
    359 	 * keep the cylinder block below the filesystem block size.
    360 	 *
    361 	 * The cylinder groups are then all created with the average size.
    362 	 *
    363 	 * Space taken by the red tape on cylinder groups other than the
    364 	 * first is ignored.
    365 	 */
    366 
    367 	/* There must be space for 1 inode block and 2 data blocks */
    368 	if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
    369 		printf("Filesystem size %lld < minimum size of %d\n",
    370 		    (long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
    371 		fserr(23);
    372 	}
    373 	if (num_inodes != 0)
    374 		inodeblks = howmany(num_inodes, INOPB(&sblock));
    375 	else {
    376 		/*
    377 		 * Calculate 'per inode block' so we can allocate less than
    378 		 * 1 fragment per inode - useful for /dev.
    379 		 */
    380 		fragsperinodeblk = MAX(numfrags(&sblock,
    381 					(uint64_t)density * INOPB(&sblock)), 1);
    382 		inodeblks = (sblock.fs_size - sblock.fs_iblkno) /
    383 			(sblock.fs_frag + fragsperinodeblk);
    384 	}
    385 	if (inodeblks == 0)
    386 		inodeblks = 1;
    387 	/* Ensure that there are at least 2 data blocks (or we fail below) */
    388 	if (inodeblks > (uint64_t)(sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2)
    389 		inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2;
    390 	/* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
    391 	if (inodeblks * INOPB(&sblock) >= 1ull << 31)
    392 		inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
    393 	/*
    394 	 * See what would happen if we tried to use 1 cylinder group.
    395 	 * Assume space linear, so work out number of cylinder groups needed.
    396 	 */
    397 	cgzero = CGSIZE_IF(&sblock, 0, 0);
    398 	cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
    399 	ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero);
    400 	if (ncg < MINCYLGRPS) {
    401 		/*
    402 		 * We would like to allocate MINCLYGRPS cylinder groups,
    403 		 * but for small file sytems (especially ones with a lot
    404 		 * of inodes) this is not desirable (or possible).
    405 		 */
    406 		u = sblock.fs_size / 2 / (sblock.fs_iblkno +
    407 						inodeblks * sblock.fs_frag);
    408 		if (u > ncg)
    409 			ncg = u;
    410 		if (ncg > MINCYLGRPS)
    411 			ncg = MINCYLGRPS;
    412 		if (ncg > inodeblks)
    413 			ncg = inodeblks;
    414 	}
    415 	/*
    416 	 * Put an equal number of blocks in each cylinder group.
    417 	 * Round up so we don't have more fragments in the last CG than
    418 	 * the earlier ones (does that matter?), but kill a block if the
    419 	 * CGSIZE becomes too big (only happens if there are a lot of CGs).
    420 	 */
    421 	sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
    422 	/* Round up the fragments/group so the bitmap bytes are full */
    423 	sblock.fs_fpg = roundup(sblock.fs_fpg, NBBY);
    424 	inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock);
    425 
    426 	i = CGSIZE_IF(&sblock, inodes_per_cg, sblock.fs_fpg);
    427 	if (i > sblock.fs_bsize) {
    428 		sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
    429 		/* ... and recalculate how many cylinder groups we now need */
    430 		ncg = howmany(sblock.fs_size, sblock.fs_fpg);
    431 		inodes_per_cg = ((inodeblks - 1) / ncg + 1) * INOPB(&sblock);
    432 	}
    433 	sblock.fs_ipg = inodes_per_cg;
    434 	/* Sanity check on our sums... */
    435 	if ((int)CGSIZE(&sblock) > sblock.fs_bsize) {
    436 		printf("CGSIZE miscalculated %d > %d\n",
    437 		    (int)CGSIZE(&sblock), sblock.fs_bsize);
    438 		fserr(24);
    439 	}
    440 
    441 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    442 	/* Check that the last cylinder group has enough space for the inodes */
    443 	i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
    444 	if (i < sblock.fs_dblkno) {
    445 		/*
    446 		 * Since we make all the cylinder groups the same size, the
    447 		 * last will only be small if there are a large number of
    448 		 * cylinder groups. If we pull even a fragment from each
    449 		 * of the other groups then the last CG will be overfull.
    450 		 * So we just kill the last CG.
    451 		 */
    452 		ncg--;
    453 		sblock.fs_size -= i;
    454 	}
    455 	sblock.fs_ncg = ncg;
    456 
    457 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    458 	if (Oflag <= 1) {
    459 		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
    460 		sblock.fs_old_nsect = sblock.fs_old_spc;
    461 		sblock.fs_old_npsect = sblock.fs_old_spc;
    462 		sblock.fs_old_ncyl = sblock.fs_ncg;
    463 	}
    464 
    465 	/*
    466 	 * Cylinder group summary information for each cylinder is written
    467 	 * into the first cylinder group.
    468 	 * Write this fragment by fragment, but doing the first CG last
    469 	 * (after we've taken stuff off for the structure itself and the
    470 	 * root directory.
    471 	 */
    472 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    473 	sblock.fs_cssize =
    474 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    475 	if (512 % sizeof *fscs_0)
    476 		errx(1, "cylinder group summary doesn't fit in sectors");
    477 	fscs_0 = mmap(0, 2 * sblock.fs_fsize, PROT_READ|PROT_WRITE,
    478 			MAP_ANON|MAP_PRIVATE, -1, 0);
    479 	if (fscs_0 == MAP_FAILED)
    480 		exit(39);
    481 	memset(fscs_0, 0, 2 * sblock.fs_fsize);
    482 	fs_csaddr = sblock.fs_csaddr;
    483 	fscs_next = fscs_0;
    484 	fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
    485 	fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
    486 	/*
    487 	 * fill in remaining fields of the super block
    488 	 */
    489 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    490 	if (sblock.fs_sbsize > SBLOCKSIZE)
    491 		sblock.fs_sbsize = SBLOCKSIZE;
    492 	sblock.fs_minfree = minfree;
    493 	sblock.fs_maxcontig = maxcontig;
    494 	sblock.fs_maxbpg = maxbpg;
    495 	sblock.fs_optim = opt;
    496 	sblock.fs_cgrotor = 0;
    497 	sblock.fs_pendingblocks = 0;
    498 	sblock.fs_pendinginodes = 0;
    499 	sblock.fs_cstotal.cs_ndir = 0;
    500 	sblock.fs_cstotal.cs_nbfree = 0;
    501 	sblock.fs_cstotal.cs_nifree = 0;
    502 	sblock.fs_cstotal.cs_nffree = 0;
    503 	sblock.fs_fmod = 0;
    504 	sblock.fs_ronly = 0;
    505 	sblock.fs_state = 0;
    506 	sblock.fs_clean = FS_ISCLEAN;
    507 	sblock.fs_ronly = 0;
    508 	sblock.fs_id[0] = (long)tv.tv_sec;	/* XXXfvdl huh? */
    509 	sblock.fs_id[1] = arc4random() & INT32_MAX;
    510 	sblock.fs_fsmnt[0] = '\0';
    511 	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
    512 	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
    513 	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
    514 	sblock.fs_cstotal.cs_nbfree =
    515 	    fragstoblks(&sblock, sblock.fs_dsize) -
    516 	    howmany(csfrags, sblock.fs_frag);
    517 	sblock.fs_cstotal.cs_nffree =
    518 	    fragnum(&sblock, sblock.fs_size) +
    519 	    (fragnum(&sblock, csfrags) > 0 ?
    520 	    sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
    521 	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
    522 	sblock.fs_cstotal.cs_ndir = 0;
    523 	sblock.fs_dsize -= csfrags;
    524 	sblock.fs_time = tv.tv_sec;
    525 	if (Oflag <= 1) {
    526 		sblock.fs_old_time = tv.tv_sec;
    527 		sblock.fs_old_dsize = sblock.fs_dsize;
    528 		sblock.fs_old_csaddr = sblock.fs_csaddr;
    529 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
    530 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
    531 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
    532 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
    533 	}
    534 	/* add quota data in superblock */
    535 	if (quotas) {
    536 		sblock.fs_flags |= FS_DOQUOTA2;
    537 		sblock.fs_quota_magic = Q2_HEAD_MAGIC;
    538 		sblock.fs_quota_flags = quotas;
    539 	}
    540 	/*
    541 	 * Dump out summary information about file system.
    542 	 */
    543 	if (verbosity > 0) {
    544 #define	B2MBFACTOR (1 / (1024.0 * 1024.0))
    545 		printf("%s: %.1fMB (%lld sectors) block size %d, "
    546 		       "fragment size %d\n",
    547 		    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    548 		    (long long)fsbtodb(&sblock, sblock.fs_size),
    549 		    sblock.fs_bsize, sblock.fs_fsize);
    550 		printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
    551 		       "%d inodes.\n",
    552 		    sblock.fs_ncg,
    553 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    554 		    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
    555 #undef B2MBFACTOR
    556 	}
    557 
    558 	/*
    559 	 * allocate space for superblock, cylinder group map, and
    560 	 * two sets of inode blocks.
    561 	 */
    562 	if (sblock.fs_bsize < SBLOCKSIZE)
    563 		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
    564 	else
    565 		iobufsize = 4 * sblock.fs_bsize;
    566 	iobuf_memsize = iobufsize;
    567 	if (!mfs && sblock.fs_magic == FS_UFS1_MAGIC) {
    568 		/* A larger buffer so we can write multiple inode blks */
    569 		iobuf_memsize += 14 * sblock.fs_bsize;
    570 	}
    571 	for (;;) {
    572 		iobuf = mmap(0, iobuf_memsize, PROT_READ|PROT_WRITE,
    573 				MAP_ANON|MAP_PRIVATE, -1, 0);
    574 		if (iobuf != MAP_FAILED)
    575 			break;
    576 		if (iobuf_memsize != iobufsize) {
    577 			/* Try again with the smaller size */
    578 			iobuf_memsize = iobufsize;
    579 			continue;
    580 		}
    581 		printf("Cannot allocate I/O buffer\n");
    582 		exit(38);
    583 	}
    584 	memset(iobuf, 0, iobuf_memsize);
    585 
    586 	/*
    587 	 * We now start writing to the filesystem
    588 	 */
    589 
    590 	if (!Nflag) {
    591 		/*
    592 		 * Validate the given file system size.
    593 		 * Verify that its last block can actually be accessed.
    594 		 * Convert to file system fragment sized units.
    595 		 */
    596 		if (fssize <= 0) {
    597 			printf("preposterous size %lld\n", (long long)fssize);
    598 			fserr(13);
    599 		}
    600 		wtfs(fssize - 1, sectorsize, iobuf);
    601 
    602 		/*
    603 		 * Ensure there is nothing that looks like a filesystem
    604 		 * superbock anywhere other than where ours will be.
    605 		 * If fsck finds the wrong one all hell breaks loose!
    606 		 */
    607 		for (i = 0; ; i++) {
    608 			static const int sblocklist[] = SBLOCKSEARCH;
    609 			int sblkoff = sblocklist[i];
    610 			int sz;
    611 			if (sblkoff == -1)
    612 				break;
    613 			/* Remove main superblock */
    614 			zap_old_sblock(sblkoff);
    615 			/* and all possible locations for the first alternate */
    616 			sblkoff += SBLOCKSIZE;
    617 			for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
    618 				zap_old_sblock(roundup(sblkoff, sz));
    619 		}
    620 		/*
    621 		 * Also zap possible Ext2fs magic leftover to prevent
    622 		 * kernel vfs_mountroot() and bootloaders from mis-recognizing
    623 		 * this file system as Ext2fs.
    624 		 */
    625 		zap_old_sblock(EXT2FS_SBOFF);
    626 
    627 		if (isappleufs) {
    628 			struct appleufslabel appleufs;
    629 			ffs_appleufs_set(&appleufs, appleufs_volname,
    630 			    tv.tv_sec, 0);
    631 			wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,
    632 			    APPLEUFS_LABEL_SIZE, &appleufs);
    633 		} else if (APPLEUFS_LABEL_SIZE % sectorsize == 0) {
    634 			struct appleufslabel appleufs;
    635 			/* Look for & zap any existing valid apple ufs labels */
    636 			rdfs(APPLEUFS_LABEL_OFFSET/sectorsize,
    637 			    APPLEUFS_LABEL_SIZE, &appleufs);
    638 			if (ffs_appleufs_validate(fsys, &appleufs, NULL) == 0) {
    639 				memset(&appleufs, 0, sizeof(appleufs));
    640 				wtfs(APPLEUFS_LABEL_OFFSET/sectorsize,
    641 				    APPLEUFS_LABEL_SIZE, &appleufs);
    642 			}
    643 		}
    644 	}
    645 
    646 	/*
    647 	 * Make a copy of the superblock into the buffer that we will be
    648 	 * writing out in each cylinder group.
    649 	 */
    650 	memcpy(iobuf, &sblock, sizeof sblock);
    651 	if (needswap)
    652 		ffs_sb_swap(&sblock, (struct fs *)iobuf);
    653 	if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
    654 		memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
    655 		    0xff, 256);
    656 
    657 	if (verbosity >= 3)
    658 		printf("super-block backups (for fsck_ffs -b #) at:\n");
    659 	/* If we are printing more than one line of numbers, line up columns */
    660 	fld_width = verbosity < 4 ? 1 : snprintf(NULL, 0, "%" PRIu64,
    661 		(uint64_t)fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg-1)));
    662 	/* Get terminal width */
    663 	if (ioctl(fileno(stdout), TIOCGWINSZ, &winsize) == 0)
    664 		max_cols = winsize.ws_col;
    665 	else
    666 		max_cols = 80;
    667 	if (Nflag && verbosity == 3)
    668 		/* Leave space to add " ..." after one row of numbers */
    669 		max_cols -= 4;
    670 #define BASE 0x10000	/* For some fixed-point maths */
    671 	col = 0;
    672 	delta = verbosity > 2 ? 0 : max_cols * BASE / sblock.fs_ncg;
    673 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    674 		fflush(stdout);
    675 		initcg(cylno, &tv);
    676 		if (verbosity < 2)
    677 			continue;
    678 		if (delta > 0) {
    679 			if (Nflag)
    680 				/* No point doing dots for -N */
    681 				break;
    682 			/* Print dots scaled to end near RH margin */
    683 			for (col += delta; col > BASE; col -= BASE)
    684 				printf(".");
    685 			continue;
    686 		}
    687 		/* Print superblock numbers */
    688 		len = printf("%s%*" PRIu64 ",", col ? " " : "", fld_width,
    689 		    (uint64_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    690 		col += len;
    691 		if (col + len < max_cols)
    692 			/* Next number fits */
    693 			continue;
    694 		/* Next number won't fit, need a newline */
    695 		if (verbosity <= 3) {
    696 			/* Print dots for subsequent cylinder groups */
    697 			delta = sblock.fs_ncg - cylno - 1;
    698 			if (delta != 0) {
    699 				if (Nflag) {
    700 					printf(" ...");
    701 					break;
    702 				}
    703 				delta = max_cols * BASE / delta;
    704 			}
    705 		}
    706 		col = 0;
    707 		printf("\n");
    708 	}
    709 #undef BASE
    710 	if (col > 0)
    711 		printf("\n");
    712 	if (Nflag)
    713 		exit(0);
    714 
    715 	/*
    716 	 * Now construct the initial file system,
    717 	 */
    718 	if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
    719 		errx(1, "Error making filesystem");
    720 	sblock.fs_time = tv.tv_sec;
    721 	if (Oflag <= 1) {
    722 		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
    723 		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
    724 		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
    725 		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
    726 	}
    727 	/*
    728 	 * Write out the super-block and zeros until the first cg info
    729 	 */
    730 	i = cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
    731 	memset(iobuf, 0, i);
    732 	memcpy(iobuf, &sblock, sizeof sblock);
    733 	if (needswap)
    734 		ffs_sb_swap(&sblock, (struct fs *)iobuf);
    735 	if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
    736 		memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
    737 		    0xff, 256);
    738 	wtfs(sblock.fs_sblockloc / sectorsize, i, iobuf);
    739 
    740 	/* Write out first and last cylinder summary sectors */
    741 	if (needswap)
    742 		ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
    743 	wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
    744 
    745 	if (fscs_next > fscs_reset) {
    746 		if (needswap)
    747 			ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
    748 		fs_csaddr++;
    749 		wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
    750 	}
    751 
    752 	/* mfs doesn't need these permanently allocated */
    753 	munmap(iobuf, iobuf_memsize);
    754 	munmap(fscs_0, 2 * sblock.fs_fsize);
    755 }
    756 
    757 /*
    758  * Initialize a cylinder group.
    759  */
    760 void
    761 initcg(int cylno, const struct timeval *tv)
    762 {
    763 	daddr_t cbase, dmax;
    764 	int32_t i, d, dlower, dupper, blkno;
    765 	uint32_t u;
    766 	struct ufs1_dinode *dp1;
    767 	struct ufs2_dinode *dp2;
    768 	int start;
    769 
    770 	/*
    771 	 * Determine block bounds for cylinder group.
    772 	 * Allow space for super block summary information in first
    773 	 * cylinder group.
    774 	 */
    775 	cbase = cgbase(&sblock, cylno);
    776 	dmax = cbase + sblock.fs_fpg;
    777 	if (dmax > sblock.fs_size)
    778 		dmax = sblock.fs_size;
    779 	dlower = cgsblock(&sblock, cylno) - cbase;
    780 	dupper = cgdmin(&sblock, cylno) - cbase;
    781 	if (cylno == 0) {
    782 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    783 		if (dupper >= cgstart(&sblock, cylno + 1)) {
    784 			printf("\rToo many cylinder groups to fit summary "
    785 				"information into first cylinder group\n");
    786 			fserr(40);
    787 		}
    788 	}
    789 	memset(&acg, 0, sblock.fs_cgsize);
    790 	acg.cg_magic = CG_MAGIC;
    791 	acg.cg_cgx = cylno;
    792 	acg.cg_ndblk = dmax - cbase;
    793 	if (sblock.fs_contigsumsize > 0)
    794 		acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
    795 	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    796 	if (Oflag == 2) {
    797 		acg.cg_time = tv->tv_sec;
    798 		acg.cg_niblk = sblock.fs_ipg;
    799 		acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
    800 		    sblock.fs_ipg : 2 * INOPB(&sblock);
    801 		acg.cg_iusedoff = start;
    802 	} else {
    803 		acg.cg_old_ncyl = sblock.fs_old_cpg;
    804 		if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0 &&
    805 		    (cylno == sblock.fs_ncg - 1))
    806 			acg.cg_old_ncyl =
    807 			    sblock.fs_old_ncyl % sblock.fs_old_cpg;
    808 		acg.cg_old_time = tv->tv_sec;
    809 		acg.cg_old_niblk = sblock.fs_ipg;
    810 		acg.cg_old_btotoff = start;
    811 		acg.cg_old_boff = acg.cg_old_btotoff +
    812 		    sblock.fs_old_cpg * sizeof(int32_t);
    813 		acg.cg_iusedoff = acg.cg_old_boff +
    814 		    sblock.fs_old_cpg * sizeof(u_int16_t);
    815 	}
    816 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
    817 	if (sblock.fs_contigsumsize <= 0) {
    818 		acg.cg_nextfreeoff = acg.cg_freeoff +
    819 		   howmany(sblock.fs_fpg, CHAR_BIT);
    820 	} else {
    821 		acg.cg_clustersumoff = acg.cg_freeoff +
    822 		    howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
    823 		if (isappleufs) {
    824 			/* Apple PR2216969 gives rationale for this change.
    825 			 * I believe they were mistaken, but we need to
    826 			 * duplicate it for compatibility.  -- dbj (at) NetBSD.org
    827 			 */
    828 			acg.cg_clustersumoff += sizeof(int32_t);
    829 		}
    830 		acg.cg_clustersumoff =
    831 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    832 		acg.cg_clusteroff = acg.cg_clustersumoff +
    833 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    834 		acg.cg_nextfreeoff = acg.cg_clusteroff +
    835 		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
    836 	}
    837 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
    838 		printf("Panic: cylinder group too big\n");
    839 		fserr(37);
    840 	}
    841 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    842 	if (cylno == 0)
    843 		for (u = 0; u < UFS_ROOTINO; u++) {
    844 			setbit(cg_inosused(&acg, 0), u);
    845 			acg.cg_cs.cs_nifree--;
    846 		}
    847 	if (cylno > 0) {
    848 		/*
    849 		 * In cylno 0, beginning space is reserved
    850 		 * for boot and super blocks.
    851 		 */
    852 		for (d = 0, blkno = 0; d < dlower;) {
    853 			setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    854 			if (sblock.fs_contigsumsize > 0)
    855 				setbit(cg_clustersfree(&acg, 0), blkno);
    856 			acg.cg_cs.cs_nbfree++;
    857 			if (Oflag <= 1) {
    858 				int cn = old_cbtocylno(&sblock, d);
    859 				old_cg_blktot(&acg, 0)[cn]++;
    860 				old_cg_blks(&sblock, &acg,
    861 				    cn, 0)[old_cbtorpos(&sblock, d)]++;
    862 			}
    863 			d += sblock.fs_frag;
    864 			blkno++;
    865 		}
    866 	}
    867 	if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
    868 		acg.cg_frsum[sblock.fs_frag - i]++;
    869 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    870 			setbit(cg_blksfree(&acg, 0), dupper);
    871 			acg.cg_cs.cs_nffree++;
    872 		}
    873 	}
    874 	for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
    875 	     d + sblock.fs_frag <= acg.cg_ndblk; ) {
    876 		setblock(&sblock, cg_blksfree(&acg, 0), blkno);
    877 		if (sblock.fs_contigsumsize > 0)
    878 			setbit(cg_clustersfree(&acg, 0), blkno);
    879 		acg.cg_cs.cs_nbfree++;
    880 		if (Oflag <= 1) {
    881 			int cn = old_cbtocylno(&sblock, d);
    882 			old_cg_blktot(&acg, 0)[cn]++;
    883 			old_cg_blks(&sblock, &acg,
    884 			    cn, 0)[old_cbtorpos(&sblock, d)]++;
    885 		}
    886 		d += sblock.fs_frag;
    887 		blkno++;
    888 	}
    889 	if (d < acg.cg_ndblk) {
    890 		acg.cg_frsum[acg.cg_ndblk - d]++;
    891 		for (; d < acg.cg_ndblk; d++) {
    892 			setbit(cg_blksfree(&acg, 0), d);
    893 			acg.cg_cs.cs_nffree++;
    894 		}
    895 	}
    896 	if (sblock.fs_contigsumsize > 0) {
    897 		int32_t *sump = cg_clustersum(&acg, 0);
    898 		u_char *mapp = cg_clustersfree(&acg, 0);
    899 		int map = *mapp++;
    900 		int bit = 1;
    901 		int run = 0;
    902 
    903 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    904 			if ((map & bit) != 0) {
    905 				run++;
    906 			} else if (run != 0) {
    907 				if (run > sblock.fs_contigsumsize)
    908 					run = sblock.fs_contigsumsize;
    909 				sump[run]++;
    910 				run = 0;
    911 			}
    912 			if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
    913 				bit <<= 1;
    914 			} else {
    915 				map = *mapp++;
    916 				bit = 1;
    917 			}
    918 		}
    919 		if (run != 0) {
    920 			if (run > sblock.fs_contigsumsize)
    921 				run = sblock.fs_contigsumsize;
    922 			sump[run]++;
    923 		}
    924 	}
    925 	*fscs_next++ = acg.cg_cs;
    926 	if (fscs_next == fscs_end) {
    927 		/* write block of cylinder group summary info into cyl 0 */
    928 		if (needswap)
    929 			ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
    930 		fs_csaddr++;
    931 		wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
    932 		fscs_next = fscs_reset;
    933 		memset(fscs_next, 0, sblock.fs_fsize);
    934 	}
    935 	/*
    936 	 * Write out the duplicate super block, the cylinder group map
    937 	 * and two blocks worth of inodes in a single write.
    938 	 */
    939 	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
    940 	memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
    941 	if (needswap)
    942 		ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
    943 	start += sblock.fs_bsize;
    944 	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
    945 	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
    946 	for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
    947 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
    948 			/* No need to swap, it'll stay random */
    949 			dp1->di_gen = arc4random() & INT32_MAX;
    950 			dp1++;
    951 		} else {
    952 			dp2->di_gen = arc4random() & INT32_MAX;
    953 			dp2++;
    954 		}
    955 	}
    956 	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
    957 	/*
    958 	 * For the old file system, we have to initialize all the inodes.
    959 	 */
    960 	if (sblock.fs_magic != FS_UFS1_MAGIC)
    961 		return;
    962 
    963 	/* Write 'd' (usually 16 * fs_frag) file-system fragments at once */
    964 	d = (iobuf_memsize - start) / sblock.fs_bsize * sblock.fs_frag;
    965 	dupper = sblock.fs_ipg / INOPF(&sblock);
    966 	for (i = 2 * sblock.fs_frag; i < dupper; i += d) {
    967 		if (d > dupper - i)
    968 			d = dupper - i;
    969 		dp1 = (struct ufs1_dinode *)(&iobuf[start]);
    970 		do
    971 			dp1->di_gen = arc4random() & INT32_MAX;
    972 		while ((char *)++dp1 < &iobuf[iobuf_memsize]);
    973 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    974 		    d * sblock.fs_bsize / sblock.fs_frag, &iobuf[start]);
    975 	}
    976 }
    977 
    978 /*
    979  * initialize the file system
    980  */
    981 
    982 #ifdef LOSTDIR
    983 #define	PREDEFDIR 3
    984 #else
    985 #define	PREDEFDIR 2
    986 #endif
    987 
    988 struct direct root_dir[] = {
    989 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    990 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    991 #ifdef LOSTDIR
    992 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    993 #endif
    994 };
    995 struct odirect {
    996 	u_int32_t d_ino;
    997 	u_int16_t d_reclen;
    998 	u_int16_t d_namlen;
    999 	u_char	d_name[FFS_MAXNAMLEN + 1];
   1000 } oroot_dir[] = {
   1001 	{ UFS_ROOTINO, sizeof(struct direct), 1, "." },
   1002 	{ UFS_ROOTINO, sizeof(struct direct), 2, ".." },
   1003 #ifdef LOSTDIR
   1004 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
   1005 #endif
   1006 };
   1007 #ifdef LOSTDIR
   1008 struct direct lost_found_dir[] = {
   1009 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
   1010 	{ UFS_ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
   1011 	{ 0, DIRBLKSIZ, 0, 0, 0 },
   1012 };
   1013 struct odirect olost_found_dir[] = {
   1014 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
   1015 	{ UFS_ROOTINO, sizeof(struct direct), 2, ".." },
   1016 	{ 0, DIRBLKSIZ, 0, 0 },
   1017 };
   1018 #endif
   1019 char buf[MAXBSIZE];
   1020 static void copy_dir(struct direct *, struct direct *);
   1021 
   1022 int
   1023 fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
   1024 {
   1025 	union dinode node;
   1026 	int i;
   1027 	int qblocks = 0;
   1028 	int qinos = 0;
   1029 	uint8_t q2h_hash_shift;
   1030 	uint16_t q2h_hash_mask;
   1031 #ifdef LOSTDIR
   1032 	int dirblksiz = DIRBLKSIZ;
   1033 	if (isappleufs)
   1034 		dirblksiz = APPLEUFS_DIRBLKSIZ;
   1035 	int nextino = LOSTFOUNDINO+1;
   1036 #else
   1037 	int nextino = UFS_ROOTINO+1;
   1038 #endif
   1039 
   1040 	/*
   1041 	 * initialize the node
   1042 	 */
   1043 
   1044 #ifdef LOSTDIR
   1045 	/*
   1046 	 * create the lost+found directory
   1047 	 */
   1048 	memset(&node, 0, sizeof(node));
   1049 	if (Oflag == 0) {
   1050 		(void)makedir((struct direct *)olost_found_dir, 2);
   1051 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
   1052 			copy_dir((struct direct*)&olost_found_dir[2],
   1053 				(struct direct*)&buf[i]);
   1054 	} else {
   1055 		(void)makedir(lost_found_dir, 2);
   1056 		for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
   1057 			copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
   1058 	}
   1059 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
   1060 		node.dp1.di_atime = tv->tv_sec;
   1061 		node.dp1.di_atimensec = tv->tv_usec * 1000;
   1062 		node.dp1.di_mtime = tv->tv_sec;
   1063 		node.dp1.di_mtimensec = tv->tv_usec * 1000;
   1064 		node.dp1.di_ctime = tv->tv_sec;
   1065 		node.dp1.di_ctimensec = tv->tv_usec * 1000;
   1066 		node.dp1.di_mode = IFDIR | UMASK;
   1067 		node.dp1.di_nlink = 2;
   1068 		node.dp1.di_size = sblock.fs_bsize;
   1069 		node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
   1070 		if (node.dp1.di_db[0] == 0)
   1071 			return (0);
   1072 		node.dp1.di_blocks = btodb(fragroundup(&sblock,
   1073 		    node.dp1.di_size));
   1074 		qblocks += node.dp1.di_blocks;
   1075 		node.dp1.di_uid = geteuid();
   1076 		node.dp1.di_gid = getegid();
   1077 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
   1078 		    buf);
   1079 	} else {
   1080 		node.dp2.di_atime = tv->tv_sec;
   1081 		node.dp2.di_atimensec = tv->tv_usec * 1000;
   1082 		node.dp2.di_mtime = tv->tv_sec;
   1083 		node.dp2.di_mtimensec = tv->tv_usec * 1000;
   1084 		node.dp2.di_ctime = tv->tv_sec;
   1085 		node.dp2.di_ctimensec = tv->tv_usec * 1000;
   1086 		node.dp2.di_birthtime = tv->tv_sec;
   1087 		node.dp2.di_birthnsec = tv->tv_usec * 1000;
   1088 		node.dp2.di_mode = IFDIR | UMASK;
   1089 		node.dp2.di_nlink = 2;
   1090 		node.dp2.di_size = sblock.fs_bsize;
   1091 		node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
   1092 		if (node.dp2.di_db[0] == 0)
   1093 			return (0);
   1094 		node.dp2.di_blocks = btodb(fragroundup(&sblock,
   1095 		    node.dp2.di_size));
   1096 		qblocks += node.dp2.di_blocks;
   1097 		node.dp2.di_uid = geteuid();
   1098 		node.dp2.di_gid = getegid();
   1099 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
   1100 		    buf);
   1101 	}
   1102 	qinos++;
   1103 	iput(&node, LOSTFOUNDINO);
   1104 #endif
   1105 	/*
   1106 	 * create the root directory
   1107 	 */
   1108 	memset(&node, 0, sizeof(node));
   1109 	if (Oflag <= 1) {
   1110 		if (mfs) {
   1111 			node.dp1.di_mode = IFDIR | mfsmode;
   1112 			node.dp1.di_uid = mfsuid;
   1113 			node.dp1.di_gid = mfsgid;
   1114 		} else {
   1115 			node.dp1.di_mode = IFDIR | UMASK;
   1116 			node.dp1.di_uid = geteuid();
   1117 			node.dp1.di_gid = getegid();
   1118 		}
   1119 		node.dp1.di_nlink = PREDEFDIR;
   1120 		if (Oflag == 0)
   1121 			node.dp1.di_size = makedir((struct direct *)oroot_dir,
   1122 			    PREDEFDIR);
   1123 		else
   1124 			node.dp1.di_size = makedir(root_dir, PREDEFDIR);
   1125 		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
   1126 		if (node.dp1.di_db[0] == 0)
   1127 			return (0);
   1128 		node.dp1.di_blocks = btodb(fragroundup(&sblock,
   1129 		    node.dp1.di_size));
   1130 		qblocks += node.dp1.di_blocks;
   1131 		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
   1132 	} else {
   1133 		if (mfs) {
   1134 			node.dp2.di_mode = IFDIR | mfsmode;
   1135 			node.dp2.di_uid = mfsuid;
   1136 			node.dp2.di_gid = mfsgid;
   1137 		} else {
   1138 			node.dp2.di_mode = IFDIR | UMASK;
   1139 			node.dp2.di_uid = geteuid();
   1140 			node.dp2.di_gid = getegid();
   1141 		}
   1142 		node.dp2.di_atime = tv->tv_sec;
   1143 		node.dp2.di_atimensec = tv->tv_usec * 1000;
   1144 		node.dp2.di_mtime = tv->tv_sec;
   1145 		node.dp2.di_mtimensec = tv->tv_usec * 1000;
   1146 		node.dp2.di_ctime = tv->tv_sec;
   1147 		node.dp2.di_ctimensec = tv->tv_usec * 1000;
   1148 		node.dp2.di_birthtime = tv->tv_sec;
   1149 		node.dp2.di_birthnsec = tv->tv_usec * 1000;
   1150 		node.dp2.di_nlink = PREDEFDIR;
   1151 		node.dp2.di_size = makedir(root_dir, PREDEFDIR);
   1152 		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
   1153 		if (node.dp2.di_db[0] == 0)
   1154 			return (0);
   1155 		node.dp2.di_blocks = btodb(fragroundup(&sblock,
   1156 		    node.dp2.di_size));
   1157 		qblocks += node.dp2.di_blocks;
   1158 		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
   1159 	}
   1160 	qinos++;
   1161 	iput(&node, UFS_ROOTINO);
   1162 	/*
   1163 	 * compute the size of the hash table
   1164 	 * We know the smallest block size is 4k, so we can use 2k
   1165 	 * for the hash table; as an entry is 8 bytes we can store
   1166 	 * 256 entries. So let start q2h_hash_shift at 8
   1167 	 */
   1168 	for (q2h_hash_shift = 8;
   1169 	    q2h_hash_shift < 15;
   1170 	    q2h_hash_shift++) {
   1171 		if ((sizeof(uint64_t) << (q2h_hash_shift + 1)) +
   1172 		    sizeof(struct quota2_header) > (u_int)sblock.fs_bsize)
   1173 			break;
   1174 	}
   1175 	q2h_hash_mask = (1 << q2h_hash_shift) - 1;
   1176 	for (i = 0; i < MAXQUOTAS; i++) {
   1177 		struct quota2_header *q2h;
   1178 		struct quota2_entry *q2e;
   1179 		uint64_t offset;
   1180 		uid_t uid = (i == USRQUOTA ? geteuid() : getegid());
   1181 
   1182 		if ((quotas & FS_Q2_DO_TYPE(i)) == 0)
   1183 			continue;
   1184 		quota2_create_blk0(sblock.fs_bsize, buf, q2h_hash_shift,
   1185 		    i, needswap);
   1186 		/* grab an entry from header for root dir */
   1187 		q2h = (void *)buf;
   1188 		offset = ufs_rw64(q2h->q2h_free, needswap);
   1189 		q2e = (void *)((char *)buf + offset);
   1190 		q2h->q2h_free = q2e->q2e_next;
   1191 		memcpy(q2e, &q2h->q2h_defentry, sizeof(*q2e));
   1192 		q2e->q2e_uid = ufs_rw32(uid, needswap);
   1193 		q2e->q2e_val[QL_BLOCK].q2v_cur = ufs_rw64(qblocks, needswap);
   1194 		q2e->q2e_val[QL_FILE].q2v_cur = ufs_rw64(qinos, needswap);
   1195 		/* add to the hash entry */
   1196 		q2e->q2e_next = q2h->q2h_entries[uid & q2h_hash_mask];
   1197 		q2h->q2h_entries[uid & q2h_hash_mask] =
   1198 		    ufs_rw64(offset, needswap);
   1199 
   1200 		memset(&node, 0, sizeof(node));
   1201 		if (sblock.fs_magic == FS_UFS1_MAGIC) {
   1202 			node.dp1.di_atime = tv->tv_sec;
   1203 			node.dp1.di_atimensec = tv->tv_usec * 1000;
   1204 			node.dp1.di_mtime = tv->tv_sec;
   1205 			node.dp1.di_mtimensec = tv->tv_usec * 1000;
   1206 			node.dp1.di_ctime = tv->tv_sec;
   1207 			node.dp1.di_ctimensec = tv->tv_usec * 1000;
   1208 			node.dp1.di_mode = IFREG;
   1209 			node.dp1.di_nlink = 1;
   1210 			node.dp1.di_size = sblock.fs_bsize;
   1211 			node.dp1.di_db[0] =
   1212 			    alloc(node.dp1.di_size, node.dp1.di_mode);
   1213 			if (node.dp1.di_db[0] == 0)
   1214 				return (0);
   1215 			node.dp1.di_blocks = btodb(fragroundup(&sblock,
   1216 			    node.dp1.di_size));
   1217 			node.dp1.di_uid = geteuid();
   1218 			node.dp1.di_gid = getegid();
   1219 			wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
   1220 			     node.dp1.di_size, buf);
   1221 		} else {
   1222 			node.dp2.di_atime = tv->tv_sec;
   1223 			node.dp2.di_atimensec = tv->tv_usec * 1000;
   1224 			node.dp2.di_mtime = tv->tv_sec;
   1225 			node.dp2.di_mtimensec = tv->tv_usec * 1000;
   1226 			node.dp2.di_ctime = tv->tv_sec;
   1227 			node.dp2.di_ctimensec = tv->tv_usec * 1000;
   1228 			node.dp2.di_birthtime = tv->tv_sec;
   1229 			node.dp2.di_birthnsec = tv->tv_usec * 1000;
   1230 			node.dp2.di_mode = IFREG;
   1231 			node.dp2.di_nlink = 1;
   1232 			node.dp2.di_size = sblock.fs_bsize;
   1233 			node.dp2.di_db[0] =
   1234 			    alloc(node.dp2.di_size, node.dp2.di_mode);
   1235 			if (node.dp2.di_db[0] == 0)
   1236 				return (0);
   1237 			node.dp2.di_blocks = btodb(fragroundup(&sblock,
   1238 			    node.dp2.di_size));
   1239 			node.dp2.di_uid = geteuid();
   1240 			node.dp2.di_gid = getegid();
   1241 			wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
   1242 			    node.dp2.di_size, buf);
   1243 		}
   1244 		iput(&node, nextino);
   1245 		sblock.fs_quotafile[i] = nextino;
   1246 		nextino++;
   1247 	}
   1248 	return (1);
   1249 }
   1250 
   1251 /*
   1252  * construct a set of directory entries in "buf".
   1253  * return size of directory.
   1254  */
   1255 int
   1256 makedir(struct direct *protodir, int entries)
   1257 {
   1258 	char *cp;
   1259 	int i, spcleft;
   1260 	int dirblksiz = DIRBLKSIZ;
   1261 	if (isappleufs)
   1262 		dirblksiz = APPLEUFS_DIRBLKSIZ;
   1263 
   1264 	memset(buf, 0, DIRBLKSIZ);
   1265 	spcleft = dirblksiz;
   1266 	for (cp = buf, i = 0; i < entries - 1; i++) {
   1267 		protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
   1268 		copy_dir(&protodir[i], (struct direct*)cp);
   1269 		cp += protodir[i].d_reclen;
   1270 		spcleft -= protodir[i].d_reclen;
   1271 	}
   1272 	protodir[i].d_reclen = spcleft;
   1273 	copy_dir(&protodir[i], (struct direct*)cp);
   1274 	return (dirblksiz);
   1275 }
   1276 
   1277 /*
   1278  * allocate a block or frag
   1279  */
   1280 daddr_t
   1281 alloc(int size, int mode)
   1282 {
   1283 	int i, frag;
   1284 	daddr_t d, blkno;
   1285 
   1286 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1287 	/* fs -> host byte order */
   1288 	if (needswap)
   1289 		ffs_cg_swap(&acg, &acg, &sblock);
   1290 	if (acg.cg_magic != CG_MAGIC) {
   1291 		printf("cg 0: bad magic number\n");
   1292 		return (0);
   1293 	}
   1294 	if (acg.cg_cs.cs_nbfree == 0) {
   1295 		printf("first cylinder group ran out of space\n");
   1296 		return (0);
   1297 	}
   1298 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
   1299 		if (isblock(&sblock, cg_blksfree(&acg, 0),
   1300 		    d >> sblock.fs_fragshift))
   1301 			goto goth;
   1302 	printf("internal error: can't find block in cyl 0\n");
   1303 	return (0);
   1304 goth:
   1305 	blkno = fragstoblks(&sblock, d);
   1306 	clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
   1307 	if (sblock.fs_contigsumsize > 0)
   1308 		clrbit(cg_clustersfree(&acg, 0), blkno);
   1309 	acg.cg_cs.cs_nbfree--;
   1310 	sblock.fs_cstotal.cs_nbfree--;
   1311 	fscs_0->cs_nbfree--;
   1312 	if (mode & IFDIR) {
   1313 		acg.cg_cs.cs_ndir++;
   1314 		sblock.fs_cstotal.cs_ndir++;
   1315 		fscs_0->cs_ndir++;
   1316 	}
   1317 	if (Oflag <= 1) {
   1318 		int cn = old_cbtocylno(&sblock, d);
   1319 		old_cg_blktot(&acg, 0)[cn]--;
   1320 		old_cg_blks(&sblock, &acg,
   1321 		    cn, 0)[old_cbtorpos(&sblock, d)]--;
   1322 	}
   1323 	if (size != sblock.fs_bsize) {
   1324 		frag = howmany(size, sblock.fs_fsize);
   1325 		fscs_0->cs_nffree += sblock.fs_frag - frag;
   1326 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
   1327 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
   1328 		acg.cg_frsum[sblock.fs_frag - frag]++;
   1329 		for (i = frag; i < sblock.fs_frag; i++)
   1330 			setbit(cg_blksfree(&acg, 0), d + i);
   1331 	}
   1332 	/* host -> fs byte order */
   1333 	if (needswap)
   1334 		ffs_cg_swap(&acg, &acg, &sblock);
   1335 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1336 	return (d);
   1337 }
   1338 
   1339 /*
   1340  * Allocate an inode on the disk
   1341  */
   1342 static void
   1343 iput(union dinode *ip, ino_t ino)
   1344 {
   1345 	daddr_t d;
   1346 	int i;
   1347 	struct ufs1_dinode *dp1;
   1348 	struct ufs2_dinode *dp2;
   1349 
   1350 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1351 	/* fs -> host byte order */
   1352 	if (needswap)
   1353 		ffs_cg_swap(&acg, &acg, &sblock);
   1354 	if (acg.cg_magic != CG_MAGIC) {
   1355 		printf("cg 0: bad magic number\n");
   1356 		fserr(31);
   1357 	}
   1358 	acg.cg_cs.cs_nifree--;
   1359 	setbit(cg_inosused(&acg, 0), ino);
   1360 	/* host -> fs byte order */
   1361 	if (needswap)
   1362 		ffs_cg_swap(&acg, &acg, &sblock);
   1363 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
   1364 	sblock.fs_cstotal.cs_nifree--;
   1365 	fscs_0->cs_nifree--;
   1366 	if (ino >= (ino_t)(sblock.fs_ipg * sblock.fs_ncg)) {
   1367 		printf("fsinit: inode value out of range (%llu).\n",
   1368 		    (unsigned long long)ino);
   1369 		fserr(32);
   1370 	}
   1371 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1372 	rdfs(d, sblock.fs_bsize, (char *)iobuf);
   1373 	if (sblock.fs_magic == FS_UFS1_MAGIC) {
   1374 		dp1 = (struct ufs1_dinode *)iobuf;
   1375 		dp1 += ino_to_fsbo(&sblock, ino);
   1376 		if (needswap) {
   1377 			ffs_dinode1_swap(&ip->dp1, dp1);
   1378 			/* ffs_dinode1_swap() doesn't swap blocks addrs */
   1379 			for (i=0; i<UFS_NDADDR + UFS_NIADDR; i++)
   1380 			    dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
   1381 		} else
   1382 			*dp1 = ip->dp1;
   1383 		dp1->di_gen = arc4random() & INT32_MAX;
   1384 	} else {
   1385 		dp2 = (struct ufs2_dinode *)iobuf;
   1386 		dp2 += ino_to_fsbo(&sblock, ino);
   1387 		if (needswap) {
   1388 			ffs_dinode2_swap(&ip->dp2, dp2);
   1389 			for (i=0; i<UFS_NDADDR + UFS_NIADDR; i++)
   1390 			    dp2->di_db[i] = bswap64(ip->dp2.di_db[i]);
   1391 		} else
   1392 			*dp2 = ip->dp2;
   1393 		dp2->di_gen = arc4random() & INT32_MAX;
   1394 	}
   1395 	wtfs(d, sblock.fs_bsize, iobuf);
   1396 }
   1397 
   1398 /*
   1399  * read a block from the file system
   1400  */
   1401 void
   1402 rdfs(daddr_t bno, int size, void *bf)
   1403 {
   1404 	int n;
   1405 	off_t offset;
   1406 
   1407 #ifdef MFS
   1408 	if (mfs) {
   1409 		if (Nflag)
   1410 			memset(bf, 0, size);
   1411 		else
   1412 			memmove(bf, membase + bno * sectorsize, size);
   1413 		return;
   1414 	}
   1415 #endif
   1416 	offset = bno;
   1417 	n = pread(fsi, bf, size, offset * sectorsize);
   1418 	if (n != size) {
   1419 		printf("rdfs: read error for sector %lld: %s\n",
   1420 		    (long long)bno, strerror(errno));
   1421 		exit(34);
   1422 	}
   1423 }
   1424 
   1425 /*
   1426  * write a block to the file system
   1427  */
   1428 void
   1429 wtfs(daddr_t bno, int size, void *bf)
   1430 {
   1431 	int n;
   1432 	off_t offset;
   1433 
   1434 	if (Nflag)
   1435 		return;
   1436 #ifdef MFS
   1437 	if (mfs) {
   1438 		memmove(membase + bno * sectorsize, bf, size);
   1439 		return;
   1440 	}
   1441 #endif
   1442 	offset = bno;
   1443 	n = pwrite(fso, bf, size, offset * sectorsize);
   1444 	if (n != size) {
   1445 		printf("wtfs: write error for sector %lld: %s\n",
   1446 		    (long long)bno, strerror(errno));
   1447 		exit(36);
   1448 	}
   1449 }
   1450 
   1451 /*
   1452  * check if a block is available
   1453  */
   1454 int
   1455 isblock(struct fs *fs, unsigned char *cp, int h)
   1456 {
   1457 	unsigned char mask;
   1458 
   1459 	switch (fs->fs_fragshift) {
   1460 	case 3:
   1461 		return (cp[h] == 0xff);
   1462 	case 2:
   1463 		mask = 0x0f << ((h & 0x1) << 2);
   1464 		return ((cp[h >> 1] & mask) == mask);
   1465 	case 1:
   1466 		mask = 0x03 << ((h & 0x3) << 1);
   1467 		return ((cp[h >> 2] & mask) == mask);
   1468 	case 0:
   1469 		mask = 0x01 << (h & 0x7);
   1470 		return ((cp[h >> 3] & mask) == mask);
   1471 	default:
   1472 #ifdef STANDALONE
   1473 		printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
   1474 #else
   1475 		fprintf(stderr, "isblock bad fs_fragshift %d\n",
   1476 		    fs->fs_fragshift);
   1477 #endif
   1478 		return (0);
   1479 	}
   1480 }
   1481 
   1482 /*
   1483  * take a block out of the map
   1484  */
   1485 void
   1486 clrblock(struct fs *fs, unsigned char *cp, int h)
   1487 {
   1488 	switch ((fs)->fs_fragshift) {
   1489 	case 3:
   1490 		cp[h] = 0;
   1491 		return;
   1492 	case 2:
   1493 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1494 		return;
   1495 	case 1:
   1496 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1497 		return;
   1498 	case 0:
   1499 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1500 		return;
   1501 	default:
   1502 #ifdef STANDALONE
   1503 		printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
   1504 #else
   1505 		fprintf(stderr, "clrblock bad fs_fragshift %d\n",
   1506 		    fs->fs_fragshift);
   1507 #endif
   1508 		return;
   1509 	}
   1510 }
   1511 
   1512 /*
   1513  * put a block into the map
   1514  */
   1515 void
   1516 setblock(struct fs *fs, unsigned char *cp, int h)
   1517 {
   1518 	switch (fs->fs_fragshift) {
   1519 	case 3:
   1520 		cp[h] = 0xff;
   1521 		return;
   1522 	case 2:
   1523 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1524 		return;
   1525 	case 1:
   1526 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1527 		return;
   1528 	case 0:
   1529 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1530 		return;
   1531 	default:
   1532 #ifdef STANDALONE
   1533 		printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
   1534 #else
   1535 		fprintf(stderr, "setblock bad fs_fragshift %d\n",
   1536 		    fs->fs_fragshift);
   1537 #endif
   1538 		return;
   1539 	}
   1540 }
   1541 
   1542 /* copy a direntry to a buffer, in fs byte order */
   1543 static void
   1544 copy_dir(struct direct *dir, struct direct *dbuf)
   1545 {
   1546 	memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
   1547 	if (needswap) {
   1548 		dbuf->d_ino = bswap32(dir->d_ino);
   1549 		dbuf->d_reclen = bswap16(dir->d_reclen);
   1550 		if (Oflag == 0)
   1551 			((struct odirect*)dbuf)->d_namlen =
   1552 				bswap16(((struct odirect*)dir)->d_namlen);
   1553 	}
   1554 }
   1555 
   1556 static int
   1557 ilog2(int val)
   1558 {
   1559 	u_int n;
   1560 
   1561 	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
   1562 		if (1 << n == val)
   1563 			return (n);
   1564 	errx(1, "ilog2: %d is not a power of 2\n", val);
   1565 }
   1566 
   1567 static void
   1568 zap_old_sblock(int sblkoff)
   1569 {
   1570 	static int cg0_data;
   1571 	uint32_t oldfs[SBLOCKSIZE / 4];
   1572 	static const struct fsm {
   1573 		uint32_t	offset;
   1574 		uint32_t	magic;
   1575 		uint32_t	mask;
   1576 	} fs_magics[] = {
   1577 		{offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
   1578 		{offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
   1579 		{0, 0x70162, ~0u},		/* LFS_MAGIC */
   1580 		{14, 0xef53, 0xffff},		/* EXT2FS (little) */
   1581 		{14, 0xef530000, 0xffff0000},	/* EXT2FS (big) */
   1582 		{.offset = ~0u},
   1583 	};
   1584 	const struct fsm *fsm;
   1585 
   1586 	if (Nflag)
   1587 		return;
   1588 
   1589 	if (sblkoff == 0)	/* Why did UFS2 add support for this?  sigh. */
   1590 		return;
   1591 
   1592 	if (cg0_data == 0)
   1593 		/* For FFSv1 this could include all the inodes. */
   1594 		cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
   1595 
   1596 	/* Ignore anything that is beyond our filesystem */
   1597 	if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
   1598 		return;
   1599 	/* Zero anything inside our filesystem... */
   1600 	if (sblkoff >= sblock.fs_sblockloc) {
   1601 		/* ...unless we will write that area anyway */
   1602 		if (sblkoff >= cg0_data)
   1603 			wtfs(sblkoff / sectorsize,
   1604 			    roundup(sizeof sblock, sectorsize), iobuf);
   1605 		return;
   1606 	}
   1607 
   1608 	/* The sector might contain boot code, so we must validate it */
   1609 	rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
   1610 	for (fsm = fs_magics; ; fsm++) {
   1611 		uint32_t v;
   1612 		if (fsm->mask == 0)
   1613 			return;
   1614 		v = oldfs[fsm->offset];
   1615 		if ((v & fsm->mask) == fsm->magic ||
   1616 		    (bswap32(v) & fsm->mask) == fsm->magic)
   1617 			break;
   1618 	}
   1619 
   1620 	/* Just zap the magic number */
   1621 	oldfs[fsm->offset] = 0;
   1622 	wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
   1623 }
   1624 
   1625 
   1626 #ifdef MFS
   1627 /*
   1628  * XXX!
   1629  * Attempt to guess how much more space is available for process data.  The
   1630  * heuristic we use is
   1631  *
   1632  *	max_data_limit - (sbrk(0) - etext) - 128kB
   1633  *
   1634  * etext approximates that start address of the data segment, and the 128kB
   1635  * allows some slop for both segment gap between text and data, and for other
   1636  * (libc) malloc usage.
   1637  */
   1638 static void
   1639 calc_memfree(void)
   1640 {
   1641 	extern char etext;
   1642 	struct rlimit rlp;
   1643 	u_long base;
   1644 
   1645 	base = (u_long)sbrk(0) - (u_long)&etext;
   1646 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1647 		perror("getrlimit");
   1648 	rlp.rlim_cur = rlp.rlim_max;
   1649 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1650 		perror("setrlimit");
   1651 	memleft = rlp.rlim_max - base - (128 * 1024);
   1652 }
   1653 
   1654 /*
   1655  * Internal version of malloc that trims the requested size if not enough
   1656  * memory is available.
   1657  */
   1658 static void *
   1659 mkfs_malloc(size_t size)
   1660 {
   1661 	u_long pgsz;
   1662 	caddr_t *memory;
   1663 
   1664 	if (size == 0)
   1665 		return (NULL);
   1666 	if (memleft == 0)
   1667 		calc_memfree();
   1668 
   1669 	pgsz = getpagesize() - 1;
   1670 	size = (size + pgsz) &~ pgsz;
   1671 	if (size > memleft)
   1672 		size = memleft;
   1673 	memleft -= size;
   1674 	memory = mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
   1675 	    -1, 0);
   1676 	return memory != MAP_FAILED ? memory : NULL;
   1677 }
   1678 #endif	/* MFS */
   1679