Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.14
      1 /*
      2  * Copyright (c) 1980, 1989, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 #ifndef lint
     35 /*static char sccsid[] = "from: @(#)mkfs.c	8.3 (Berkeley) 2/3/94";*/
     36 static char *rcsid = "$Id: mkfs.c,v 1.14 1994/12/18 05:09:39 cgd Exp $";
     37 #endif /* not lint */
     38 
     39 #include <sys/param.h>
     40 #include <sys/time.h>
     41 #include <sys/wait.h>
     42 #include <sys/resource.h>
     43 #include <ufs/ufs/dinode.h>
     44 #include <ufs/ufs/dir.h>
     45 #include <ufs/ffs/fs.h>
     46 #include <sys/disklabel.h>
     47 
     48 #include <string.h>
     49 #include <unistd.h>
     50 
     51 #ifndef STANDALONE
     52 #include <a.out.h>
     53 #include <stdio.h>
     54 #endif
     55 
     56 /*
     57  * make file system for cylinder-group style file systems
     58  */
     59 
     60 /*
     61  * We limit the size of the inode map to be no more than a
     62  * third of the cylinder group space, since we must leave at
     63  * least an equal amount of space for the block map.
     64  *
     65  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     66  */
     67 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     68 
     69 #define UMASK		0755
     70 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
     71 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
     72 
     73 /*
     74  * variables set up by front end.
     75  */
     76 extern int	mfs;		/* run as the memory based filesystem */
     77 extern int	Nflag;		/* run mkfs without writing file system */
     78 extern int	Oflag;		/* format as an 4.3BSD file system */
     79 extern int	fssize;		/* file system size */
     80 extern int	ntracks;	/* # tracks/cylinder */
     81 extern int	nsectors;	/* # sectors/track */
     82 extern int	nphyssectors;	/* # sectors/track including spares */
     83 extern int	secpercyl;	/* sectors per cylinder */
     84 extern int	sectorsize;	/* bytes/sector */
     85 extern int	rpm;		/* revolutions/minute of drive */
     86 extern int	interleave;	/* hardware sector interleave */
     87 extern int	trackskew;	/* sector 0 skew, per track */
     88 extern int	headswitch;	/* head switch time, usec */
     89 extern int	trackseek;	/* track-to-track seek, usec */
     90 extern int	fsize;		/* fragment size */
     91 extern int	bsize;		/* block size */
     92 extern int	cpg;		/* cylinders/cylinder group */
     93 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
     94 extern int	minfree;	/* free space threshold */
     95 extern int	opt;		/* optimization preference (space or time) */
     96 extern int	density;	/* number of bytes per inode */
     97 extern int	maxcontig;	/* max contiguous blocks to allocate */
     98 extern int	rotdelay;	/* rotational delay between blocks */
     99 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
    100 extern int	nrpos;		/* # of distinguished rotational positions */
    101 extern int	bbsize;		/* boot block size */
    102 extern int	sbsize;		/* superblock size */
    103 extern u_long	memleft;	/* virtual memory available */
    104 extern caddr_t	membase;	/* start address of memory based filesystem */
    105 extern caddr_t	malloc(), calloc();
    106 
    107 union {
    108 	struct fs fs;
    109 	char pad[SBSIZE];
    110 } fsun;
    111 #define	sblock	fsun.fs
    112 struct	csum *fscs;
    113 
    114 union {
    115 	struct cg cg;
    116 	char pad[MAXBSIZE];
    117 } cgun;
    118 #define	acg	cgun.cg
    119 
    120 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
    121 
    122 int	fsi, fso;
    123 daddr_t	alloc();
    124 
    125 mkfs(pp, fsys, fi, fo)
    126 	struct partition *pp;
    127 	char *fsys;
    128 	int fi, fo;
    129 {
    130 	register long i, mincpc, mincpg, inospercg;
    131 	long cylno, rpos, blk, j, warn = 0;
    132 	long used, mincpgcnt, bpcg;
    133 	long mapcramped, inodecramped;
    134 	long postblsize, rotblsize, totalsbsize;
    135 	int ppid, status;
    136 	time_t utime;
    137 	quad_t sizepb;
    138 	void started();
    139 
    140 #ifndef STANDALONE
    141 	time(&utime);
    142 #endif
    143 	if (mfs) {
    144 		ppid = getpid();
    145 		(void) signal(SIGUSR1, started);
    146 		if (i = fork()) {
    147 			if (i == -1) {
    148 				perror("mfs");
    149 				exit(10);
    150 			}
    151 			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
    152 				exit(WEXITSTATUS(status));
    153 			exit(11);
    154 			/* NOTREACHED */
    155 		}
    156 		(void)malloc(0);
    157 		if (fssize * sectorsize > memleft)
    158 			fssize = (memleft - 16384) / sectorsize;
    159 		if ((membase = malloc(fssize * sectorsize)) == 0)
    160 			exit(12);
    161 	}
    162 	fsi = fi;
    163 	fso = fo;
    164 	if (Oflag) {
    165 		sblock.fs_inodefmt = FS_42INODEFMT;
    166 		sblock.fs_maxsymlinklen = 0;
    167 	} else {
    168 		sblock.fs_inodefmt = FS_44INODEFMT;
    169 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    170 	}
    171 	/*
    172 	 * Validate the given file system size.
    173 	 * Verify that its last block can actually be accessed.
    174 	 */
    175 	if (fssize <= 0)
    176 		printf("preposterous size %d\n", fssize), exit(13);
    177 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    178 	/*
    179 	 * collect and verify the sector and track info
    180 	 */
    181 	sblock.fs_nsect = nsectors;
    182 	sblock.fs_ntrak = ntracks;
    183 	if (sblock.fs_ntrak <= 0)
    184 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    185 	if (sblock.fs_nsect <= 0)
    186 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    187 	/*
    188 	 * collect and verify the block and fragment sizes
    189 	 */
    190 	sblock.fs_bsize = bsize;
    191 	sblock.fs_fsize = fsize;
    192 	if (!POWEROF2(sblock.fs_bsize)) {
    193 		printf("block size must be a power of 2, not %d\n",
    194 		    sblock.fs_bsize);
    195 		exit(16);
    196 	}
    197 	if (!POWEROF2(sblock.fs_fsize)) {
    198 		printf("fragment size must be a power of 2, not %d\n",
    199 		    sblock.fs_fsize);
    200 		exit(17);
    201 	}
    202 	if (sblock.fs_fsize < sectorsize) {
    203 		printf("fragment size %d is too small, minimum is %d\n",
    204 		    sblock.fs_fsize, sectorsize);
    205 		exit(18);
    206 	}
    207 	if (sblock.fs_bsize < MINBSIZE) {
    208 		printf("block size %d is too small, minimum is %d\n",
    209 		    sblock.fs_bsize, MINBSIZE);
    210 		exit(19);
    211 	}
    212 	if (sblock.fs_bsize < sblock.fs_fsize) {
    213 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    214 		    sblock.fs_bsize, sblock.fs_fsize);
    215 		exit(20);
    216 	}
    217 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    218 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    219 	sblock.fs_qbmask = ~sblock.fs_bmask;
    220 	sblock.fs_qfmask = ~sblock.fs_fmask;
    221 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    222 		sblock.fs_bshift++;
    223 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    224 		sblock.fs_fshift++;
    225 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    226 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    227 		sblock.fs_fragshift++;
    228 	if (sblock.fs_frag > MAXFRAG) {
    229 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
    230 		    sblock.fs_fsize, sblock.fs_bsize,
    231 		    sblock.fs_bsize / MAXFRAG);
    232 		exit(21);
    233 	}
    234 	sblock.fs_nrpos = nrpos;
    235 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    236 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
    237 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    238 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    239 		sblock.fs_fsbtodb++;
    240 	sblock.fs_sblkno =
    241 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    242 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    243 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    244 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    245 	sblock.fs_cgoffset = roundup(
    246 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    247 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    248 		sblock.fs_cgmask <<= 1;
    249 	if (!POWEROF2(sblock.fs_ntrak))
    250 		sblock.fs_cgmask <<= 1;
    251 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    252 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    253 		sizepb *= NINDIR(&sblock);
    254 		sblock.fs_maxfilesize += sizepb;
    255 	}
    256 	/*
    257 	 * Validate specified/determined secpercyl
    258 	 * and calculate minimum cylinders per group.
    259 	 */
    260 	sblock.fs_spc = secpercyl;
    261 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    262 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    263 	     sblock.fs_cpc >>= 1, i >>= 1)
    264 		/* void */;
    265 	mincpc = sblock.fs_cpc;
    266 	bpcg = sblock.fs_spc * sectorsize;
    267 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
    268 	if (inospercg > MAXIPG(&sblock))
    269 		inospercg = MAXIPG(&sblock);
    270 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    271 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    272 	    sblock.fs_spc);
    273 	mincpg = roundup(mincpgcnt, mincpc);
    274 	/*
    275 	 * Ensure that cylinder group with mincpg has enough space
    276 	 * for block maps.
    277 	 */
    278 	sblock.fs_cpg = mincpg;
    279 	sblock.fs_ipg = inospercg;
    280 	if (maxcontig > 1)
    281 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    282 	mapcramped = 0;
    283 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    284 		mapcramped = 1;
    285 		if (sblock.fs_bsize < MAXBSIZE) {
    286 			sblock.fs_bsize <<= 1;
    287 			if ((i & 1) == 0) {
    288 				i >>= 1;
    289 			} else {
    290 				sblock.fs_cpc <<= 1;
    291 				mincpc <<= 1;
    292 				mincpg = roundup(mincpgcnt, mincpc);
    293 				sblock.fs_cpg = mincpg;
    294 			}
    295 			sblock.fs_frag <<= 1;
    296 			sblock.fs_fragshift += 1;
    297 			if (sblock.fs_frag <= MAXFRAG)
    298 				continue;
    299 		}
    300 		if (sblock.fs_fsize == sblock.fs_bsize) {
    301 			printf("There is no block size that");
    302 			printf(" can support this disk\n");
    303 			exit(22);
    304 		}
    305 		sblock.fs_frag >>= 1;
    306 		sblock.fs_fragshift -= 1;
    307 		sblock.fs_fsize <<= 1;
    308 		sblock.fs_nspf <<= 1;
    309 	}
    310 	/*
    311 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    312 	 */
    313 	inodecramped = 0;
    314 	used *= sectorsize;
    315 	inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
    316 	sblock.fs_ipg = inospercg;
    317 	while (inospercg > MAXIPG(&sblock)) {
    318 		inodecramped = 1;
    319 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    320 		    sblock.fs_bsize == MINBSIZE)
    321 			break;
    322 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    323 		    "minimum bytes per inode is",
    324 		    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
    325 		sblock.fs_bsize >>= 1;
    326 		sblock.fs_frag >>= 1;
    327 		sblock.fs_fragshift -= 1;
    328 		mincpc >>= 1;
    329 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    330 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    331 			sblock.fs_bsize <<= 1;
    332 			break;
    333 		}
    334 		mincpg = sblock.fs_cpg;
    335 		inospercg =
    336 		    roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
    337 		sblock.fs_ipg = inospercg;
    338 	}
    339 	if (inodecramped) {
    340 		if (inospercg > MAXIPG(&sblock)) {
    341 			printf("Minimum bytes per inode is %d\n",
    342 			    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
    343 		} else if (!mapcramped) {
    344 			printf("With %d bytes per inode, ", density);
    345 			printf("minimum cylinders per group is %d\n", mincpg);
    346 		}
    347 	}
    348 	if (mapcramped) {
    349 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    350 		printf("minimum cylinders per group is %d\n", mincpg);
    351 	}
    352 	if (inodecramped || mapcramped) {
    353 		if (sblock.fs_bsize != bsize)
    354 			printf("%s to be changed from %d to %d\n",
    355 			    "This requires the block size",
    356 			    bsize, sblock.fs_bsize);
    357 		if (sblock.fs_fsize != fsize)
    358 			printf("\t%s to be changed from %d to %d\n",
    359 			    "and the fragment size",
    360 			    fsize, sblock.fs_fsize);
    361 		exit(23);
    362 	}
    363 	/*
    364 	 * Calculate the number of cylinders per group
    365 	 */
    366 	sblock.fs_cpg = cpg;
    367 	if (sblock.fs_cpg % mincpc != 0) {
    368 		printf("%s groups must have a multiple of %d cylinders\n",
    369 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    370 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    371 		if (!cpgflg)
    372 			cpg = sblock.fs_cpg;
    373 	}
    374 	/*
    375 	 * Must ensure there is enough space for inodes.
    376 	 */
    377 	sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    378 		INOPB(&sblock));
    379 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    380 		inodecramped = 1;
    381 		sblock.fs_cpg -= mincpc;
    382 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    383 			INOPB(&sblock));
    384 	}
    385 	/*
    386 	 * Must ensure there is enough space to hold block map.
    387 	 */
    388 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    389 		mapcramped = 1;
    390 		sblock.fs_cpg -= mincpc;
    391 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    392 			INOPB(&sblock));
    393 	}
    394 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    395 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    396 		printf("panic (fs_cpg * fs_spc) % NSPF != 0");
    397 		exit(24);
    398 	}
    399 	if (sblock.fs_cpg < mincpg) {
    400 		printf("cylinder groups must have at least %d cylinders\n",
    401 			mincpg);
    402 		exit(25);
    403 	} else if (sblock.fs_cpg != cpg) {
    404 		if (!cpgflg)
    405 			printf("Warning: ");
    406 		else if (!mapcramped && !inodecramped)
    407 			exit(26);
    408 		if (mapcramped && inodecramped)
    409 			printf("Block size and bytes per inode restrict");
    410 		else if (mapcramped)
    411 			printf("Block size restricts");
    412 		else
    413 			printf("Bytes per inode restrict");
    414 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    415 		if (cpgflg)
    416 			exit(27);
    417 	}
    418 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    419 	/*
    420 	 * Now have size for file system and nsect and ntrak.
    421 	 * Determine number of cylinders and blocks in the file system.
    422 	 */
    423 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    424 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    425 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    426 		sblock.fs_ncyl++;
    427 		warn = 1;
    428 	}
    429 	if (sblock.fs_ncyl < 1) {
    430 		printf("file systems must have at least one cylinder\n");
    431 		exit(28);
    432 	}
    433 	/*
    434 	 * Determine feasability/values of rotational layout tables.
    435 	 *
    436 	 * The size of the rotational layout tables is limited by the
    437 	 * size of the superblock, SBSIZE. The amount of space available
    438 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    439 	 * The size of these tables is inversely proportional to the block
    440 	 * size of the file system. The size increases if sectors per track
    441 	 * are not powers of two, because more cylinders must be described
    442 	 * by the tables before the rotational pattern repeats (fs_cpc).
    443 	 */
    444 	sblock.fs_interleave = interleave;
    445 	sblock.fs_trackskew = trackskew;
    446 	sblock.fs_npsect = nphyssectors;
    447 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    448 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    449 	if (sblock.fs_ntrak == 1) {
    450 		sblock.fs_cpc = 0;
    451 		goto next;
    452 	}
    453 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
    454 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    455 	totalsbsize = sizeof(struct fs) + rotblsize;
    456 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    457 		/* use old static table space */
    458 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    459 		    (char *)(&sblock.fs_unused_1);
    460 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    461 		    (u_char *)(&sblock.fs_unused_1);
    462 	} else {
    463 		/* use dynamic table space */
    464 		sblock.fs_postbloff = &sblock.fs_space[0] -
    465 		    (u_char *)(&sblock.fs_unused_1);
    466 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    467 		totalsbsize += postblsize;
    468 	}
    469 	if (totalsbsize > SBSIZE ||
    470 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    471 		printf("%s %s %d %s %d.%s",
    472 		    "Warning: insufficient space in super block for\n",
    473 		    "rotational layout tables with nsect", sblock.fs_nsect,
    474 		    "and ntrak", sblock.fs_ntrak,
    475 		    "\nFile system performance may be impaired.\n");
    476 		sblock.fs_cpc = 0;
    477 		goto next;
    478 	}
    479 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    480 	/*
    481 	 * calculate the available blocks for each rotational position
    482 	 */
    483 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    484 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    485 			fs_postbl(&sblock, cylno)[rpos] = -1;
    486 	for (i = (rotblsize - 1) * sblock.fs_frag;
    487 	     i >= 0; i -= sblock.fs_frag) {
    488 		cylno = cbtocylno(&sblock, i);
    489 		rpos = cbtorpos(&sblock, i);
    490 		blk = fragstoblks(&sblock, i);
    491 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    492 			fs_rotbl(&sblock)[blk] = 0;
    493 		else
    494 			fs_rotbl(&sblock)[blk] =
    495 			    fs_postbl(&sblock, cylno)[rpos] - blk;
    496 		fs_postbl(&sblock, cylno)[rpos] = blk;
    497 	}
    498 next:
    499 	/*
    500 	 * Compute/validate number of cylinder groups.
    501 	 */
    502 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    503 	if (sblock.fs_ncyl % sblock.fs_cpg)
    504 		sblock.fs_ncg++;
    505 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    506 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    507 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    508 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    509 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    510 		    sblock.fs_fpg / sblock.fs_frag);
    511 		printf("number of cylinders per cylinder group (%d) %s.\n",
    512 		    sblock.fs_cpg, "must be increased");
    513 		exit(29);
    514 	}
    515 	j = sblock.fs_ncg - 1;
    516 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    517 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    518 		if (j == 0) {
    519 			printf("Filesystem must have at least %d sectors\n",
    520 			    NSPF(&sblock) *
    521 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    522 			exit(30);
    523 		}
    524 		printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
    525 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    526 		    i / sblock.fs_frag);
    527 		printf("    cylinder group. This implies %d sector(s) cannot be allocated.\n",
    528 		    i * NSPF(&sblock));
    529 		sblock.fs_ncg--;
    530 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    531 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    532 		    NSPF(&sblock);
    533 		warn = 0;
    534 	}
    535 	if (warn && !mfs) {
    536 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    537 		    sblock.fs_spc -
    538 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    539 		    * sblock.fs_spc));
    540 	}
    541 	/*
    542 	 * fill in remaining fields of the super block
    543 	 */
    544 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    545 	sblock.fs_cssize =
    546 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    547 	i = sblock.fs_bsize / sizeof(struct csum);
    548 	sblock.fs_csmask = ~(i - 1);
    549 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    550 		sblock.fs_csshift++;
    551 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    552 	sblock.fs_magic = FS_MAGIC;
    553 	sblock.fs_rotdelay = rotdelay;
    554 	sblock.fs_minfree = minfree;
    555 	sblock.fs_maxcontig = maxcontig;
    556 	sblock.fs_headswitch = headswitch;
    557 	sblock.fs_trkseek = trackseek;
    558 	sblock.fs_maxbpg = maxbpg;
    559 	sblock.fs_rps = rpm / 60;
    560 	sblock.fs_optim = opt;
    561 	sblock.fs_cgrotor = 0;
    562 	sblock.fs_cstotal.cs_ndir = 0;
    563 	sblock.fs_cstotal.cs_nbfree = 0;
    564 	sblock.fs_cstotal.cs_nifree = 0;
    565 	sblock.fs_cstotal.cs_nffree = 0;
    566 	sblock.fs_fmod = 0;
    567 	sblock.fs_ronly = 0;
    568 	/*
    569 	 * Dump out summary information about file system.
    570 	 */
    571 	if (!mfs) {
    572 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    573 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    574 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    575 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
    576 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    577 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    578 		    sblock.fs_ncg, sblock.fs_cpg,
    579 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    580 		    sblock.fs_ipg);
    581 #undef B2MBFACTOR
    582 	}
    583 	/*
    584 	 * Now build the cylinders group blocks and
    585 	 * then print out indices of cylinder groups.
    586 	 */
    587 	if (!mfs)
    588 		printf("super-block backups (for fsck -b #) at:");
    589 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    590 		initcg(cylno, utime);
    591 		if (mfs)
    592 			continue;
    593 		if (cylno % 8 == 0)
    594 			printf("\n");
    595 		printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    596 	}
    597 	if (!mfs)
    598 		printf("\n");
    599 	if (Nflag && !mfs)
    600 		exit(0);
    601 	/*
    602 	 * Now construct the initial file system,
    603 	 * then write out the super-block.
    604 	 */
    605 	fsinit(utime);
    606 	sblock.fs_time = utime;
    607 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
    608 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    609 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    610 			sblock.fs_cssize - i < sblock.fs_bsize ?
    611 			    sblock.fs_cssize - i : sblock.fs_bsize,
    612 			((char *)fscs) + i);
    613 	/*
    614 	 * Write out the duplicate super blocks
    615 	 */
    616 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    617 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    618 		    sbsize, (char *)&sblock);
    619 	/*
    620 	 * Update information about this partion in pack
    621 	 * label, to that it may be updated on disk.
    622 	 */
    623 	pp->p_fstype = FS_BSDFFS;
    624 	pp->p_fsize = sblock.fs_fsize;
    625 	pp->p_frag = sblock.fs_frag;
    626 	pp->p_cpg = sblock.fs_cpg;
    627 	/*
    628 	 * Notify parent process of success.
    629 	 * Dissociate from session and tty.
    630 	 */
    631 	if (mfs) {
    632 		kill(ppid, SIGUSR1);
    633 		(void) setsid();
    634 		(void) close(0);
    635 		(void) close(1);
    636 		(void) close(2);
    637 		(void) chdir("/");
    638 	}
    639 }
    640 
    641 /*
    642  * Initialize a cylinder group.
    643  */
    644 initcg(cylno, utime)
    645 	int cylno;
    646 	time_t utime;
    647 {
    648 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    649 	long i, j, s;
    650 	register struct csum *cs;
    651 
    652 	/*
    653 	 * Determine block bounds for cylinder group.
    654 	 * Allow space for super block summary information in first
    655 	 * cylinder group.
    656 	 */
    657 	cbase = cgbase(&sblock, cylno);
    658 	dmax = cbase + sblock.fs_fpg;
    659 	if (dmax > sblock.fs_size)
    660 		dmax = sblock.fs_size;
    661 	dlower = cgsblock(&sblock, cylno) - cbase;
    662 	dupper = cgdmin(&sblock, cylno) - cbase;
    663 	if (cylno == 0)
    664 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    665 	cs = fscs + cylno;
    666 	memset(&acg, 0, sblock.fs_cgsize);
    667 	acg.cg_time = utime;
    668 	acg.cg_magic = CG_MAGIC;
    669 	acg.cg_cgx = cylno;
    670 	if (cylno == sblock.fs_ncg - 1)
    671 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    672 	else
    673 		acg.cg_ncyl = sblock.fs_cpg;
    674 	acg.cg_niblk = sblock.fs_ipg;
    675 	acg.cg_ndblk = dmax - cbase;
    676 	if (sblock.fs_contigsumsize > 0)
    677 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    678 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_unused_1);
    679 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    680 	acg.cg_iusedoff = acg.cg_boff +
    681 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
    682 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    683 	if (sblock.fs_contigsumsize <= 0) {
    684 		acg.cg_nextfreeoff = acg.cg_freeoff +
    685 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    686 	} else {
    687 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    688 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    689 		    sizeof(int32_t);
    690 		acg.cg_clustersumoff =
    691 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    692 		acg.cg_clusteroff = acg.cg_clustersumoff +
    693 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    694 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    695 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    696 	}
    697 	if (acg.cg_nextfreeoff - (long)(&acg.cg_unused_1) > sblock.fs_cgsize) {
    698 		printf("Panic: cylinder group too big\n");
    699 		exit(37);
    700 	}
    701 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    702 	if (cylno == 0)
    703 		for (i = 0; i < ROOTINO; i++) {
    704 			setbit(cg_inosused(&acg), i);
    705 			acg.cg_cs.cs_nifree--;
    706 		}
    707 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    708 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    709 		    sblock.fs_bsize, (char *)zino);
    710 	if (cylno > 0) {
    711 		/*
    712 		 * In cylno 0, beginning space is reserved
    713 		 * for boot and super blocks.
    714 		 */
    715 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    716 			blkno = d / sblock.fs_frag;
    717 			setblock(&sblock, cg_blksfree(&acg), blkno);
    718 			if (sblock.fs_contigsumsize > 0)
    719 				setbit(cg_clustersfree(&acg), blkno);
    720 			acg.cg_cs.cs_nbfree++;
    721 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    722 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    723 			    [cbtorpos(&sblock, d)]++;
    724 		}
    725 		sblock.fs_dsize += dlower;
    726 	}
    727 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    728 	if (i = dupper % sblock.fs_frag) {
    729 		acg.cg_frsum[sblock.fs_frag - i]++;
    730 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    731 			setbit(cg_blksfree(&acg), dupper);
    732 			acg.cg_cs.cs_nffree++;
    733 		}
    734 	}
    735 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    736 		blkno = d / sblock.fs_frag;
    737 		setblock(&sblock, cg_blksfree(&acg), blkno);
    738 		if (sblock.fs_contigsumsize > 0)
    739 			setbit(cg_clustersfree(&acg), blkno);
    740 		acg.cg_cs.cs_nbfree++;
    741 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    742 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    743 		    [cbtorpos(&sblock, d)]++;
    744 		d += sblock.fs_frag;
    745 	}
    746 	if (d < dmax - cbase) {
    747 		acg.cg_frsum[dmax - cbase - d]++;
    748 		for (; d < dmax - cbase; d++) {
    749 			setbit(cg_blksfree(&acg), d);
    750 			acg.cg_cs.cs_nffree++;
    751 		}
    752 	}
    753 	if (sblock.fs_contigsumsize > 0) {
    754 		int32_t *sump = cg_clustersum(&acg);
    755 		u_char *mapp = cg_clustersfree(&acg);
    756 		int map = *mapp++;
    757 		int bit = 1;
    758 		int run = 0;
    759 
    760 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    761 			if ((map & bit) != 0) {
    762 				run++;
    763 			} else if (run != 0) {
    764 				if (run > sblock.fs_contigsumsize)
    765 					run = sblock.fs_contigsumsize;
    766 				sump[run]++;
    767 				run = 0;
    768 			}
    769 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    770 				bit <<= 1;
    771 			} else {
    772 				map = *mapp++;
    773 				bit = 1;
    774 			}
    775 		}
    776 		if (run != 0) {
    777 			if (run > sblock.fs_contigsumsize)
    778 				run = sblock.fs_contigsumsize;
    779 			sump[run]++;
    780 		}
    781 	}
    782 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    783 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    784 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    785 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    786 	*cs = acg.cg_cs;
    787 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    788 		sblock.fs_bsize, (char *)&acg);
    789 }
    790 
    791 /*
    792  * initialize the file system
    793  */
    794 struct dinode node;
    795 
    796 #ifdef LOSTDIR
    797 #define PREDEFDIR 3
    798 #else
    799 #define PREDEFDIR 2
    800 #endif
    801 
    802 struct direct root_dir[] = {
    803 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    804 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    805 #ifdef LOSTDIR
    806 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    807 #endif
    808 };
    809 struct odirect {
    810 	u_int32_t d_ino;
    811 	u_int16_t d_reclen;
    812 	u_int16_t d_namlen;
    813 	u_char	d_name[MAXNAMLEN + 1];
    814 } oroot_dir[] = {
    815 	{ ROOTINO, sizeof(struct direct), 1, "." },
    816 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    817 #ifdef LOSTDIR
    818 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    819 #endif
    820 };
    821 #ifdef LOSTDIR
    822 struct direct lost_found_dir[] = {
    823 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    824 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    825 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    826 };
    827 struct odirect olost_found_dir[] = {
    828 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    829 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    830 	{ 0, DIRBLKSIZ, 0, 0 },
    831 };
    832 #endif
    833 char buf[MAXBSIZE];
    834 
    835 fsinit(utime)
    836 	time_t utime;
    837 {
    838 	int i;
    839 
    840 	/*
    841 	 * initialize the node
    842 	 */
    843 	node.di_atime.ts_sec = utime;
    844 	node.di_mtime.ts_sec = utime;
    845 	node.di_ctime.ts_sec = utime;
    846 #ifdef LOSTDIR
    847 	/*
    848 	 * create the lost+found directory
    849 	 */
    850 	if (Oflag) {
    851 		(void)makedir((struct direct *)olost_found_dir, 2);
    852 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    853 			memcpy(&buf[i], &olost_found_dir[2],
    854 			    DIRSIZ(0, &olost_found_dir[2]));
    855 	} else {
    856 		(void)makedir(lost_found_dir, 2);
    857 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    858 			memcpy(&buf[i], &lost_found_dir[2],
    859 			    DIRSIZ(0, &lost_found_dir[2]));
    860 	}
    861 	node.di_mode = IFDIR | UMASK;
    862 	node.di_nlink = 2;
    863 	node.di_size = sblock.fs_bsize;
    864 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    865 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    866 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    867 	iput(&node, LOSTFOUNDINO);
    868 #endif
    869 	/*
    870 	 * create the root directory
    871 	 */
    872 	if (mfs)
    873 		node.di_mode = IFDIR | 01777;
    874 	else
    875 		node.di_mode = IFDIR | UMASK;
    876 	node.di_nlink = PREDEFDIR;
    877 	if (Oflag)
    878 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    879 	else
    880 		node.di_size = makedir(root_dir, PREDEFDIR);
    881 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    882 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    883 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    884 	iput(&node, ROOTINO);
    885 }
    886 
    887 /*
    888  * construct a set of directory entries in "buf".
    889  * return size of directory.
    890  */
    891 makedir(protodir, entries)
    892 	register struct direct *protodir;
    893 	int entries;
    894 {
    895 	char *cp;
    896 	int i, spcleft;
    897 
    898 	spcleft = DIRBLKSIZ;
    899 	for (cp = buf, i = 0; i < entries - 1; i++) {
    900 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
    901 		memcpy(cp, &protodir[i], protodir[i].d_reclen);
    902 		cp += protodir[i].d_reclen;
    903 		spcleft -= protodir[i].d_reclen;
    904 	}
    905 	protodir[i].d_reclen = spcleft;
    906 	memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
    907 	return (DIRBLKSIZ);
    908 }
    909 
    910 /*
    911  * allocate a block or frag
    912  */
    913 daddr_t
    914 alloc(size, mode)
    915 	int size;
    916 	int mode;
    917 {
    918 	int i, frag;
    919 	daddr_t d, blkno;
    920 
    921 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    922 	    (char *)&acg);
    923 	if (acg.cg_magic != CG_MAGIC) {
    924 		printf("cg 0: bad magic number\n");
    925 		return (0);
    926 	}
    927 	if (acg.cg_cs.cs_nbfree == 0) {
    928 		printf("first cylinder group ran out of space\n");
    929 		return (0);
    930 	}
    931 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    932 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
    933 			goto goth;
    934 	printf("internal error: can't find block in cyl 0\n");
    935 	return (0);
    936 goth:
    937 	blkno = fragstoblks(&sblock, d);
    938 	clrblock(&sblock, cg_blksfree(&acg), blkno);
    939 	if (sblock.fs_contigsumsize > 0)
    940 		clrbit(cg_clustersfree(&acg), blkno);
    941 	acg.cg_cs.cs_nbfree--;
    942 	sblock.fs_cstotal.cs_nbfree--;
    943 	fscs[0].cs_nbfree--;
    944 	if (mode & IFDIR) {
    945 		acg.cg_cs.cs_ndir++;
    946 		sblock.fs_cstotal.cs_ndir++;
    947 		fscs[0].cs_ndir++;
    948 	}
    949 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
    950 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
    951 	if (size != sblock.fs_bsize) {
    952 		frag = howmany(size, sblock.fs_fsize);
    953 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    954 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    955 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    956 		acg.cg_frsum[sblock.fs_frag - frag]++;
    957 		for (i = frag; i < sblock.fs_frag; i++)
    958 			setbit(cg_blksfree(&acg), d + i);
    959 	}
    960 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    961 	    (char *)&acg);
    962 	return (d);
    963 }
    964 
    965 /*
    966  * Allocate an inode on the disk
    967  */
    968 iput(ip, ino)
    969 	register struct dinode *ip;
    970 	register ino_t ino;
    971 {
    972 	struct dinode buf[MAXINOPB];
    973 	daddr_t d;
    974 	int c;
    975 
    976 	c = ino_to_cg(&sblock, ino);
    977 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    978 	    (char *)&acg);
    979 	if (acg.cg_magic != CG_MAGIC) {
    980 		printf("cg 0: bad magic number\n");
    981 		exit(31);
    982 	}
    983 	acg.cg_cs.cs_nifree--;
    984 	setbit(cg_inosused(&acg), ino);
    985 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    986 	    (char *)&acg);
    987 	sblock.fs_cstotal.cs_nifree--;
    988 	fscs[0].cs_nifree--;
    989 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
    990 		printf("fsinit: inode value out of range (%d).\n", ino);
    991 		exit(32);
    992 	}
    993 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
    994 	rdfs(d, sblock.fs_bsize, buf);
    995 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
    996 	wtfs(d, sblock.fs_bsize, buf);
    997 }
    998 
    999 /*
   1000  * Notify parent process that the filesystem has created itself successfully.
   1001  */
   1002 void
   1003 started()
   1004 {
   1005 
   1006 	exit(0);
   1007 }
   1008 
   1009 /*
   1010  * Replace libc function with one suited to our needs.
   1011  */
   1012 caddr_t
   1013 malloc(size)
   1014 	register u_long size;
   1015 {
   1016 	char *base, *i;
   1017 	static u_long pgsz;
   1018 	struct rlimit rlp;
   1019 
   1020 	if (pgsz == 0) {
   1021 		base = sbrk(0);
   1022 		pgsz = getpagesize() - 1;
   1023 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
   1024 		base = sbrk(i - base);
   1025 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1026 			perror("getrlimit");
   1027 		rlp.rlim_cur = rlp.rlim_max;
   1028 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1029 			perror("setrlimit");
   1030 		memleft = rlp.rlim_max - (u_long)base;
   1031 	}
   1032 	size = (size + pgsz) &~ pgsz;
   1033 	if (size > memleft)
   1034 		size = memleft;
   1035 	memleft -= size;
   1036 	if (size == 0)
   1037 		return (0);
   1038 	return ((caddr_t)sbrk(size));
   1039 }
   1040 
   1041 /*
   1042  * Replace libc function with one suited to our needs.
   1043  */
   1044 caddr_t
   1045 realloc(ptr, size)
   1046 	char *ptr;
   1047 	u_long size;
   1048 {
   1049 	void *p;
   1050 
   1051 	if ((p = malloc(size)) == NULL)
   1052 		return (NULL);
   1053 	memcpy(p, ptr, size);
   1054 	free(ptr);
   1055 	return (p);
   1056 }
   1057 
   1058 /*
   1059  * Replace libc function with one suited to our needs.
   1060  */
   1061 char *
   1062 calloc(size, numelm)
   1063 	u_long size, numelm;
   1064 {
   1065 	caddr_t base;
   1066 
   1067 	size *= numelm;
   1068 	base = malloc(size);
   1069 	memset(base, 0, size);
   1070 	return (base);
   1071 }
   1072 
   1073 /*
   1074  * Replace libc function with one suited to our needs.
   1075  */
   1076 free(ptr)
   1077 	char *ptr;
   1078 {
   1079 
   1080 	/* do not worry about it for now */
   1081 }
   1082 
   1083 /*
   1084  * read a block from the file system
   1085  */
   1086 rdfs(bno, size, bf)
   1087 	daddr_t bno;
   1088 	int size;
   1089 	char *bf;
   1090 {
   1091 	int n;
   1092 
   1093 	if (mfs) {
   1094 		memcpy(bf, membase + bno * sectorsize, size);
   1095 		return;
   1096 	}
   1097 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
   1098 		printf("seek error: %ld\n", bno);
   1099 		perror("rdfs");
   1100 		exit(33);
   1101 	}
   1102 	n = read(fsi, bf, size);
   1103 	if (n != size) {
   1104 		printf("read error: %ld\n", bno);
   1105 		perror("rdfs");
   1106 		exit(34);
   1107 	}
   1108 }
   1109 
   1110 /*
   1111  * write a block to the file system
   1112  */
   1113 wtfs(bno, size, bf)
   1114 	daddr_t bno;
   1115 	int size;
   1116 	char *bf;
   1117 {
   1118 	int n;
   1119 
   1120 	if (mfs) {
   1121 		memcpy(membase + bno * sectorsize, bf, size);
   1122 		return;
   1123 	}
   1124 	if (Nflag)
   1125 		return;
   1126 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
   1127 		printf("seek error: %ld\n", bno);
   1128 		perror("wtfs");
   1129 		exit(35);
   1130 	}
   1131 	n = write(fso, bf, size);
   1132 	if (n != size) {
   1133 		printf("write error: %ld\n", bno);
   1134 		perror("wtfs");
   1135 		exit(36);
   1136 	}
   1137 }
   1138 
   1139 /*
   1140  * check if a block is available
   1141  */
   1142 isblock(fs, cp, h)
   1143 	struct fs *fs;
   1144 	unsigned char *cp;
   1145 	int h;
   1146 {
   1147 	unsigned char mask;
   1148 
   1149 	switch (fs->fs_frag) {
   1150 	case 8:
   1151 		return (cp[h] == 0xff);
   1152 	case 4:
   1153 		mask = 0x0f << ((h & 0x1) << 2);
   1154 		return ((cp[h >> 1] & mask) == mask);
   1155 	case 2:
   1156 		mask = 0x03 << ((h & 0x3) << 1);
   1157 		return ((cp[h >> 2] & mask) == mask);
   1158 	case 1:
   1159 		mask = 0x01 << (h & 0x7);
   1160 		return ((cp[h >> 3] & mask) == mask);
   1161 	default:
   1162 #ifdef STANDALONE
   1163 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1164 #else
   1165 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1166 #endif
   1167 		return (0);
   1168 	}
   1169 }
   1170 
   1171 /*
   1172  * take a block out of the map
   1173  */
   1174 clrblock(fs, cp, h)
   1175 	struct fs *fs;
   1176 	unsigned char *cp;
   1177 	int h;
   1178 {
   1179 	switch ((fs)->fs_frag) {
   1180 	case 8:
   1181 		cp[h] = 0;
   1182 		return;
   1183 	case 4:
   1184 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1185 		return;
   1186 	case 2:
   1187 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1188 		return;
   1189 	case 1:
   1190 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1191 		return;
   1192 	default:
   1193 #ifdef STANDALONE
   1194 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1195 #else
   1196 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1197 #endif
   1198 		return;
   1199 	}
   1200 }
   1201 
   1202 /*
   1203  * put a block into the map
   1204  */
   1205 setblock(fs, cp, h)
   1206 	struct fs *fs;
   1207 	unsigned char *cp;
   1208 	int h;
   1209 {
   1210 	switch (fs->fs_frag) {
   1211 	case 8:
   1212 		cp[h] = 0xff;
   1213 		return;
   1214 	case 4:
   1215 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1216 		return;
   1217 	case 2:
   1218 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1219 		return;
   1220 	case 1:
   1221 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1222 		return;
   1223 	default:
   1224 #ifdef STANDALONE
   1225 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1226 #else
   1227 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1228 #endif
   1229 		return;
   1230 	}
   1231 }
   1232