mkfs.c revision 1.17 1 /*
2 * Copyright (c) 1980, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 #ifndef lint
35 /*static char sccsid[] = "from: @(#)mkfs.c 8.3 (Berkeley) 2/3/94";*/
36 static char *rcsid = "$Id: mkfs.c,v 1.17 1995/03/04 06:28:20 cgd Exp $";
37 #endif /* not lint */
38
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/wait.h>
42 #include <sys/resource.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ufs/dir.h>
45 #include <ufs/ffs/fs.h>
46 #include <sys/disklabel.h>
47
48 #include <string.h>
49 #include <unistd.h>
50
51 #ifndef STANDALONE
52 #include <a.out.h>
53 #include <stdio.h>
54 #endif
55
56 /*
57 * make file system for cylinder-group style file systems
58 */
59
60 /*
61 * We limit the size of the inode map to be no more than a
62 * third of the cylinder group space, since we must leave at
63 * least an equal amount of space for the block map.
64 *
65 * N.B.: MAXIPG must be a multiple of INOPB(fs).
66 */
67 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
68
69 #define UMASK 0755
70 #define MAXINOPB (MAXBSIZE / sizeof(struct dinode))
71 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
72
73 /*
74 * variables set up by front end.
75 */
76 extern int mfs; /* run as the memory based filesystem */
77 extern int Nflag; /* run mkfs without writing file system */
78 extern int Oflag; /* format as an 4.3BSD file system */
79 extern int fssize; /* file system size */
80 extern int ntracks; /* # tracks/cylinder */
81 extern int nsectors; /* # sectors/track */
82 extern int nphyssectors; /* # sectors/track including spares */
83 extern int secpercyl; /* sectors per cylinder */
84 extern int sectorsize; /* bytes/sector */
85 extern int rpm; /* revolutions/minute of drive */
86 extern int interleave; /* hardware sector interleave */
87 extern int trackskew; /* sector 0 skew, per track */
88 extern int headswitch; /* head switch time, usec */
89 extern int trackseek; /* track-to-track seek, usec */
90 extern int fsize; /* fragment size */
91 extern int bsize; /* block size */
92 extern int cpg; /* cylinders/cylinder group */
93 extern int cpgflg; /* cylinders/cylinder group flag was given */
94 extern int minfree; /* free space threshold */
95 extern int opt; /* optimization preference (space or time) */
96 extern int density; /* number of bytes per inode */
97 extern int maxcontig; /* max contiguous blocks to allocate */
98 extern int rotdelay; /* rotational delay between blocks */
99 extern int maxbpg; /* maximum blocks per file in a cyl group */
100 extern int nrpos; /* # of distinguished rotational positions */
101 extern int bbsize; /* boot block size */
102 extern int sbsize; /* superblock size */
103 extern u_long memleft; /* virtual memory available */
104 extern caddr_t membase; /* start address of memory based filesystem */
105 extern caddr_t malloc(), calloc();
106
107 union {
108 struct fs fs;
109 char pad[SBSIZE];
110 } fsun;
111 #define sblock fsun.fs
112 struct csum *fscs;
113
114 union {
115 struct cg cg;
116 char pad[MAXBSIZE];
117 } cgun;
118 #define acg cgun.cg
119
120 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
121
122 int fsi, fso;
123 daddr_t alloc();
124
125 mkfs(pp, fsys, fi, fo)
126 struct partition *pp;
127 char *fsys;
128 int fi, fo;
129 {
130 register long i, mincpc, mincpg, inospercg;
131 long cylno, rpos, blk, j, warn = 0;
132 long used, mincpgcnt, bpcg;
133 long mapcramped, inodecramped;
134 long postblsize, rotblsize, totalsbsize;
135 int ppid, status;
136 time_t utime;
137 quad_t sizepb;
138 void started();
139
140 #ifndef STANDALONE
141 time(&utime);
142 #endif
143 if (mfs) {
144 ppid = getpid();
145 (void) signal(SIGUSR1, started);
146 if (i = fork()) {
147 if (i == -1) {
148 perror("mfs");
149 exit(10);
150 }
151 if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
152 exit(WEXITSTATUS(status));
153 exit(11);
154 /* NOTREACHED */
155 }
156 (void)malloc(0);
157 if (fssize * sectorsize > memleft)
158 fssize = (memleft - 16384) / sectorsize;
159 if ((membase = malloc(fssize * sectorsize)) == 0)
160 exit(12);
161 }
162 fsi = fi;
163 fso = fo;
164 if (Oflag) {
165 sblock.fs_inodefmt = FS_42INODEFMT;
166 sblock.fs_maxsymlinklen = 0;
167 } else {
168 sblock.fs_inodefmt = FS_44INODEFMT;
169 sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
170 }
171 /*
172 * Validate the given file system size.
173 * Verify that its last block can actually be accessed.
174 */
175 if (fssize <= 0)
176 printf("preposterous size %d\n", fssize), exit(13);
177 wtfs(fssize - 1, sectorsize, (char *)&sblock);
178 /*
179 * collect and verify the sector and track info
180 */
181 sblock.fs_nsect = nsectors;
182 sblock.fs_ntrak = ntracks;
183 if (sblock.fs_ntrak <= 0)
184 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
185 if (sblock.fs_nsect <= 0)
186 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
187 /*
188 * collect and verify the block and fragment sizes
189 */
190 sblock.fs_bsize = bsize;
191 sblock.fs_fsize = fsize;
192 if (!POWEROF2(sblock.fs_bsize)) {
193 printf("block size must be a power of 2, not %d\n",
194 sblock.fs_bsize);
195 exit(16);
196 }
197 if (!POWEROF2(sblock.fs_fsize)) {
198 printf("fragment size must be a power of 2, not %d\n",
199 sblock.fs_fsize);
200 exit(17);
201 }
202 if (sblock.fs_fsize < sectorsize) {
203 printf("fragment size %d is too small, minimum is %d\n",
204 sblock.fs_fsize, sectorsize);
205 exit(18);
206 }
207 if (sblock.fs_bsize < MINBSIZE) {
208 printf("block size %d is too small, minimum is %d\n",
209 sblock.fs_bsize, MINBSIZE);
210 exit(19);
211 }
212 if (sblock.fs_bsize < sblock.fs_fsize) {
213 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
214 sblock.fs_bsize, sblock.fs_fsize);
215 exit(20);
216 }
217 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
218 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
219 sblock.fs_qbmask = ~sblock.fs_bmask;
220 sblock.fs_qfmask = ~sblock.fs_fmask;
221 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
222 sblock.fs_bshift++;
223 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
224 sblock.fs_fshift++;
225 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
226 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
227 sblock.fs_fragshift++;
228 if (sblock.fs_frag > MAXFRAG) {
229 printf("fragment size %d is too small, minimum with block size %d is %d\n",
230 sblock.fs_fsize, sblock.fs_bsize,
231 sblock.fs_bsize / MAXFRAG);
232 exit(21);
233 }
234 sblock.fs_nrpos = nrpos;
235 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
236 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
237 sblock.fs_nspf = sblock.fs_fsize / sectorsize;
238 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
239 sblock.fs_fsbtodb++;
240 sblock.fs_sblkno =
241 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
242 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
243 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
244 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
245 sblock.fs_cgoffset = roundup(
246 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
247 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
248 sblock.fs_cgmask <<= 1;
249 if (!POWEROF2(sblock.fs_ntrak))
250 sblock.fs_cgmask <<= 1;
251 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
252 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
253 sizepb *= NINDIR(&sblock);
254 sblock.fs_maxfilesize += sizepb;
255 }
256 /*
257 * Validate specified/determined secpercyl
258 * and calculate minimum cylinders per group.
259 */
260 sblock.fs_spc = secpercyl;
261 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
262 sblock.fs_cpc > 1 && (i & 1) == 0;
263 sblock.fs_cpc >>= 1, i >>= 1)
264 /* void */;
265 mincpc = sblock.fs_cpc;
266 bpcg = sblock.fs_spc * sectorsize;
267 inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
268 if (inospercg > MAXIPG(&sblock))
269 inospercg = MAXIPG(&sblock);
270 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
271 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
272 sblock.fs_spc);
273 mincpg = roundup(mincpgcnt, mincpc);
274 /*
275 * Ensure that cylinder group with mincpg has enough space
276 * for block maps.
277 */
278 sblock.fs_cpg = mincpg;
279 sblock.fs_ipg = inospercg;
280 if (maxcontig > 1)
281 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
282 mapcramped = 0;
283 while (CGSIZE(&sblock) > sblock.fs_bsize) {
284 mapcramped = 1;
285 if (sblock.fs_bsize < MAXBSIZE) {
286 sblock.fs_bsize <<= 1;
287 if ((i & 1) == 0) {
288 i >>= 1;
289 } else {
290 sblock.fs_cpc <<= 1;
291 mincpc <<= 1;
292 mincpg = roundup(mincpgcnt, mincpc);
293 sblock.fs_cpg = mincpg;
294 }
295 sblock.fs_frag <<= 1;
296 sblock.fs_fragshift += 1;
297 if (sblock.fs_frag <= MAXFRAG)
298 continue;
299 }
300 if (sblock.fs_fsize == sblock.fs_bsize) {
301 printf("There is no block size that");
302 printf(" can support this disk\n");
303 exit(22);
304 }
305 sblock.fs_frag >>= 1;
306 sblock.fs_fragshift -= 1;
307 sblock.fs_fsize <<= 1;
308 sblock.fs_nspf <<= 1;
309 }
310 /*
311 * Ensure that cylinder group with mincpg has enough space for inodes.
312 */
313 inodecramped = 0;
314 used *= sectorsize;
315 inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
316 sblock.fs_ipg = inospercg;
317 while (inospercg > MAXIPG(&sblock)) {
318 inodecramped = 1;
319 if (mincpc == 1 || sblock.fs_frag == 1 ||
320 sblock.fs_bsize == MINBSIZE)
321 break;
322 printf("With a block size of %d %s %d\n", sblock.fs_bsize,
323 "minimum bytes per inode is",
324 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
325 sblock.fs_bsize >>= 1;
326 sblock.fs_frag >>= 1;
327 sblock.fs_fragshift -= 1;
328 mincpc >>= 1;
329 sblock.fs_cpg = roundup(mincpgcnt, mincpc);
330 if (CGSIZE(&sblock) > sblock.fs_bsize) {
331 sblock.fs_bsize <<= 1;
332 break;
333 }
334 mincpg = sblock.fs_cpg;
335 inospercg =
336 roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
337 sblock.fs_ipg = inospercg;
338 }
339 if (inodecramped) {
340 if (inospercg > MAXIPG(&sblock)) {
341 printf("Minimum bytes per inode is %d\n",
342 (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
343 } else if (!mapcramped) {
344 printf("With %d bytes per inode, ", density);
345 printf("minimum cylinders per group is %d\n", mincpg);
346 }
347 }
348 if (mapcramped) {
349 printf("With %d sectors per cylinder, ", sblock.fs_spc);
350 printf("minimum cylinders per group is %d\n", mincpg);
351 }
352 if (inodecramped || mapcramped) {
353 if (sblock.fs_bsize != bsize)
354 printf("%s to be changed from %d to %d\n",
355 "This requires the block size",
356 bsize, sblock.fs_bsize);
357 if (sblock.fs_fsize != fsize)
358 printf("\t%s to be changed from %d to %d\n",
359 "and the fragment size",
360 fsize, sblock.fs_fsize);
361 exit(23);
362 }
363 /*
364 * Calculate the number of cylinders per group
365 */
366 sblock.fs_cpg = cpg;
367 if (sblock.fs_cpg % mincpc != 0) {
368 printf("%s groups must have a multiple of %d cylinders\n",
369 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
370 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
371 if (!cpgflg)
372 cpg = sblock.fs_cpg;
373 }
374 /*
375 * Must ensure there is enough space for inodes.
376 */
377 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
378 INOPB(&sblock));
379 while (sblock.fs_ipg > MAXIPG(&sblock)) {
380 inodecramped = 1;
381 sblock.fs_cpg -= mincpc;
382 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
383 INOPB(&sblock));
384 }
385 /*
386 * Must ensure there is enough space to hold block map.
387 */
388 while (CGSIZE(&sblock) > sblock.fs_bsize) {
389 mapcramped = 1;
390 sblock.fs_cpg -= mincpc;
391 sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
392 INOPB(&sblock));
393 }
394 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
395 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
396 printf("panic (fs_cpg * fs_spc) % NSPF != 0");
397 exit(24);
398 }
399 if (sblock.fs_cpg < mincpg) {
400 printf("cylinder groups must have at least %d cylinders\n",
401 mincpg);
402 exit(25);
403 } else if (sblock.fs_cpg != cpg) {
404 if (!cpgflg)
405 printf("Warning: ");
406 else if (!mapcramped && !inodecramped)
407 exit(26);
408 if (mapcramped && inodecramped)
409 printf("Block size and bytes per inode restrict");
410 else if (mapcramped)
411 printf("Block size restricts");
412 else
413 printf("Bytes per inode restrict");
414 printf(" cylinders per group to %d.\n", sblock.fs_cpg);
415 if (cpgflg)
416 exit(27);
417 }
418 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
419 /*
420 * Now have size for file system and nsect and ntrak.
421 * Determine number of cylinders and blocks in the file system.
422 */
423 sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
424 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
425 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
426 sblock.fs_ncyl++;
427 warn = 1;
428 }
429 if (sblock.fs_ncyl < 1) {
430 printf("file systems must have at least one cylinder\n");
431 exit(28);
432 }
433 /*
434 * Determine feasability/values of rotational layout tables.
435 *
436 * The size of the rotational layout tables is limited by the
437 * size of the superblock, SBSIZE. The amount of space available
438 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
439 * The size of these tables is inversely proportional to the block
440 * size of the file system. The size increases if sectors per track
441 * are not powers of two, because more cylinders must be described
442 * by the tables before the rotational pattern repeats (fs_cpc).
443 */
444 sblock.fs_interleave = interleave;
445 sblock.fs_trackskew = trackskew;
446 sblock.fs_npsect = nphyssectors;
447 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
448 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
449 if (sblock.fs_ntrak == 1) {
450 sblock.fs_cpc = 0;
451 goto next;
452 }
453 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(short);
454 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
455 totalsbsize = sizeof(struct fs) + rotblsize;
456 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
457 /* use old static table space */
458 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
459 (char *)(&sblock.fs_firstfield);
460 sblock.fs_rotbloff = &sblock.fs_space[0] -
461 (u_char *)(&sblock.fs_firstfield);
462 } else {
463 /* use dynamic table space */
464 sblock.fs_postbloff = &sblock.fs_space[0] -
465 (u_char *)(&sblock.fs_firstfield);
466 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
467 totalsbsize += postblsize;
468 }
469 if (totalsbsize > SBSIZE ||
470 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
471 printf("%s %s %d %s %d.%s",
472 "Warning: insufficient space in super block for\n",
473 "rotational layout tables with nsect", sblock.fs_nsect,
474 "and ntrak", sblock.fs_ntrak,
475 "\nFile system performance may be impaired.\n");
476 sblock.fs_cpc = 0;
477 goto next;
478 }
479 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
480 /*
481 * calculate the available blocks for each rotational position
482 */
483 for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
484 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
485 fs_postbl(&sblock, cylno)[rpos] = -1;
486 for (i = (rotblsize - 1) * sblock.fs_frag;
487 i >= 0; i -= sblock.fs_frag) {
488 cylno = cbtocylno(&sblock, i);
489 rpos = cbtorpos(&sblock, i);
490 blk = fragstoblks(&sblock, i);
491 if (fs_postbl(&sblock, cylno)[rpos] == -1)
492 fs_rotbl(&sblock)[blk] = 0;
493 else
494 fs_rotbl(&sblock)[blk] =
495 fs_postbl(&sblock, cylno)[rpos] - blk;
496 fs_postbl(&sblock, cylno)[rpos] = blk;
497 }
498 next:
499 /*
500 * Compute/validate number of cylinder groups.
501 */
502 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
503 if (sblock.fs_ncyl % sblock.fs_cpg)
504 sblock.fs_ncg++;
505 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
506 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
507 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
508 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
509 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
510 sblock.fs_fpg / sblock.fs_frag);
511 printf("number of cylinders per cylinder group (%d) %s.\n",
512 sblock.fs_cpg, "must be increased");
513 exit(29);
514 }
515 j = sblock.fs_ncg - 1;
516 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
517 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
518 if (j == 0) {
519 printf("Filesystem must have at least %d sectors\n",
520 NSPF(&sblock) *
521 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
522 exit(30);
523 }
524 printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
525 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
526 i / sblock.fs_frag);
527 printf(" cylinder group. This implies %d sector(s) cannot be allocated.\n",
528 i * NSPF(&sblock));
529 sblock.fs_ncg--;
530 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
531 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
532 NSPF(&sblock);
533 warn = 0;
534 }
535 if (warn && !mfs) {
536 printf("Warning: %d sector(s) in last cylinder unallocated\n",
537 sblock.fs_spc -
538 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
539 * sblock.fs_spc));
540 }
541 /*
542 * fill in remaining fields of the super block
543 */
544 sblock.fs_csaddr = cgdmin(&sblock, 0);
545 sblock.fs_cssize =
546 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
547 i = sblock.fs_bsize / sizeof(struct csum);
548 sblock.fs_csmask = ~(i - 1);
549 for (sblock.fs_csshift = 0; i > 1; i >>= 1)
550 sblock.fs_csshift++;
551 fscs = (struct csum *)calloc(1, sblock.fs_cssize);
552 sblock.fs_magic = FS_MAGIC;
553 sblock.fs_rotdelay = rotdelay;
554 sblock.fs_minfree = minfree;
555 sblock.fs_maxcontig = maxcontig;
556 sblock.fs_headswitch = headswitch;
557 sblock.fs_trkseek = trackseek;
558 sblock.fs_maxbpg = maxbpg;
559 sblock.fs_rps = rpm / 60;
560 sblock.fs_optim = opt;
561 sblock.fs_cgrotor = 0;
562 sblock.fs_cstotal.cs_ndir = 0;
563 sblock.fs_cstotal.cs_nbfree = 0;
564 sblock.fs_cstotal.cs_nifree = 0;
565 sblock.fs_cstotal.cs_nffree = 0;
566 sblock.fs_fmod = 0;
567 sblock.fs_ronly = 0;
568 /*
569 * Dump out summary information about file system.
570 */
571 if (!mfs) {
572 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
573 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
574 "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
575 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
576 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
577 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
578 sblock.fs_ncg, sblock.fs_cpg,
579 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
580 sblock.fs_ipg);
581 #undef B2MBFACTOR
582 }
583 /*
584 * Now build the cylinders group blocks and
585 * then print out indices of cylinder groups.
586 */
587 if (!mfs)
588 printf("super-block backups (for fsck -b #) at:");
589 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
590 initcg(cylno, utime);
591 if (mfs)
592 continue;
593 if (cylno % 8 == 0)
594 printf("\n");
595 printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
596 fflush(stderr);
597 }
598 if (!mfs)
599 printf("\n");
600 if (Nflag && !mfs)
601 exit(0);
602 /*
603 * Now construct the initial file system,
604 * then write out the super-block.
605 */
606 fsinit(utime);
607 sblock.fs_time = utime;
608 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
609 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
610 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
611 sblock.fs_cssize - i < sblock.fs_bsize ?
612 sblock.fs_cssize - i : sblock.fs_bsize,
613 ((char *)fscs) + i);
614 /*
615 * Write out the duplicate super blocks
616 */
617 for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
618 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
619 sbsize, (char *)&sblock);
620 /*
621 * Update information about this partion in pack
622 * label, to that it may be updated on disk.
623 */
624 pp->p_fstype = FS_BSDFFS;
625 pp->p_fsize = sblock.fs_fsize;
626 pp->p_frag = sblock.fs_frag;
627 pp->p_cpg = sblock.fs_cpg;
628 /*
629 * Notify parent process of success.
630 * Dissociate from session and tty.
631 */
632 if (mfs) {
633 kill(ppid, SIGUSR1);
634 (void) setsid();
635 (void) close(0);
636 (void) close(1);
637 (void) close(2);
638 (void) chdir("/");
639 }
640 }
641
642 /*
643 * Initialize a cylinder group.
644 */
645 initcg(cylno, utime)
646 int cylno;
647 time_t utime;
648 {
649 daddr_t cbase, d, dlower, dupper, dmax, blkno;
650 long i, j, s;
651 register struct csum *cs;
652
653 /*
654 * Determine block bounds for cylinder group.
655 * Allow space for super block summary information in first
656 * cylinder group.
657 */
658 cbase = cgbase(&sblock, cylno);
659 dmax = cbase + sblock.fs_fpg;
660 if (dmax > sblock.fs_size)
661 dmax = sblock.fs_size;
662 dlower = cgsblock(&sblock, cylno) - cbase;
663 dupper = cgdmin(&sblock, cylno) - cbase;
664 if (cylno == 0)
665 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
666 cs = fscs + cylno;
667 memset(&acg, 0, sblock.fs_cgsize);
668 acg.cg_time = utime;
669 acg.cg_magic = CG_MAGIC;
670 acg.cg_cgx = cylno;
671 if (cylno == sblock.fs_ncg - 1)
672 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
673 else
674 acg.cg_ncyl = sblock.fs_cpg;
675 acg.cg_niblk = sblock.fs_ipg;
676 acg.cg_ndblk = dmax - cbase;
677 if (sblock.fs_contigsumsize > 0)
678 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
679 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
680 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
681 acg.cg_iusedoff = acg.cg_boff +
682 sblock.fs_cpg * sblock.fs_nrpos * sizeof(short);
683 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
684 if (sblock.fs_contigsumsize <= 0) {
685 acg.cg_nextfreeoff = acg.cg_freeoff +
686 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
687 } else {
688 acg.cg_clustersumoff = acg.cg_freeoff + howmany
689 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
690 sizeof(int32_t);
691 acg.cg_clustersumoff =
692 roundup(acg.cg_clustersumoff, sizeof(int32_t));
693 acg.cg_clusteroff = acg.cg_clustersumoff +
694 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
695 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
696 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
697 }
698 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
699 printf("Panic: cylinder group too big\n");
700 exit(37);
701 }
702 acg.cg_cs.cs_nifree += sblock.fs_ipg;
703 if (cylno == 0)
704 for (i = 0; i < ROOTINO; i++) {
705 setbit(cg_inosused(&acg), i);
706 acg.cg_cs.cs_nifree--;
707 }
708 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
709 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
710 sblock.fs_bsize, (char *)zino);
711 if (cylno > 0) {
712 /*
713 * In cylno 0, beginning space is reserved
714 * for boot and super blocks.
715 */
716 for (d = 0; d < dlower; d += sblock.fs_frag) {
717 blkno = d / sblock.fs_frag;
718 setblock(&sblock, cg_blksfree(&acg), blkno);
719 if (sblock.fs_contigsumsize > 0)
720 setbit(cg_clustersfree(&acg), blkno);
721 acg.cg_cs.cs_nbfree++;
722 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
723 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
724 [cbtorpos(&sblock, d)]++;
725 }
726 sblock.fs_dsize += dlower;
727 }
728 sblock.fs_dsize += acg.cg_ndblk - dupper;
729 if (i = dupper % sblock.fs_frag) {
730 acg.cg_frsum[sblock.fs_frag - i]++;
731 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
732 setbit(cg_blksfree(&acg), dupper);
733 acg.cg_cs.cs_nffree++;
734 }
735 }
736 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
737 blkno = d / sblock.fs_frag;
738 setblock(&sblock, cg_blksfree(&acg), blkno);
739 if (sblock.fs_contigsumsize > 0)
740 setbit(cg_clustersfree(&acg), blkno);
741 acg.cg_cs.cs_nbfree++;
742 cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
743 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
744 [cbtorpos(&sblock, d)]++;
745 d += sblock.fs_frag;
746 }
747 if (d < dmax - cbase) {
748 acg.cg_frsum[dmax - cbase - d]++;
749 for (; d < dmax - cbase; d++) {
750 setbit(cg_blksfree(&acg), d);
751 acg.cg_cs.cs_nffree++;
752 }
753 }
754 if (sblock.fs_contigsumsize > 0) {
755 int32_t *sump = cg_clustersum(&acg);
756 u_char *mapp = cg_clustersfree(&acg);
757 int map = *mapp++;
758 int bit = 1;
759 int run = 0;
760
761 for (i = 0; i < acg.cg_nclusterblks; i++) {
762 if ((map & bit) != 0) {
763 run++;
764 } else if (run != 0) {
765 if (run > sblock.fs_contigsumsize)
766 run = sblock.fs_contigsumsize;
767 sump[run]++;
768 run = 0;
769 }
770 if ((i & (NBBY - 1)) != (NBBY - 1)) {
771 bit <<= 1;
772 } else {
773 map = *mapp++;
774 bit = 1;
775 }
776 }
777 if (run != 0) {
778 if (run > sblock.fs_contigsumsize)
779 run = sblock.fs_contigsumsize;
780 sump[run]++;
781 }
782 }
783 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
784 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
785 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
786 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
787 *cs = acg.cg_cs;
788 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
789 sblock.fs_bsize, (char *)&acg);
790 }
791
792 /*
793 * initialize the file system
794 */
795 struct dinode node;
796
797 #ifdef LOSTDIR
798 #define PREDEFDIR 3
799 #else
800 #define PREDEFDIR 2
801 #endif
802
803 struct direct root_dir[] = {
804 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
805 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
806 #ifdef LOSTDIR
807 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
808 #endif
809 };
810 struct odirect {
811 u_int32_t d_ino;
812 u_int16_t d_reclen;
813 u_int16_t d_namlen;
814 u_char d_name[MAXNAMLEN + 1];
815 } oroot_dir[] = {
816 { ROOTINO, sizeof(struct direct), 1, "." },
817 { ROOTINO, sizeof(struct direct), 2, ".." },
818 #ifdef LOSTDIR
819 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
820 #endif
821 };
822 #ifdef LOSTDIR
823 struct direct lost_found_dir[] = {
824 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
825 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
826 { 0, DIRBLKSIZ, 0, 0, 0 },
827 };
828 struct odirect olost_found_dir[] = {
829 { LOSTFOUNDINO, sizeof(struct direct), 1, "." },
830 { ROOTINO, sizeof(struct direct), 2, ".." },
831 { 0, DIRBLKSIZ, 0, 0 },
832 };
833 #endif
834 char buf[MAXBSIZE];
835
836 fsinit(utime)
837 time_t utime;
838 {
839 int i;
840
841 /*
842 * initialize the node
843 */
844 node.di_atime.ts_sec = utime;
845 node.di_mtime.ts_sec = utime;
846 node.di_ctime.ts_sec = utime;
847 #ifdef LOSTDIR
848 /*
849 * create the lost+found directory
850 */
851 if (Oflag) {
852 (void)makedir((struct direct *)olost_found_dir, 2);
853 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
854 memcpy(&buf[i], &olost_found_dir[2],
855 DIRSIZ(0, &olost_found_dir[2]));
856 } else {
857 (void)makedir(lost_found_dir, 2);
858 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
859 memcpy(&buf[i], &lost_found_dir[2],
860 DIRSIZ(0, &lost_found_dir[2]));
861 }
862 node.di_mode = IFDIR | UMASK;
863 node.di_nlink = 2;
864 node.di_size = sblock.fs_bsize;
865 node.di_db[0] = alloc(node.di_size, node.di_mode);
866 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
867 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
868 iput(&node, LOSTFOUNDINO);
869 #endif
870 /*
871 * create the root directory
872 */
873 if (mfs)
874 node.di_mode = IFDIR | 01777;
875 else
876 node.di_mode = IFDIR | UMASK;
877 node.di_nlink = PREDEFDIR;
878 if (Oflag)
879 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
880 else
881 node.di_size = makedir(root_dir, PREDEFDIR);
882 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
883 node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
884 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
885 iput(&node, ROOTINO);
886 }
887
888 /*
889 * construct a set of directory entries in "buf".
890 * return size of directory.
891 */
892 makedir(protodir, entries)
893 register struct direct *protodir;
894 int entries;
895 {
896 char *cp;
897 int i, spcleft;
898
899 spcleft = DIRBLKSIZ;
900 for (cp = buf, i = 0; i < entries - 1; i++) {
901 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
902 memcpy(cp, &protodir[i], protodir[i].d_reclen);
903 cp += protodir[i].d_reclen;
904 spcleft -= protodir[i].d_reclen;
905 }
906 protodir[i].d_reclen = spcleft;
907 memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
908 return (DIRBLKSIZ);
909 }
910
911 /*
912 * allocate a block or frag
913 */
914 daddr_t
915 alloc(size, mode)
916 int size;
917 int mode;
918 {
919 int i, frag;
920 daddr_t d, blkno;
921
922 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
923 (char *)&acg);
924 if (acg.cg_magic != CG_MAGIC) {
925 printf("cg 0: bad magic number\n");
926 return (0);
927 }
928 if (acg.cg_cs.cs_nbfree == 0) {
929 printf("first cylinder group ran out of space\n");
930 return (0);
931 }
932 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
933 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
934 goto goth;
935 printf("internal error: can't find block in cyl 0\n");
936 return (0);
937 goth:
938 blkno = fragstoblks(&sblock, d);
939 clrblock(&sblock, cg_blksfree(&acg), blkno);
940 if (sblock.fs_contigsumsize > 0)
941 clrbit(cg_clustersfree(&acg), blkno);
942 acg.cg_cs.cs_nbfree--;
943 sblock.fs_cstotal.cs_nbfree--;
944 fscs[0].cs_nbfree--;
945 if (mode & IFDIR) {
946 acg.cg_cs.cs_ndir++;
947 sblock.fs_cstotal.cs_ndir++;
948 fscs[0].cs_ndir++;
949 }
950 cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
951 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
952 if (size != sblock.fs_bsize) {
953 frag = howmany(size, sblock.fs_fsize);
954 fscs[0].cs_nffree += sblock.fs_frag - frag;
955 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
956 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
957 acg.cg_frsum[sblock.fs_frag - frag]++;
958 for (i = frag; i < sblock.fs_frag; i++)
959 setbit(cg_blksfree(&acg), d + i);
960 }
961 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
962 (char *)&acg);
963 return (d);
964 }
965
966 /*
967 * Allocate an inode on the disk
968 */
969 iput(ip, ino)
970 register struct dinode *ip;
971 register ino_t ino;
972 {
973 struct dinode buf[MAXINOPB];
974 daddr_t d;
975 int c;
976
977 c = ino_to_cg(&sblock, ino);
978 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
979 (char *)&acg);
980 if (acg.cg_magic != CG_MAGIC) {
981 printf("cg 0: bad magic number\n");
982 exit(31);
983 }
984 acg.cg_cs.cs_nifree--;
985 setbit(cg_inosused(&acg), ino);
986 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
987 (char *)&acg);
988 sblock.fs_cstotal.cs_nifree--;
989 fscs[0].cs_nifree--;
990 if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
991 printf("fsinit: inode value out of range (%d).\n", ino);
992 exit(32);
993 }
994 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
995 rdfs(d, sblock.fs_bsize, buf);
996 buf[ino_to_fsbo(&sblock, ino)] = *ip;
997 wtfs(d, sblock.fs_bsize, buf);
998 }
999
1000 /*
1001 * Notify parent process that the filesystem has created itself successfully.
1002 */
1003 void
1004 started()
1005 {
1006
1007 exit(0);
1008 }
1009
1010 /*
1011 * Replace libc function with one suited to our needs.
1012 */
1013 caddr_t
1014 malloc(size)
1015 register u_long size;
1016 {
1017 char *base, *i;
1018 static u_long pgsz;
1019 struct rlimit rlp;
1020
1021 if (pgsz == 0) {
1022 base = sbrk(0);
1023 pgsz = getpagesize() - 1;
1024 i = (char *)((u_long)(base + pgsz) &~ pgsz);
1025 base = sbrk(i - base);
1026 if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1027 perror("getrlimit");
1028 rlp.rlim_cur = rlp.rlim_max;
1029 if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1030 perror("setrlimit");
1031 memleft = rlp.rlim_max - (u_long)base;
1032 }
1033 size = (size + pgsz) &~ pgsz;
1034 if (size > memleft)
1035 size = memleft;
1036 memleft -= size;
1037 if (size == 0)
1038 return (0);
1039 return ((caddr_t)sbrk(size));
1040 }
1041
1042 /*
1043 * Replace libc function with one suited to our needs.
1044 */
1045 caddr_t
1046 realloc(ptr, size)
1047 char *ptr;
1048 u_long size;
1049 {
1050 void *p;
1051
1052 if ((p = malloc(size)) == NULL)
1053 return (NULL);
1054 memcpy(p, ptr, size);
1055 free(ptr);
1056 return (p);
1057 }
1058
1059 /*
1060 * Replace libc function with one suited to our needs.
1061 */
1062 char *
1063 calloc(size, numelm)
1064 u_long size, numelm;
1065 {
1066 caddr_t base;
1067
1068 size *= numelm;
1069 base = malloc(size);
1070 memset(base, 0, size);
1071 return (base);
1072 }
1073
1074 /*
1075 * Replace libc function with one suited to our needs.
1076 */
1077 free(ptr)
1078 char *ptr;
1079 {
1080
1081 /* do not worry about it for now */
1082 }
1083
1084 /*
1085 * read a block from the file system
1086 */
1087 rdfs(bno, size, bf)
1088 daddr_t bno;
1089 int size;
1090 char *bf;
1091 {
1092 int n;
1093
1094 if (mfs) {
1095 memcpy(bf, membase + bno * sectorsize, size);
1096 return;
1097 }
1098 if (lseek(fsi, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1099 printf("seek error: %ld\n", bno);
1100 perror("rdfs");
1101 exit(33);
1102 }
1103 n = read(fsi, bf, size);
1104 if (n != size) {
1105 printf("read error: %ld\n", bno);
1106 perror("rdfs");
1107 exit(34);
1108 }
1109 }
1110
1111 /*
1112 * write a block to the file system
1113 */
1114 wtfs(bno, size, bf)
1115 daddr_t bno;
1116 int size;
1117 char *bf;
1118 {
1119 int n;
1120
1121 if (mfs) {
1122 memcpy(membase + bno * sectorsize, bf, size);
1123 return;
1124 }
1125 if (Nflag)
1126 return;
1127 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1128 printf("seek error: %ld\n", bno);
1129 perror("wtfs");
1130 exit(35);
1131 }
1132 n = write(fso, bf, size);
1133 if (n != size) {
1134 printf("write error: %ld\n", bno);
1135 perror("wtfs");
1136 exit(36);
1137 }
1138 }
1139
1140 /*
1141 * check if a block is available
1142 */
1143 isblock(fs, cp, h)
1144 struct fs *fs;
1145 unsigned char *cp;
1146 int h;
1147 {
1148 unsigned char mask;
1149
1150 switch (fs->fs_frag) {
1151 case 8:
1152 return (cp[h] == 0xff);
1153 case 4:
1154 mask = 0x0f << ((h & 0x1) << 2);
1155 return ((cp[h >> 1] & mask) == mask);
1156 case 2:
1157 mask = 0x03 << ((h & 0x3) << 1);
1158 return ((cp[h >> 2] & mask) == mask);
1159 case 1:
1160 mask = 0x01 << (h & 0x7);
1161 return ((cp[h >> 3] & mask) == mask);
1162 default:
1163 #ifdef STANDALONE
1164 printf("isblock bad fs_frag %d\n", fs->fs_frag);
1165 #else
1166 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1167 #endif
1168 return (0);
1169 }
1170 }
1171
1172 /*
1173 * take a block out of the map
1174 */
1175 clrblock(fs, cp, h)
1176 struct fs *fs;
1177 unsigned char *cp;
1178 int h;
1179 {
1180 switch ((fs)->fs_frag) {
1181 case 8:
1182 cp[h] = 0;
1183 return;
1184 case 4:
1185 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1186 return;
1187 case 2:
1188 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1189 return;
1190 case 1:
1191 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1192 return;
1193 default:
1194 #ifdef STANDALONE
1195 printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1196 #else
1197 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1198 #endif
1199 return;
1200 }
1201 }
1202
1203 /*
1204 * put a block into the map
1205 */
1206 setblock(fs, cp, h)
1207 struct fs *fs;
1208 unsigned char *cp;
1209 int h;
1210 {
1211 switch (fs->fs_frag) {
1212 case 8:
1213 cp[h] = 0xff;
1214 return;
1215 case 4:
1216 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1217 return;
1218 case 2:
1219 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1220 return;
1221 case 1:
1222 cp[h >> 3] |= (0x01 << (h & 0x7));
1223 return;
1224 default:
1225 #ifdef STANDALONE
1226 printf("setblock bad fs_frag %d\n", fs->fs_frag);
1227 #else
1228 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1229 #endif
1230 return;
1231 }
1232 }
1233