Home | History | Annotate | Line # | Download | only in newfs
mkfs.c revision 1.20
      1 /*	$NetBSD: mkfs.c,v 1.20 1995/03/21 01:28:05 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1980, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 #ifndef lint
     37 #if 0
     38 static char sccsid[] = "@(#)mkfs.c	8.3 (Berkeley) 2/3/94";
     39 #else
     40 static char rcsid[] = "$NetBSD: mkfs.c,v 1.20 1995/03/21 01:28:05 cgd Exp $";
     41 #endif
     42 #endif /* not lint */
     43 
     44 #include <sys/param.h>
     45 #include <sys/time.h>
     46 #include <sys/wait.h>
     47 #include <sys/resource.h>
     48 #include <ufs/ufs/dinode.h>
     49 #include <ufs/ufs/dir.h>
     50 #include <ufs/ffs/fs.h>
     51 #include <sys/disklabel.h>
     52 
     53 #include <string.h>
     54 #include <unistd.h>
     55 
     56 #ifndef STANDALONE
     57 #include <a.out.h>
     58 #include <stdio.h>
     59 #endif
     60 
     61 /*
     62  * make file system for cylinder-group style file systems
     63  */
     64 
     65 /*
     66  * We limit the size of the inode map to be no more than a
     67  * third of the cylinder group space, since we must leave at
     68  * least an equal amount of space for the block map.
     69  *
     70  * N.B.: MAXIPG must be a multiple of INOPB(fs).
     71  */
     72 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
     73 
     74 #define UMASK		0755
     75 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
     76 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
     77 
     78 /*
     79  * variables set up by front end.
     80  */
     81 extern int	mfs;		/* run as the memory based filesystem */
     82 extern int	Nflag;		/* run mkfs without writing file system */
     83 extern int	Oflag;		/* format as an 4.3BSD file system */
     84 extern int	fssize;		/* file system size */
     85 extern int	ntracks;	/* # tracks/cylinder */
     86 extern int	nsectors;	/* # sectors/track */
     87 extern int	nphyssectors;	/* # sectors/track including spares */
     88 extern int	secpercyl;	/* sectors per cylinder */
     89 extern int	sectorsize;	/* bytes/sector */
     90 extern int	rpm;		/* revolutions/minute of drive */
     91 extern int	interleave;	/* hardware sector interleave */
     92 extern int	trackskew;	/* sector 0 skew, per track */
     93 extern int	headswitch;	/* head switch time, usec */
     94 extern int	trackseek;	/* track-to-track seek, usec */
     95 extern int	fsize;		/* fragment size */
     96 extern int	bsize;		/* block size */
     97 extern int	cpg;		/* cylinders/cylinder group */
     98 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
     99 extern int	minfree;	/* free space threshold */
    100 extern int	opt;		/* optimization preference (space or time) */
    101 extern int	density;	/* number of bytes per inode */
    102 extern int	maxcontig;	/* max contiguous blocks to allocate */
    103 extern int	rotdelay;	/* rotational delay between blocks */
    104 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
    105 extern int	nrpos;		/* # of distinguished rotational positions */
    106 extern int	bbsize;		/* boot block size */
    107 extern int	sbsize;		/* superblock size */
    108 extern u_long	memleft;	/* virtual memory available */
    109 extern caddr_t	membase;	/* start address of memory based filesystem */
    110 extern caddr_t	malloc(), calloc();
    111 
    112 union {
    113 	struct fs fs;
    114 	char pad[SBSIZE];
    115 } fsun;
    116 #define	sblock	fsun.fs
    117 struct	csum *fscs;
    118 
    119 union {
    120 	struct cg cg;
    121 	char pad[MAXBSIZE];
    122 } cgun;
    123 #define	acg	cgun.cg
    124 
    125 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
    126 
    127 int	fsi, fso;
    128 daddr_t	alloc();
    129 
    130 mkfs(pp, fsys, fi, fo)
    131 	struct partition *pp;
    132 	char *fsys;
    133 	int fi, fo;
    134 {
    135 	register long i, mincpc, mincpg, inospercg;
    136 	long cylno, rpos, blk, j, warn = 0;
    137 	long used, mincpgcnt, bpcg;
    138 	long mapcramped, inodecramped;
    139 	long postblsize, rotblsize, totalsbsize;
    140 	int ppid, status;
    141 	time_t utime;
    142 	quad_t sizepb;
    143 	void started();
    144 
    145 #ifndef STANDALONE
    146 	time(&utime);
    147 #endif
    148 	if (mfs) {
    149 		ppid = getpid();
    150 		(void) signal(SIGUSR1, started);
    151 		if (i = fork()) {
    152 			if (i == -1) {
    153 				perror("mfs");
    154 				exit(10);
    155 			}
    156 			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
    157 				exit(WEXITSTATUS(status));
    158 			exit(11);
    159 			/* NOTREACHED */
    160 		}
    161 		(void)malloc(0);
    162 		if (fssize * sectorsize > memleft)
    163 			fssize = (memleft - 16384) / sectorsize;
    164 		if ((membase = malloc(fssize * sectorsize)) == 0)
    165 			exit(12);
    166 	}
    167 	fsi = fi;
    168 	fso = fo;
    169 	if (Oflag) {
    170 		sblock.fs_inodefmt = FS_42INODEFMT;
    171 		sblock.fs_maxsymlinklen = 0;
    172 	} else {
    173 		sblock.fs_inodefmt = FS_44INODEFMT;
    174 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
    175 	}
    176 	/*
    177 	 * Validate the given file system size.
    178 	 * Verify that its last block can actually be accessed.
    179 	 */
    180 	if (fssize <= 0)
    181 		printf("preposterous size %d\n", fssize), exit(13);
    182 	wtfs(fssize - 1, sectorsize, (char *)&sblock);
    183 	/*
    184 	 * collect and verify the sector and track info
    185 	 */
    186 	sblock.fs_nsect = nsectors;
    187 	sblock.fs_ntrak = ntracks;
    188 	if (sblock.fs_ntrak <= 0)
    189 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
    190 	if (sblock.fs_nsect <= 0)
    191 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
    192 	/*
    193 	 * collect and verify the block and fragment sizes
    194 	 */
    195 	sblock.fs_bsize = bsize;
    196 	sblock.fs_fsize = fsize;
    197 	if (!POWEROF2(sblock.fs_bsize)) {
    198 		printf("block size must be a power of 2, not %d\n",
    199 		    sblock.fs_bsize);
    200 		exit(16);
    201 	}
    202 	if (!POWEROF2(sblock.fs_fsize)) {
    203 		printf("fragment size must be a power of 2, not %d\n",
    204 		    sblock.fs_fsize);
    205 		exit(17);
    206 	}
    207 	if (sblock.fs_fsize < sectorsize) {
    208 		printf("fragment size %d is too small, minimum is %d\n",
    209 		    sblock.fs_fsize, sectorsize);
    210 		exit(18);
    211 	}
    212 	if (sblock.fs_bsize < MINBSIZE) {
    213 		printf("block size %d is too small, minimum is %d\n",
    214 		    sblock.fs_bsize, MINBSIZE);
    215 		exit(19);
    216 	}
    217 	if (sblock.fs_bsize < sblock.fs_fsize) {
    218 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
    219 		    sblock.fs_bsize, sblock.fs_fsize);
    220 		exit(20);
    221 	}
    222 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
    223 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
    224 	sblock.fs_qbmask = ~sblock.fs_bmask;
    225 	sblock.fs_qfmask = ~sblock.fs_fmask;
    226 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
    227 		sblock.fs_bshift++;
    228 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
    229 		sblock.fs_fshift++;
    230 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
    231 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
    232 		sblock.fs_fragshift++;
    233 	if (sblock.fs_frag > MAXFRAG) {
    234 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
    235 		    sblock.fs_fsize, sblock.fs_bsize,
    236 		    sblock.fs_bsize / MAXFRAG);
    237 		exit(21);
    238 	}
    239 	sblock.fs_nrpos = nrpos;
    240 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
    241 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
    242 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
    243 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
    244 		sblock.fs_fsbtodb++;
    245 	sblock.fs_sblkno =
    246 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
    247 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
    248 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
    249 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
    250 	sblock.fs_cgoffset = roundup(
    251 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
    252 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
    253 		sblock.fs_cgmask <<= 1;
    254 	if (!POWEROF2(sblock.fs_ntrak))
    255 		sblock.fs_cgmask <<= 1;
    256 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
    257 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
    258 		sizepb *= NINDIR(&sblock);
    259 		sblock.fs_maxfilesize += sizepb;
    260 	}
    261 	/*
    262 	 * Validate specified/determined secpercyl
    263 	 * and calculate minimum cylinders per group.
    264 	 */
    265 	sblock.fs_spc = secpercyl;
    266 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
    267 	     sblock.fs_cpc > 1 && (i & 1) == 0;
    268 	     sblock.fs_cpc >>= 1, i >>= 1)
    269 		/* void */;
    270 	mincpc = sblock.fs_cpc;
    271 	bpcg = sblock.fs_spc * sectorsize;
    272 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
    273 	if (inospercg > MAXIPG(&sblock))
    274 		inospercg = MAXIPG(&sblock);
    275 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
    276 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
    277 	    sblock.fs_spc);
    278 	mincpg = roundup(mincpgcnt, mincpc);
    279 	/*
    280 	 * Ensure that cylinder group with mincpg has enough space
    281 	 * for block maps.
    282 	 */
    283 	sblock.fs_cpg = mincpg;
    284 	sblock.fs_ipg = inospercg;
    285 	if (maxcontig > 1)
    286 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
    287 	mapcramped = 0;
    288 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    289 		mapcramped = 1;
    290 		if (sblock.fs_bsize < MAXBSIZE) {
    291 			sblock.fs_bsize <<= 1;
    292 			if ((i & 1) == 0) {
    293 				i >>= 1;
    294 			} else {
    295 				sblock.fs_cpc <<= 1;
    296 				mincpc <<= 1;
    297 				mincpg = roundup(mincpgcnt, mincpc);
    298 				sblock.fs_cpg = mincpg;
    299 			}
    300 			sblock.fs_frag <<= 1;
    301 			sblock.fs_fragshift += 1;
    302 			if (sblock.fs_frag <= MAXFRAG)
    303 				continue;
    304 		}
    305 		if (sblock.fs_fsize == sblock.fs_bsize) {
    306 			printf("There is no block size that");
    307 			printf(" can support this disk\n");
    308 			exit(22);
    309 		}
    310 		sblock.fs_frag >>= 1;
    311 		sblock.fs_fragshift -= 1;
    312 		sblock.fs_fsize <<= 1;
    313 		sblock.fs_nspf <<= 1;
    314 	}
    315 	/*
    316 	 * Ensure that cylinder group with mincpg has enough space for inodes.
    317 	 */
    318 	inodecramped = 0;
    319 	used *= sectorsize;
    320 	inospercg = roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
    321 	sblock.fs_ipg = inospercg;
    322 	while (inospercg > MAXIPG(&sblock)) {
    323 		inodecramped = 1;
    324 		if (mincpc == 1 || sblock.fs_frag == 1 ||
    325 		    sblock.fs_bsize == MINBSIZE)
    326 			break;
    327 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
    328 		    "minimum bytes per inode is",
    329 		    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
    330 		sblock.fs_bsize >>= 1;
    331 		sblock.fs_frag >>= 1;
    332 		sblock.fs_fragshift -= 1;
    333 		mincpc >>= 1;
    334 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
    335 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
    336 			sblock.fs_bsize <<= 1;
    337 			break;
    338 		}
    339 		mincpg = sblock.fs_cpg;
    340 		inospercg =
    341 		    roundup((mincpg * bpcg - used) / density, INOPB(&sblock));
    342 		sblock.fs_ipg = inospercg;
    343 	}
    344 	if (inodecramped) {
    345 		if (inospercg > MAXIPG(&sblock)) {
    346 			printf("Minimum bytes per inode is %d\n",
    347 			    (mincpg * bpcg - used) / MAXIPG(&sblock) + 1);
    348 		} else if (!mapcramped) {
    349 			printf("With %d bytes per inode, ", density);
    350 			printf("minimum cylinders per group is %d\n", mincpg);
    351 		}
    352 	}
    353 	if (mapcramped) {
    354 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
    355 		printf("minimum cylinders per group is %d\n", mincpg);
    356 	}
    357 	if (inodecramped || mapcramped) {
    358 		if (sblock.fs_bsize != bsize)
    359 			printf("%s to be changed from %d to %d\n",
    360 			    "This requires the block size",
    361 			    bsize, sblock.fs_bsize);
    362 		if (sblock.fs_fsize != fsize)
    363 			printf("\t%s to be changed from %d to %d\n",
    364 			    "and the fragment size",
    365 			    fsize, sblock.fs_fsize);
    366 		exit(23);
    367 	}
    368 	/*
    369 	 * Calculate the number of cylinders per group
    370 	 */
    371 	sblock.fs_cpg = cpg;
    372 	if (sblock.fs_cpg % mincpc != 0) {
    373 		printf("%s groups must have a multiple of %d cylinders\n",
    374 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
    375 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
    376 		if (!cpgflg)
    377 			cpg = sblock.fs_cpg;
    378 	}
    379 	/*
    380 	 * Must ensure there is enough space for inodes.
    381 	 */
    382 	sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    383 		INOPB(&sblock));
    384 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
    385 		inodecramped = 1;
    386 		sblock.fs_cpg -= mincpc;
    387 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    388 			INOPB(&sblock));
    389 	}
    390 	/*
    391 	 * Must ensure there is enough space to hold block map.
    392 	 */
    393 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
    394 		mapcramped = 1;
    395 		sblock.fs_cpg -= mincpc;
    396 		sblock.fs_ipg = roundup((sblock.fs_cpg * bpcg - used) / density,
    397 			INOPB(&sblock));
    398 	}
    399 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
    400 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
    401 		printf("panic (fs_cpg * fs_spc) % NSPF != 0");
    402 		exit(24);
    403 	}
    404 	if (sblock.fs_cpg < mincpg) {
    405 		printf("cylinder groups must have at least %d cylinders\n",
    406 			mincpg);
    407 		exit(25);
    408 	} else if (sblock.fs_cpg != cpg) {
    409 		if (!cpgflg)
    410 			printf("Warning: ");
    411 		else if (!mapcramped && !inodecramped)
    412 			exit(26);
    413 		if (mapcramped && inodecramped)
    414 			printf("Block size and bytes per inode restrict");
    415 		else if (mapcramped)
    416 			printf("Block size restricts");
    417 		else
    418 			printf("Bytes per inode restrict");
    419 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
    420 		if (cpgflg)
    421 			exit(27);
    422 	}
    423 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
    424 	/*
    425 	 * Now have size for file system and nsect and ntrak.
    426 	 * Determine number of cylinders and blocks in the file system.
    427 	 */
    428 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
    429 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
    430 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
    431 		sblock.fs_ncyl++;
    432 		warn = 1;
    433 	}
    434 	if (sblock.fs_ncyl < 1) {
    435 		printf("file systems must have at least one cylinder\n");
    436 		exit(28);
    437 	}
    438 	/*
    439 	 * Determine feasability/values of rotational layout tables.
    440 	 *
    441 	 * The size of the rotational layout tables is limited by the
    442 	 * size of the superblock, SBSIZE. The amount of space available
    443 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
    444 	 * The size of these tables is inversely proportional to the block
    445 	 * size of the file system. The size increases if sectors per track
    446 	 * are not powers of two, because more cylinders must be described
    447 	 * by the tables before the rotational pattern repeats (fs_cpc).
    448 	 */
    449 	sblock.fs_interleave = interleave;
    450 	sblock.fs_trackskew = trackskew;
    451 	sblock.fs_npsect = nphyssectors;
    452 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
    453 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
    454 	if (sblock.fs_ntrak == 1) {
    455 		sblock.fs_cpc = 0;
    456 		goto next;
    457 	}
    458 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
    459 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
    460 	totalsbsize = sizeof(struct fs) + rotblsize;
    461 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
    462 		/* use old static table space */
    463 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
    464 		    (char *)(&sblock.fs_firstfield);
    465 		sblock.fs_rotbloff = &sblock.fs_space[0] -
    466 		    (u_char *)(&sblock.fs_firstfield);
    467 	} else {
    468 		/* use dynamic table space */
    469 		sblock.fs_postbloff = &sblock.fs_space[0] -
    470 		    (u_char *)(&sblock.fs_firstfield);
    471 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
    472 		totalsbsize += postblsize;
    473 	}
    474 	if (totalsbsize > SBSIZE ||
    475 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
    476 		printf("%s %s %d %s %d.%s",
    477 		    "Warning: insufficient space in super block for\n",
    478 		    "rotational layout tables with nsect", sblock.fs_nsect,
    479 		    "and ntrak", sblock.fs_ntrak,
    480 		    "\nFile system performance may be impaired.\n");
    481 		sblock.fs_cpc = 0;
    482 		goto next;
    483 	}
    484 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
    485 	/*
    486 	 * calculate the available blocks for each rotational position
    487 	 */
    488 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
    489 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
    490 			fs_postbl(&sblock, cylno)[rpos] = -1;
    491 	for (i = (rotblsize - 1) * sblock.fs_frag;
    492 	     i >= 0; i -= sblock.fs_frag) {
    493 		cylno = cbtocylno(&sblock, i);
    494 		rpos = cbtorpos(&sblock, i);
    495 		blk = fragstoblks(&sblock, i);
    496 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
    497 			fs_rotbl(&sblock)[blk] = 0;
    498 		else
    499 			fs_rotbl(&sblock)[blk] =
    500 			    fs_postbl(&sblock, cylno)[rpos] - blk;
    501 		fs_postbl(&sblock, cylno)[rpos] = blk;
    502 	}
    503 next:
    504 	/*
    505 	 * Compute/validate number of cylinder groups.
    506 	 */
    507 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
    508 	if (sblock.fs_ncyl % sblock.fs_cpg)
    509 		sblock.fs_ncg++;
    510 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
    511 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
    512 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
    513 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
    514 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
    515 		    sblock.fs_fpg / sblock.fs_frag);
    516 		printf("number of cylinders per cylinder group (%d) %s.\n",
    517 		    sblock.fs_cpg, "must be increased");
    518 		exit(29);
    519 	}
    520 	j = sblock.fs_ncg - 1;
    521 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
    522 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
    523 		if (j == 0) {
    524 			printf("Filesystem must have at least %d sectors\n",
    525 			    NSPF(&sblock) *
    526 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
    527 			exit(30);
    528 		}
    529 		printf("Warning: inode blocks/cyl group (%d) >= data blocks (%d) in last\n",
    530 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
    531 		    i / sblock.fs_frag);
    532 		printf("    cylinder group. This implies %d sector(s) cannot be allocated.\n",
    533 		    i * NSPF(&sblock));
    534 		sblock.fs_ncg--;
    535 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
    536 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
    537 		    NSPF(&sblock);
    538 		warn = 0;
    539 	}
    540 	if (warn && !mfs) {
    541 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
    542 		    sblock.fs_spc -
    543 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
    544 		    * sblock.fs_spc));
    545 	}
    546 	/*
    547 	 * fill in remaining fields of the super block
    548 	 */
    549 	sblock.fs_csaddr = cgdmin(&sblock, 0);
    550 	sblock.fs_cssize =
    551 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
    552 	i = sblock.fs_bsize / sizeof(struct csum);
    553 	sblock.fs_csmask = ~(i - 1);
    554 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
    555 		sblock.fs_csshift++;
    556 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
    557 	sblock.fs_magic = FS_MAGIC;
    558 	sblock.fs_rotdelay = rotdelay;
    559 	sblock.fs_minfree = minfree;
    560 	sblock.fs_maxcontig = maxcontig;
    561 	sblock.fs_headswitch = headswitch;
    562 	sblock.fs_trkseek = trackseek;
    563 	sblock.fs_maxbpg = maxbpg;
    564 	sblock.fs_rps = rpm / 60;
    565 	sblock.fs_optim = opt;
    566 	sblock.fs_cgrotor = 0;
    567 	sblock.fs_cstotal.cs_ndir = 0;
    568 	sblock.fs_cstotal.cs_nbfree = 0;
    569 	sblock.fs_cstotal.cs_nifree = 0;
    570 	sblock.fs_cstotal.cs_nffree = 0;
    571 	sblock.fs_fmod = 0;
    572 	sblock.fs_ronly = 0;
    573 	/*
    574 	 * Dump out summary information about file system.
    575 	 */
    576 	if (!mfs) {
    577 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
    578 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
    579 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
    580 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
    581 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
    582 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
    583 		    sblock.fs_ncg, sblock.fs_cpg,
    584 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
    585 		    sblock.fs_ipg);
    586 #undef B2MBFACTOR
    587 	}
    588 	/*
    589 	 * Now build the cylinders group blocks and
    590 	 * then print out indices of cylinder groups.
    591 	 */
    592 	if (!mfs)
    593 		printf("super-block backups (for fsck -b #) at:");
    594 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
    595 		initcg(cylno, utime);
    596 		if (mfs)
    597 			continue;
    598 		if (cylno % 8 == 0)
    599 			printf("\n");
    600 		printf(" %d,", fsbtodb(&sblock, cgsblock(&sblock, cylno)));
    601 		fflush(stderr);
    602 	}
    603 	if (!mfs)
    604 		printf("\n");
    605 	if (Nflag && !mfs)
    606 		exit(0);
    607 	/*
    608 	 * Now construct the initial file system,
    609 	 * then write out the super-block.
    610 	 */
    611 	fsinit(utime);
    612 	sblock.fs_time = utime;
    613 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
    614 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
    615 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
    616 			sblock.fs_cssize - i < sblock.fs_bsize ?
    617 			    sblock.fs_cssize - i : sblock.fs_bsize,
    618 			((char *)fscs) + i);
    619 	/*
    620 	 * Write out the duplicate super blocks
    621 	 */
    622 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
    623 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
    624 		    sbsize, (char *)&sblock);
    625 	/*
    626 	 * Update information about this partion in pack
    627 	 * label, to that it may be updated on disk.
    628 	 */
    629 	pp->p_fstype = FS_BSDFFS;
    630 	pp->p_fsize = sblock.fs_fsize;
    631 	pp->p_frag = sblock.fs_frag;
    632 	pp->p_cpg = sblock.fs_cpg;
    633 	/*
    634 	 * Notify parent process of success.
    635 	 * Dissociate from session and tty.
    636 	 */
    637 	if (mfs) {
    638 		kill(ppid, SIGUSR1);
    639 		(void) setsid();
    640 		(void) close(0);
    641 		(void) close(1);
    642 		(void) close(2);
    643 		(void) chdir("/");
    644 	}
    645 }
    646 
    647 /*
    648  * Initialize a cylinder group.
    649  */
    650 initcg(cylno, utime)
    651 	int cylno;
    652 	time_t utime;
    653 {
    654 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
    655 	long i, j, s;
    656 	register struct csum *cs;
    657 
    658 	/*
    659 	 * Determine block bounds for cylinder group.
    660 	 * Allow space for super block summary information in first
    661 	 * cylinder group.
    662 	 */
    663 	cbase = cgbase(&sblock, cylno);
    664 	dmax = cbase + sblock.fs_fpg;
    665 	if (dmax > sblock.fs_size)
    666 		dmax = sblock.fs_size;
    667 	dlower = cgsblock(&sblock, cylno) - cbase;
    668 	dupper = cgdmin(&sblock, cylno) - cbase;
    669 	if (cylno == 0)
    670 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
    671 	cs = fscs + cylno;
    672 	memset(&acg, 0, sblock.fs_cgsize);
    673 	acg.cg_time = utime;
    674 	acg.cg_magic = CG_MAGIC;
    675 	acg.cg_cgx = cylno;
    676 	if (cylno == sblock.fs_ncg - 1)
    677 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
    678 	else
    679 		acg.cg_ncyl = sblock.fs_cpg;
    680 	acg.cg_niblk = sblock.fs_ipg;
    681 	acg.cg_ndblk = dmax - cbase;
    682 	if (sblock.fs_contigsumsize > 0)
    683 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
    684 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
    685 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
    686 	acg.cg_iusedoff = acg.cg_boff +
    687 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
    688 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
    689 	if (sblock.fs_contigsumsize <= 0) {
    690 		acg.cg_nextfreeoff = acg.cg_freeoff +
    691 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
    692 	} else {
    693 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
    694 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
    695 		    sizeof(int32_t);
    696 		acg.cg_clustersumoff =
    697 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
    698 		acg.cg_clusteroff = acg.cg_clustersumoff +
    699 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
    700 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
    701 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
    702 	}
    703 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
    704 		printf("Panic: cylinder group too big\n");
    705 		exit(37);
    706 	}
    707 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
    708 	if (cylno == 0)
    709 		for (i = 0; i < ROOTINO; i++) {
    710 			setbit(cg_inosused(&acg), i);
    711 			acg.cg_cs.cs_nifree--;
    712 		}
    713 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
    714 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
    715 		    sblock.fs_bsize, (char *)zino);
    716 	if (cylno > 0) {
    717 		/*
    718 		 * In cylno 0, beginning space is reserved
    719 		 * for boot and super blocks.
    720 		 */
    721 		for (d = 0; d < dlower; d += sblock.fs_frag) {
    722 			blkno = d / sblock.fs_frag;
    723 			setblock(&sblock, cg_blksfree(&acg), blkno);
    724 			if (sblock.fs_contigsumsize > 0)
    725 				setbit(cg_clustersfree(&acg), blkno);
    726 			acg.cg_cs.cs_nbfree++;
    727 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    728 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    729 			    [cbtorpos(&sblock, d)]++;
    730 		}
    731 		sblock.fs_dsize += dlower;
    732 	}
    733 	sblock.fs_dsize += acg.cg_ndblk - dupper;
    734 	if (i = dupper % sblock.fs_frag) {
    735 		acg.cg_frsum[sblock.fs_frag - i]++;
    736 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
    737 			setbit(cg_blksfree(&acg), dupper);
    738 			acg.cg_cs.cs_nffree++;
    739 		}
    740 	}
    741 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
    742 		blkno = d / sblock.fs_frag;
    743 		setblock(&sblock, cg_blksfree(&acg), blkno);
    744 		if (sblock.fs_contigsumsize > 0)
    745 			setbit(cg_clustersfree(&acg), blkno);
    746 		acg.cg_cs.cs_nbfree++;
    747 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
    748 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
    749 		    [cbtorpos(&sblock, d)]++;
    750 		d += sblock.fs_frag;
    751 	}
    752 	if (d < dmax - cbase) {
    753 		acg.cg_frsum[dmax - cbase - d]++;
    754 		for (; d < dmax - cbase; d++) {
    755 			setbit(cg_blksfree(&acg), d);
    756 			acg.cg_cs.cs_nffree++;
    757 		}
    758 	}
    759 	if (sblock.fs_contigsumsize > 0) {
    760 		int32_t *sump = cg_clustersum(&acg);
    761 		u_char *mapp = cg_clustersfree(&acg);
    762 		int map = *mapp++;
    763 		int bit = 1;
    764 		int run = 0;
    765 
    766 		for (i = 0; i < acg.cg_nclusterblks; i++) {
    767 			if ((map & bit) != 0) {
    768 				run++;
    769 			} else if (run != 0) {
    770 				if (run > sblock.fs_contigsumsize)
    771 					run = sblock.fs_contigsumsize;
    772 				sump[run]++;
    773 				run = 0;
    774 			}
    775 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
    776 				bit <<= 1;
    777 			} else {
    778 				map = *mapp++;
    779 				bit = 1;
    780 			}
    781 		}
    782 		if (run != 0) {
    783 			if (run > sblock.fs_contigsumsize)
    784 				run = sblock.fs_contigsumsize;
    785 			sump[run]++;
    786 		}
    787 	}
    788 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
    789 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
    790 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
    791 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
    792 	*cs = acg.cg_cs;
    793 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
    794 		sblock.fs_bsize, (char *)&acg);
    795 }
    796 
    797 /*
    798  * initialize the file system
    799  */
    800 struct dinode node;
    801 
    802 #ifdef LOSTDIR
    803 #define PREDEFDIR 3
    804 #else
    805 #define PREDEFDIR 2
    806 #endif
    807 
    808 struct direct root_dir[] = {
    809 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
    810 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    811 #ifdef LOSTDIR
    812 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
    813 #endif
    814 };
    815 struct odirect {
    816 	u_int32_t d_ino;
    817 	u_int16_t d_reclen;
    818 	u_int16_t d_namlen;
    819 	u_char	d_name[MAXNAMLEN + 1];
    820 } oroot_dir[] = {
    821 	{ ROOTINO, sizeof(struct direct), 1, "." },
    822 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    823 #ifdef LOSTDIR
    824 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
    825 #endif
    826 };
    827 #ifdef LOSTDIR
    828 struct direct lost_found_dir[] = {
    829 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
    830 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
    831 	{ 0, DIRBLKSIZ, 0, 0, 0 },
    832 };
    833 struct odirect olost_found_dir[] = {
    834 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
    835 	{ ROOTINO, sizeof(struct direct), 2, ".." },
    836 	{ 0, DIRBLKSIZ, 0, 0 },
    837 };
    838 #endif
    839 char buf[MAXBSIZE];
    840 
    841 fsinit(utime)
    842 	time_t utime;
    843 {
    844 	int i;
    845 
    846 	/*
    847 	 * initialize the node
    848 	 */
    849 	node.di_atime.ts_sec = utime;
    850 	node.di_mtime.ts_sec = utime;
    851 	node.di_ctime.ts_sec = utime;
    852 #ifdef LOSTDIR
    853 	/*
    854 	 * create the lost+found directory
    855 	 */
    856 	if (Oflag) {
    857 		(void)makedir((struct direct *)olost_found_dir, 2);
    858 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    859 			memcpy(&buf[i], &olost_found_dir[2],
    860 			    DIRSIZ(0, &olost_found_dir[2]));
    861 	} else {
    862 		(void)makedir(lost_found_dir, 2);
    863 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
    864 			memcpy(&buf[i], &lost_found_dir[2],
    865 			    DIRSIZ(0, &lost_found_dir[2]));
    866 	}
    867 	node.di_mode = IFDIR | UMASK;
    868 	node.di_nlink = 2;
    869 	node.di_size = sblock.fs_bsize;
    870 	node.di_db[0] = alloc(node.di_size, node.di_mode);
    871 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    872 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
    873 	iput(&node, LOSTFOUNDINO);
    874 #endif
    875 	/*
    876 	 * create the root directory
    877 	 */
    878 	if (mfs)
    879 		node.di_mode = IFDIR | 01777;
    880 	else
    881 		node.di_mode = IFDIR | UMASK;
    882 	node.di_nlink = PREDEFDIR;
    883 	if (Oflag)
    884 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
    885 	else
    886 		node.di_size = makedir(root_dir, PREDEFDIR);
    887 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
    888 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
    889 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
    890 	iput(&node, ROOTINO);
    891 }
    892 
    893 /*
    894  * construct a set of directory entries in "buf".
    895  * return size of directory.
    896  */
    897 makedir(protodir, entries)
    898 	register struct direct *protodir;
    899 	int entries;
    900 {
    901 	char *cp;
    902 	int i, spcleft;
    903 
    904 	spcleft = DIRBLKSIZ;
    905 	for (cp = buf, i = 0; i < entries - 1; i++) {
    906 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
    907 		memcpy(cp, &protodir[i], protodir[i].d_reclen);
    908 		cp += protodir[i].d_reclen;
    909 		spcleft -= protodir[i].d_reclen;
    910 	}
    911 	protodir[i].d_reclen = spcleft;
    912 	memcpy(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
    913 	return (DIRBLKSIZ);
    914 }
    915 
    916 /*
    917  * allocate a block or frag
    918  */
    919 daddr_t
    920 alloc(size, mode)
    921 	int size;
    922 	int mode;
    923 {
    924 	int i, frag;
    925 	daddr_t d, blkno;
    926 
    927 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    928 	    (char *)&acg);
    929 	if (acg.cg_magic != CG_MAGIC) {
    930 		printf("cg 0: bad magic number\n");
    931 		return (0);
    932 	}
    933 	if (acg.cg_cs.cs_nbfree == 0) {
    934 		printf("first cylinder group ran out of space\n");
    935 		return (0);
    936 	}
    937 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
    938 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
    939 			goto goth;
    940 	printf("internal error: can't find block in cyl 0\n");
    941 	return (0);
    942 goth:
    943 	blkno = fragstoblks(&sblock, d);
    944 	clrblock(&sblock, cg_blksfree(&acg), blkno);
    945 	if (sblock.fs_contigsumsize > 0)
    946 		clrbit(cg_clustersfree(&acg), blkno);
    947 	acg.cg_cs.cs_nbfree--;
    948 	sblock.fs_cstotal.cs_nbfree--;
    949 	fscs[0].cs_nbfree--;
    950 	if (mode & IFDIR) {
    951 		acg.cg_cs.cs_ndir++;
    952 		sblock.fs_cstotal.cs_ndir++;
    953 		fscs[0].cs_ndir++;
    954 	}
    955 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
    956 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
    957 	if (size != sblock.fs_bsize) {
    958 		frag = howmany(size, sblock.fs_fsize);
    959 		fscs[0].cs_nffree += sblock.fs_frag - frag;
    960 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
    961 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
    962 		acg.cg_frsum[sblock.fs_frag - frag]++;
    963 		for (i = frag; i < sblock.fs_frag; i++)
    964 			setbit(cg_blksfree(&acg), d + i);
    965 	}
    966 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    967 	    (char *)&acg);
    968 	return (d);
    969 }
    970 
    971 /*
    972  * Allocate an inode on the disk
    973  */
    974 iput(ip, ino)
    975 	register struct dinode *ip;
    976 	register ino_t ino;
    977 {
    978 	struct dinode buf[MAXINOPB];
    979 	daddr_t d;
    980 	int c;
    981 
    982 	c = ino_to_cg(&sblock, ino);
    983 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    984 	    (char *)&acg);
    985 	if (acg.cg_magic != CG_MAGIC) {
    986 		printf("cg 0: bad magic number\n");
    987 		exit(31);
    988 	}
    989 	acg.cg_cs.cs_nifree--;
    990 	setbit(cg_inosused(&acg), ino);
    991 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
    992 	    (char *)&acg);
    993 	sblock.fs_cstotal.cs_nifree--;
    994 	fscs[0].cs_nifree--;
    995 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
    996 		printf("fsinit: inode value out of range (%d).\n", ino);
    997 		exit(32);
    998 	}
    999 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
   1000 	rdfs(d, sblock.fs_bsize, buf);
   1001 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
   1002 	wtfs(d, sblock.fs_bsize, buf);
   1003 }
   1004 
   1005 /*
   1006  * Notify parent process that the filesystem has created itself successfully.
   1007  */
   1008 void
   1009 started()
   1010 {
   1011 
   1012 	exit(0);
   1013 }
   1014 
   1015 /*
   1016  * Replace libc function with one suited to our needs.
   1017  */
   1018 caddr_t
   1019 malloc(size)
   1020 	register u_long size;
   1021 {
   1022 	char *base, *i;
   1023 	static u_long pgsz;
   1024 	struct rlimit rlp;
   1025 
   1026 	if (pgsz == 0) {
   1027 		base = sbrk(0);
   1028 		pgsz = getpagesize() - 1;
   1029 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
   1030 		base = sbrk(i - base);
   1031 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
   1032 			perror("getrlimit");
   1033 		rlp.rlim_cur = rlp.rlim_max;
   1034 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
   1035 			perror("setrlimit");
   1036 		memleft = rlp.rlim_max - (u_long)base;
   1037 	}
   1038 	size = (size + pgsz) &~ pgsz;
   1039 	if (size > memleft)
   1040 		size = memleft;
   1041 	memleft -= size;
   1042 	if (size == 0)
   1043 		return (0);
   1044 	return ((caddr_t)sbrk(size));
   1045 }
   1046 
   1047 /*
   1048  * Replace libc function with one suited to our needs.
   1049  */
   1050 caddr_t
   1051 realloc(ptr, size)
   1052 	char *ptr;
   1053 	u_long size;
   1054 {
   1055 	void *p;
   1056 
   1057 	if ((p = malloc(size)) == NULL)
   1058 		return (NULL);
   1059 	memcpy(p, ptr, size);
   1060 	free(ptr);
   1061 	return (p);
   1062 }
   1063 
   1064 /*
   1065  * Replace libc function with one suited to our needs.
   1066  */
   1067 char *
   1068 calloc(size, numelm)
   1069 	u_long size, numelm;
   1070 {
   1071 	caddr_t base;
   1072 
   1073 	size *= numelm;
   1074 	base = malloc(size);
   1075 	memset(base, 0, size);
   1076 	return (base);
   1077 }
   1078 
   1079 /*
   1080  * Replace libc function with one suited to our needs.
   1081  */
   1082 free(ptr)
   1083 	char *ptr;
   1084 {
   1085 
   1086 	/* do not worry about it for now */
   1087 }
   1088 
   1089 /*
   1090  * read a block from the file system
   1091  */
   1092 rdfs(bno, size, bf)
   1093 	daddr_t bno;
   1094 	int size;
   1095 	char *bf;
   1096 {
   1097 	int n;
   1098 	off_t offset;
   1099 
   1100 	if (mfs) {
   1101 		memcpy(bf, membase + bno * sectorsize, size);
   1102 		return;
   1103 	}
   1104 	offset = bno;
   1105 	offset *= sectorsize;
   1106 	if (lseek(fsi, offset, SEEK_SET) < 0) {
   1107 		printf("seek error: %ld\n", bno);
   1108 		perror("rdfs");
   1109 		exit(33);
   1110 	}
   1111 	n = read(fsi, bf, size);
   1112 	if (n != size) {
   1113 		printf("read error: %ld\n", bno);
   1114 		perror("rdfs");
   1115 		exit(34);
   1116 	}
   1117 }
   1118 
   1119 /*
   1120  * write a block to the file system
   1121  */
   1122 wtfs(bno, size, bf)
   1123 	daddr_t bno;
   1124 	int size;
   1125 	char *bf;
   1126 {
   1127 	int n;
   1128 	off_t offset;
   1129 
   1130 	if (mfs) {
   1131 		memcpy(membase + bno * sectorsize, bf, size);
   1132 		return;
   1133 	}
   1134 	if (Nflag)
   1135 		return;
   1136 	offset = bno;
   1137 	offset *= sectorsize;
   1138 	if (lseek(fso, offset, SEEK_SET) < 0) {
   1139 		printf("seek error: %ld\n", bno);
   1140 		perror("wtfs");
   1141 		exit(35);
   1142 	}
   1143 	n = write(fso, bf, size);
   1144 	if (n != size) {
   1145 		printf("write error: %ld\n", bno);
   1146 		perror("wtfs");
   1147 		exit(36);
   1148 	}
   1149 }
   1150 
   1151 /*
   1152  * check if a block is available
   1153  */
   1154 isblock(fs, cp, h)
   1155 	struct fs *fs;
   1156 	unsigned char *cp;
   1157 	int h;
   1158 {
   1159 	unsigned char mask;
   1160 
   1161 	switch (fs->fs_frag) {
   1162 	case 8:
   1163 		return (cp[h] == 0xff);
   1164 	case 4:
   1165 		mask = 0x0f << ((h & 0x1) << 2);
   1166 		return ((cp[h >> 1] & mask) == mask);
   1167 	case 2:
   1168 		mask = 0x03 << ((h & 0x3) << 1);
   1169 		return ((cp[h >> 2] & mask) == mask);
   1170 	case 1:
   1171 		mask = 0x01 << (h & 0x7);
   1172 		return ((cp[h >> 3] & mask) == mask);
   1173 	default:
   1174 #ifdef STANDALONE
   1175 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
   1176 #else
   1177 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
   1178 #endif
   1179 		return (0);
   1180 	}
   1181 }
   1182 
   1183 /*
   1184  * take a block out of the map
   1185  */
   1186 clrblock(fs, cp, h)
   1187 	struct fs *fs;
   1188 	unsigned char *cp;
   1189 	int h;
   1190 {
   1191 	switch ((fs)->fs_frag) {
   1192 	case 8:
   1193 		cp[h] = 0;
   1194 		return;
   1195 	case 4:
   1196 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
   1197 		return;
   1198 	case 2:
   1199 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
   1200 		return;
   1201 	case 1:
   1202 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
   1203 		return;
   1204 	default:
   1205 #ifdef STANDALONE
   1206 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
   1207 #else
   1208 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
   1209 #endif
   1210 		return;
   1211 	}
   1212 }
   1213 
   1214 /*
   1215  * put a block into the map
   1216  */
   1217 setblock(fs, cp, h)
   1218 	struct fs *fs;
   1219 	unsigned char *cp;
   1220 	int h;
   1221 {
   1222 	switch (fs->fs_frag) {
   1223 	case 8:
   1224 		cp[h] = 0xff;
   1225 		return;
   1226 	case 4:
   1227 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
   1228 		return;
   1229 	case 2:
   1230 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
   1231 		return;
   1232 	case 1:
   1233 		cp[h >> 3] |= (0x01 << (h & 0x7));
   1234 		return;
   1235 	default:
   1236 #ifdef STANDALONE
   1237 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
   1238 #else
   1239 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
   1240 #endif
   1241 		return;
   1242 	}
   1243 }
   1244